苏教版七年级数学第二章《有理数》拓展提优练习(含答案解析)
- 格式:doc
- 大小:459.87 KB
- 文档页数:30
苏科版七上第二章《有理数》解答题培优训练(一)班级:___________姓名:___________得分:___________一、解答题1.计算.(1)已知|a|=3,|b|=2,且|a+b|=−(a+b),则a+b的值(2)计算2−4+6−8+10−12+⋯−2016+2018.2.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a−b|.理解:(1)数轴上表示2和−3的两点之间的距离是______;(2)数轴上表示x和−5的两点A和B之间的距离是______;(3)当代数式|x−1|+|x+3|取最小值时,相应的x的取值范围是______;最小值是______.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.3.阅读解答:(1)填空:21−20=2(),22−21=2(),23−22=2(),……(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立.(3)计算:20+21+22+23+⋯+210004.阅读理解,并解答问题:(1)观察下列各式:12=11×2=1−12,16=12×3=12−13,112=13×4=13−14,…(2)请利用上述规律计算(要求写出计算过程):①12+16+112+130+142+156;②11×3+13×5+15×7+17×9+19×11+111×13+113×15.5.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM−BM= OM,求AB的值.OM6.观察下列解题过程:计算:1+5+52+53+⋯+524+525的值.解:设S=1+5+52+53+⋯+524+525.(1)则5S=5+52+53+⋯+525+526(2)(2)−(1)得4S=526−1,S=52n−14通过阅读,你学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+34+⋯+39+310(2)1+x+x2+x3+⋯+x99+x100.7.平移和翻折是初中数学两种重要的图形变化,回答下列问题:(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方形移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果______A.(+3)+(+2)=+5B.(+3)+(−2)=+1C.(−3)−(+2)=−5D.(−3)+(+2)=−1②一个机器人从数轴上原点出发,并在数轴上移动2次(不改变方向),每次移动一个单位后到达B点,则B点表示的数是______.③该机器人又从原点O开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依次规律跳下去,当它跳2016次时,落在数轴上的点到原点的距离是______个单位.(2)翻折变换①若折叠纸条,表示−1的点与表示3的点重合,则表示4的点与表示______的点重合;②若数轴上A、B两点之间的距离为8(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示______,B点表示______.③若数轴上折叠重合的两点的数分别为a和b,折叠中间点表示的数为______.(用a,b的代数式表示)8.某灯具厂计划一天生产200盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,下表是某周的生产情况(增产记为正、减产记为负):(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;(3)该厂实行每日计件工资制,每生产一盏景观灯可得50元,若超额完成任务,则超过部分每盏另奖25元,若未能完成任务,则少生产一盏扣30元,那么该厂这一周应付工资总额是多少元?9.观察下列算式:①1×3−22=3−4=−1②2×4−32=8−9=−1③3×5−42=15−16=−1④______…(1)请你按照以上规律写出第④个算式;(2)设n是正整数,请把上述规律用含有n的等式表示出来______;(3)请说明(2)中所写的等式成立.10.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c−10)2=0,动点P从A出发,以每秒1个单位的速度向终点C 运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2−2ab+a.如:1☆3=1×32−2×1×3+1=4.(1)求(−2)☆5的值;☆3=8,求a的值;(2)若a+12(3)若m=4☆x,n=(1−2x)☆3(其中x为有理数),试比较m、n大小关系,并说明理由.12.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数−2,点B表示数1,下列各数−1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是______;(2)点A表示数−10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.答案和解析解:(1)∵|a|=3,|b|=2,且|a+b|=−(a+b),即a+b≤0,∴a=−3,b=−2或2,当a=−3,b=−2时,a+b=−3−2=−5;当a=−3,b=2时,a+b=−3+2=−1.故a+b的值为−5或−1;’(2)2−4+6−8+10−12+⋯−2016+2018=(2−4)+(6−8)+(10−12)+⋯+(2014−2016)+2018=−2−2−2+⋯−2+2018=−2×(2016÷2÷2)+2018=−2×504+2018=−1008+2018=1010.2.5 |x+5|−3≤x≤1 4解:(1)2和−3的两点之间的距离是|2−(−3)|=5,故答案为:5.(2)A和B之间的距离是|x−(−5)|=|x+5|,故答案为:|x+5|.(3)代数式|x−1|+|x+3|表示在数轴上到1和−3两点的距离的和,当x在−3和1之间时,代数式取得最小值,最小值是−3和1之间的距离|1−(−3)|=4.故当−3≤x≤1时,代数式取得最小值,最小值是4.故答案为:−3≤x≤1,4.应用:根据题意,共有5种调配方案,如下图所示:由上可知,调出的最小车辆数为:4+2+6=12辆.3.解:(1)0;1;2;(2)第n个等式,2n−2n−1=2n−1;理由:2n−2n−1=2n−1(2−1)=2n−1;(3)设S=2°+21+22+23+24+⋯+21000,则2S=21+22+23+24+⋯+21001,所以S=(21+22+23+24+⋯+21001)−(20+21+22+23+24+⋯+21000) =21001−1.解:(1)21−20=1=2(0)22−21=2=2(1)23−22=4=2(2),故答案为0;1;2;4.解:观察阅读材料可得:①原式=1−12+12−13+13−14+⋯+17−18=1−18=78;②原式=12(1−13+13−15+⋯+113−115)=12(1−115)=7155.解:(1)设点A在数轴上表示的数为a,点B在数轴上表示的数为b,则,b−a=16,∵点C是OA的中点,点D是BN的中点,∴点C在数轴上表示的数为a2,点D在数轴上表示的数为b+22,∴CD=b+22−a2=b−a+22=16+22=9,答:CD的长为9;(2)设运动的时间为t秒,点M表示的数为m则OC=t,BD=4t,即点C在数轴上表示的数为−t,点D在数轴上表示的数为b−4t,∴AC=−t−a,OD=b−4t,由OD=4AC得,b−4t=4(−t−a),即:b=−4a,①若点M在点B的右侧时,如图1所示:由AM−BM=OM得,m−a−(m−b)=m,即:m=b−a;∴ABOM =b−am=mm=1;②若点M在线段BO上时,如图2所示:由AM−BM=OM得,m−a−(b−m)=m,即:m=a+b;∴ABOM =b−am=b−aa+b=−4a−aa−4a=53;③若点M在线段OA上时,如图3所示:由AM−BM=OM得,m−a−(b−m)=−m,即:m=a+b3=a−4a3=−a;∵此时m<0,a<0,∴此种情况不符合题意舍去;④若点M在点A的左侧时,如图4所示:由AM−BM=OM得,a−m−(b−m)=−m,即:m=b−a;而m<0,b−a>0,因此,不符合题意舍去,综上所述,ABOM 的值为1或53.6.解:(1)设S=1+3+32+33+⋯+310,两边乘以3得:3S=3+32+33+⋯+311,两式相减得:3S−S=311−1,即S=12(311−1),(311−1).则原式=12(2)设S=1+x+x2+x3+⋯+x99+x100,则xS=x+x2+x3+⋯+x99+x100+x101,两式相减可得(x−1)S=x101−1,当x=1时,S=1+1+⋯+1=101;.当x≠1时,S=x101−1x−17.(1)①D,②2或−2,③−1008;(2)①−2,②−3,5,③a+b.2解:(1)①根据题意得:(−3)+(+2)=−1.②1+1=2或(−1)+(−1)=−2,则B点表示的数是2或−2,③设向右跳动为正,向左跳动为负,由题意可得(+1)+(−2)+(+3)+(−4)+⋯+ (−2016)=(1−2)+(3−4)+(5−6)+⋯+(2015−2016)=−1008;故答案为:D;2或−2;−1008,(2)①根据题意得:表示1的点为折叠点,即4对应的点为−2;②∵A、B两点之间的距离为8且折叠后重合,∴A点表示的数为:1−8÷2=1−4=−3.B点表示的数为:1+8÷2=1+4=5.③若数轴上折叠重合的两点的数分别为a和b,折叠中间点表示的数为a+b,2故答案为:−2;−3,5;a+b.28.解:(1)3−5−2+9−7+12−3=7(盏),200×7+7=1407(盏),答:该厂本周实际生产景观灯的盏数是2107盏;(2)12−(−7)=19盏,产量最多的一天比产量最少的一天多生产景观灯的盏数是19盏;(3)根据题意200×50+25×24−17×30=70000+90=70090(元)答:该厂这一周应付工资总额是70090元.9.4×6−52=24−25=−1n(n+2)−(n+1)2=−1解:(1)第4个算式为:4×6−52=24−25=−1;(2)用含字母n的式子表示出来为n(n+2)−(n+1)2=−1;(3)n(n+2)−(n+1)2=n2+2n−(n2+2n+1)=n2+2n−n2−2n−1=−1.故n(n+2)−(n+1)2=−1成立.故答案为:4×6−52=24−25=−1;n(n+2)−(n+1)2=−110.解:(1)∵|a+24|+|b+10|+(c−10)2=0∴a+24=0,b+10=0,c−10=0解得a=−24,b=−10,c=10(2)−10−(−24)=14,①点P在AB之间,AP=14×22+1=283,−24+283=−443,点P的对应的数是−443;②点P在AB的延长线上,AP=14×2=28,−24+28=4,点P的对应的数是4;(3)设在点Q开始运动后第a秒时,P、Q两点之间的距离为4,当P点在Q点的右侧,且Q点还没追上P点时,3a+4=14+a,解得a=5;当P在Q点左侧时,且Q点追上P点后,3a−4=14+a,解得a=9;当Q点到达C点后,当P点在Q点左侧时,14+a+4+3a−34=34,a=12.5;当Q点到达C点后,当P点在Q点右侧时,14+a−4+3a−34=34,解得a=14.5,综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.11.解:(1)根据题中的新定义得:原式=−2×25+20−2=−32;(2)根据题中新定义化简得:a+12×9−3(a+1)+a+12=8,去分母得:9a+9−6a−6+a+1=16,移项合并得:4a=12,解得:a=3;(3)根据题中的新定义得:m=4x2−8x+4,n=9(1−2x)−6(1−2x)+1−2x=9−18x−6+12x+1−2x=4−8x,∵m−n=4x2−8x+4−4+8x=4x2≥0,∴m≥n.12.C1或C3解:(1)∵点A表示数−2,点B表示数1,C1表示的数为−1,∴AC1=1,BC1=2,∴C1是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C2表示的数为2,∴AC2=4,BC1=1,∴C2不是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C3表示的数为4,∴AC3=6,BC3=3,∴C3是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C4表示的数为6,∴AC4=8,BC4=5,∴C4不是点A、B的“关联点”;故答案为:C1,C3;(2)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为x (Ⅰ)当点P在A的左侧时,则有:2PA=PB,即,2(−10−x)=15−x,解得,x=−35;(Ⅱ)当点P在A、B之间时,有2PA=PB或PA=2PB,即有,2(x+10)=15−x或x+10=2(15−x),解得,x =−53或x =203;因此点P 表示的数为−35或−53或203;②若点P 在点B 的右侧, (Ⅰ)若点P 是点A 、B 的“关联点”,则有,2PB =PA ,即2(x −15)=x +10,解得,x =40;(Ⅱ)若点B 是点A 、P 的“关联点”,则有,2AB =PB 或AB =2PB ,即2(15+10)=x −15或15+10=2(x −15),得,x =65或x =552;(Ⅲ)若点A 是点B 、P 的“关联点”,则有,2AB =PA ,即2(15+10)=x +10,解得,x =40;因此点P 表示的数为40或65或552;1、最困难的事就是认识自己。
1.3.2有理数加法运算律【夯实基础】1.数6,-1,15,-3中,任取三个不同的数相加,其中和最小的是 ( )A.-3B.-1C.3D.22.下表是一位女生记录自己8个周进行百米跑训练的8次测验成绩,达标成绩为18秒,表中“+”号表示成绩大于18秒,“-”表示成绩小于18秒.请问这8次百米跑测验的平均成绩为 ( ) A.17.9 B.17.8 C.17.2 D.18.13.你知道“少年高斯速算”的故事吧!那么请你快速算一算1+2+3+…+48+49+50的结果( ) A.1274 B.1276 C.1275 D.12704.(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
5.计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)(3)(−413)+(−417)+413+(−1317)(4)(−423)+(−313)+612+(−214)6.下表为某公司股票在本周内每日的涨跌情况(单位:元)-0.25计算这一周后该公司股票股价变化是上涨还是下跌,上涨或下跌的值是多少?7.有一批味精,标准质量为每袋100g,现抽取10袋样品进行检测,其结果是:99,102,101,101,98,99,100,97,99,103(单位:g),用简便方法求这10袋味精的总质量是多少?【能力提升】8.对于正整数a,b规定一种新运算※,用a※b表示由a开始的连续b个整数之和,如2※3=2+3+4=9,则(-3)※6=_____9.巧算:(1)−556+(−923)+(−312)+1734(2)89+899+8999+89999+899999(3)(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)【思维挑战】10.如图,把一个面积为1的正方形等分成两个面积为21的长方形,接着把面积为21的长方形等分成两个面积为41的正方形,再把面积为41的正方形等分成两个面积为81的长方形,如此进行下去,试利用图形揭示的规律计算+++++++24816326412825611111111=__________.。
第二章有理数单元测试一. 单选题(共10题;共30分)1•下列各组数中:①・扌和(-5) 2;②(-3)彳和.宁;③.(-0.3) 5和0.35;④和0"°; ⑤(-1)彳和一 (-1) 2 .相等的共有( )4组 D 、5组2•计算-4x2的结果是(3.2015的倒数是() 6.下列说法屮,正确的是( )7. - 5的相反数是()A.5B.15C. - 15 8•已知 a>b 且 a+b=0,贝ij ()9•下列各数中,比・2小的数是(A. - 3B. - 1C.OD.210.如果向北走3m,记作+3m,那么・10m 表示()A 、向东走10mB 、向南走10mC 、向西走10mD 、向北走10m二、填空题(共8题;共39分)|a|=1, |b|=2, |c|=3,月.a>b>c,那么 a+b - c= _____________12. 在数・5, 1,・3, 5,・2中任选两个数相乘,其中最大的积是A.aVOB.b>0C.b<0D.a>0 A 、-6 B 、-2C 、D 、-8 A. -20152015 c 2015 D. 20154.计•算(1 - -孑-^)• ・§) • B 、5•计算( -25)三手的结果等于( B 、-5 C 、-15D 、A •所冇的冇理数都能用数轴上的点表示B •冇理数分为正数和负数C •符号不同的两个数互为相反数 D.两数相加和一定大于任何一个加数13. 若 a<0, b<0, |a|<|b|,则 a ・b ____________ 0.14. ・2倒数是 ______ ,・2绝对值是 _________15. 计算:1 ■ ( ■ 3) = _______16. 如果水库的水位高于正常水位Im 时,记作+lm,那么低于正常水位2m 时,应记作 ____________ . 17. 若 |a - 1|=4,则 a= ________ .18. 计算:-(+ j , - ( - 5.6) = ___________ ,・ | ・ 2|= ______ , 0+ (・ 7) = _________ ・ (・ 1)- I -3|= __________ •三、解答题(共6题;共31分)29.把下列各数分别填入相应的大括号里:・ 227 , 0,・(+0.18) , 34 }:};};}.20. 若|a|=5, |b|=3,① 求a+b 的值;② 若a+b<0,求a-b 的值.21. 若|a| =4, |b|=2,且 aVb,求 a - b 的值.-5.13, 5,・ | ・ 2|, +41, 正数集合{ 负数集合{ 整数集合{ 分数集合{22.小明在初三复习归纳吋发现初中阶段学习了三个非负数,分别是:①X;②a;③|a| (a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2) 2+|x+y・1|二0,求/的值•请你利用三个非负数的知识解答这个问题23•为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15, -4, +13, - 10, - 12, +3,- 13, - 17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格屮的数.-3795答案解析一、单选题I、【答案】C【考点】有理数的乘方【解析】f分莎丿首先计算出各组数的值,然后作出判断.【解答】@-52=-25, (-5)2=25;②(-3)3=-27 ^-33=-27;③.(-0.3)乙0.00729 , 0.35=0.00729;④O ioo=o2oo=o;⑤(-1)3=-1,・(-1)2=-1.故②③④⑤组相等.故选C.(点讦口本题主要考查有理数乘方的运算.正数的任何次幕都是正数;负数的奇次帚是负数,负数的偶次幕是正数.2、【答案】D【考点】有理数的乘法【解析】【解答】解:原式二・(4x2)=-8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案.3、【答案】C【考点】倒数【解析】【解答】解:2015的倒数是诰故选:C.【分析】根据倒数的定义可得2015的倒数是祐 .4、【答案】C【解析】【解答】解:设44+4=a,原式二(.1 - a) (a+£ ) - (1 _ a - ) a=a+-^ - a2 - a _ a+a2+-^ a=-^ ,■ ■■故选c【分析】设4+j+^=a,原式变形后计算即可得到结果.5、【答案】C【考点】有理数的除法【解析】【解答】解:V (- 25) 号 (-25) x|=- 15, ・•・(・25)十扌的结果等于・15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(-25) 的结果等于多少即可.6、【答案】A【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;・3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解.7、【答案】A【考点】相反数【解析】【解答】解:-5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果.8、【答案】D【考点】有理数的加法【解析】【解答】解:Va>b a+b=O, Aa>0, b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.9、【答案】A【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知- 3<-2. 故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比・2小的数是・3・10、【答案】B【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么-10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出-10m的意义.二、填空题11>【答案】2或0【考点】有理数的混合运算【解析】【解答】解:V|a|=l, |b|=2, |c|=3,・:a=±l, b=±2, c=±3,Va>b>c,a= - 1, b= - 2, c= - 3 xiK a=l, b= - 2, c= - 3,则a+b - c=2 或0.故答案为:2或0【分析】先利用绝对值的代数意义求出a, b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.12、【答案】15【考点】有理数的乘法【解析】【解答】解:根据题意得:(・5) x (・3) "5,故答案为:15【分析】根据题意确定出积最大的即可.13、【答案】>【解析】【解答】解:Va<0, b<0, |a|<|b|A a ・ b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.14、【答案】2【考点】绝对值,倒数【解析】【解答】解:- 2的倒数为-*, - 2的绝对值为2. 故答案为■ * ; 2.【分析】分别根据倒数的定义以及绝刈值的意义即可得到答案.15、【答案】4【考点】有理数的减法【解析】【解答】解:(・3)=1+3=4.故答案为:4.【分析】根据有理数的减法法则,求出(・3)的值是多少即可.16、【答案】-2m【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:-2m. 故答案为:-2m【分析】弄清楚规定,根据规定记数低于正常水位2m.17、【答案】5或・3【考点】绝对值【解析】【解答】解:・・・|a-l|=4, .\a - 1=4或解得:a=5或3.故答案为:5或・3.【分析】依据绝对值的定义得到a・1=±4,故此可求得a的值.18、【答案】-5.6; -2; - 7; -4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=・扌;原式=5.6:原式=-2;原式二・7;原式=-1 - 3= - 4, 故答案为:・亍;5.6; - 2; - 7; - 4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题19、【答案】【解答】解:正数集合{5, +41, 34}; 负数集合{-5.13, -|-2|,・ 227,・(+0.18) }; 整数集合{5, -|-2|, +41, 0};分数集合{- 5.13, - 227, - (+0.18) , 34}【考点】有理数【解析】【分析】按照有理数的分类填写:'正整数整数0负整数 V ■20、 【答案】解:(1) V|a|=5, |b|=3,a=±5, b=±3,.\a+b=8或2或・2或-8;(2) Va=±5, b 二±3,且 a+b<0,a= - 5, b=±3,A a - b= - 8 nJc - 2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5, |b|=3,那么a=±5, b=±3,再分4种情况分别计算即可;(2)由于a=±5, b=±3,且a+b<0,易求a= - 5, b=±3,进而分2种情况计算即可.21、 【答案】解:V|a|=4, |b|=2,a=±4, b=±2,Va<b,•Ia= - 4, b=±2,a - b= - 4 - 2= - 6,或 a-b=-4- ( - 2 ) = - 4+2= - 2,所以,a - b 的值为-2或-6.【解析】【分析】根据绝对值的性质求出a 、b,再判断出a 、b 的对应情况,然后根据有理数的减法运算 法则有理数' 分数{ 正分数负分数进行计算即可得解.22、【答案】解:I (x+2) »x+y - 1冋,/• x+2=0x+y-l=0,解得x=-2y=3,x y= ( - 2)3= - 8,即x,的值是■&【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y-l|=O,然后根据偶次方的非负性,以及绝对值的非负性, 可得x+2=0, x+y・20,据此求出x、y的值各是多少,再把它们代入/ ,求出的值是多少即可.23、【答案】解:(1) 0+15 - 4+13 - 10 ・ 12+3 - 13 - 17= - 25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2) |+151 + | - 4| + |+131 + | - 10| + | - 121 + |+31 + | - 13| + | - 171 =87 (千米),87x0.1=8.7 (升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,岀车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值, 如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量.24、【答案】解:J・3+7+5=・3+12=9,・・・三个数的和为9,第三行中间的数是9 -(9+5) =-5,最中间的数是9 -(- 3+9) =3,第二列最上边的数是9- ( - 5+3) =9+2=11,第一行的第一个数是9・(・3+21) =9・8二1,第一列的第二个数是9・(1+9)=・3111■379-5【考点】冇理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。
苏教版七年级上册数学 第二章 有理数2.5 有理数的加法与减法第4课时 有理数的加减混合运算1.式子-4+10+6-5的正确读法是( ) A.负4、正10、正6、减去5的和 B.负4加10加6减负5 C.4加10加6减5D.负4、正10、正6、负5的和2.(2019秋・新乐期末)把算式(-5)-(-4)+(-7)-(+2)写成省略括号后的形式,结果正确的是( )A.-5-4+7-2B.5+4-7-2C.-5+4-7-2D.-5+4+7-23.a ,b ,c 为三个有理数,下列各式可写成a-b+c 的是( ) A.a-(-b)-(+c) B.a-(+b)-(-c) C.a+(-b)+(-c) D.a+(-b)-(+c)4.计算:(1)(-1.6)+(-2.4)-(-7.7)=__________. (2)20-(-7)+1-2-=__________.(3)(-35)+(-22)-(-35)-8=__________.(4)=-+-++-+)31()21(54)32(21__________.5.(2019秋·邛崃期末)若zw y x 表示运算x+z-(y+w),则1523---的结果是__________.6.计算:(1)(-7)-(-10)+(-8)-(+2);(2)(-1.5)-(-0.75)+(+0.25)-(+2.5);(3))81()535()872()523(+----++)6.4()3212)527()3211(-------7.红星队在4场足球赛中战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负,则红星队在这次比赛中总的净胜球数是().A.+1B.-1C.+2D.-28.计算(1+3+5+…+2017+2019)-(2+4+6+…+2018+2020)= ( )A.0B.-1C.1010D.-10109.有理数-3,+8,21-,0.1,0,31、-10,5,-0.4中,所有正数的和填在下式的○中,所有负数的和填在下式的□中,并计算出下式的结果填在等号右边的横线上.(直接写出最终结果)○+□=__________.10.王博在做课外习题时遇到如图所示一道题,其中是被污损而看不清的一个数,它翻看答案后得知该题的计算结果为15,则表示的数是______________.11.按图所示的运算程序(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),当输入的值为-5时,输出的结果为___________.12.(2019秋·随州曾都区期末)随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100千克冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单星期一二三四五六日与计划量的差值+4-3-5+14-8+21-6位:千克)(1)根据记录的数据可知前三天共卖出______________千克;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售_________千克;(3)本周实际销售总量达到了计划数量没有?(4)若冬枣每千克按8元出售,每千克冬枣的运费平均3元,那么小明本周一共盈利多少元?13.小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,再输入数b,就可以得到运算:a*b=(a-b)-ab 。
七年级数学第二章《有理数》拓展提优一.填空题1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于26,那么n的最小值是.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.已知a、b、c均是不等于0的有理数,则的值为.二.解答题5.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;<<<<<(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.6.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为,点B表示的数为.(2)用含t的代数式表示P到点A和点C的距离:P A=,PC=.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q 点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.7.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?8.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+6,﹣3,+11,﹣9,﹣7,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?9.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x =3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x =﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求的值.(3)若abcd≠0,直接写出+的值.10.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是,数轴上表示数x和3的两点之间的距离表示为;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是.11.已知a、b、c在数轴上的位置如图所示,回答下列问题:(1)化简:3|a﹣c|﹣2|﹣a﹣b|;(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值12.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数.(1)计算:a2=,a3=;(2)根据你发现的规律计算a2018的值.13.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.14.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1==()2(2)用含有n的式子表示上面的规律:.(3)用找到的规律解决下面的问题:计算:=.15.对于有理数,定义一种新运算“⊕”,观察下列各式:1⊕2=|1×4﹣2|=2,2⊕8=|2×4﹣8|=0,﹣3⊕4=|﹣3×4﹣4|=16(1)计算:(﹣4)⊕3=,a⊕b=.(2)若a≠b,则a⊕b b⊕a(填入“=”或“≠”)(3)若有理数a,b在数轴上的对应点如图所示且a⊕(﹣b)=5,求[(a+b)⊕(a+b)]⊕(a+b)的值.16.已知有理数a、b互为相反数且a≠0,c、d互为倒数,有理数m和﹣2在数轴上表示的点相距3个单位长度,求|m|﹣+﹣cd的值.17.若a,b互为相反数且都不为零,c,d互为倒数,m与最小的正整数在数轴上对应点间的距离为2,求(a+b)•+mcd+的值.18.定义☆运算,观察下列运算:(+5)☆(+14)=+19,(﹣13)☆(﹣7)=+20,(﹣2)☆(+15)=﹣17,(+18)☆(﹣7)=﹣25,0☆(﹣19)=+19,(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号,异号.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.(2)计算:(+17)☆[0☆(﹣16)]=.(3)若2×(2☆a)﹣1=3a,求a的值.19.定义一种新运算:观察下列各式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=24(﹣4)⊙(﹣3)=﹣4×4﹣3=﹣19完成下列题目(1)2⊙(﹣3)=,(﹣5)⊙(﹣2)=(2)计算并比较1⊙[(﹣2)⊙1]与(﹣1)⊙[1⊙(﹣2)]的大小(3)计算1⊙(﹣1)+2⊙(﹣2)+3⊙(﹣3)+…+16⊙(﹣16)的值.20.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数1表示的点与﹣1表示的点重合,则数轴上数﹣5表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为7(A在B的左侧),并且A、B两点经折叠后重合,则A、B两点表示的数分别是.③若数轴上C、D两点之间的距离为d,C在D的左侧并且C、D两点经折叠后重合,求C、D两点表示的数分别是多少?(用含d的代数式表示)21.阅读下列材料,回答提出的问题我们知道:一个数a的绝对值可以表示成|a|,它是一个非负数,|a|在数轴上含义是:表示a这个数的点到原点的距离(距离,当然不可能是负数),这样就把|a|与数轴上的点建立了一种联系(这正是绝对值的几何意义),比如说|2|的几何意义就是:数轴上表示2这个数的点到原点的距离,它是2,所以说|2|=2,|﹣2|表示﹣2这个数在数轴上所对应的点到原点的距离,它也是2,所以说|﹣2|=2,严格来说,在数轴上,一个数a在数轴上所对应的点到原点(原点对应的数为0)的距离应该表示为|a﹣0|,但平时我们都写成|a|,原因你明白.(1)若给定|x|=3,要找这样的x,请按照上面材料中的说法,解释它的几何意义并找出对应的x;(2)实际上,对于数轴上任意两个数x1,x2之间的距离我们也可以表示为|x1﹣x2|,反过来,|x1﹣x2|这个绝对值的几何意义就是:数轴上表示x1与x2这两个数的点之间的距离,你能结合上面的叙述,解释|5﹣2|=3的几何意义吗?请按你的理解说明:|5+2|=7呢?如果能解释这个,你了不起;(3)若|x﹣2019|=1,请直接写出x的值.22.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值.23.已知数轴上两点A,B对应的是﹣2和4,点P为数轴上一动点,(1)若点P到点A和点B的距离相等,求点P对应的数.(2)若点P在点A和点B之间,且将线段AB分成1:3两部分,求点P对应的数.(3)数轴上是否存在点P,使得点P到点A的距离与到点B的距离之比为1:2?若存在,求点P对应的数;若不存在,说明理由.24.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若两点之间的距离为2,那么x值为;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.答案与解析一.填空题(共4小题)1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是﹣1008.【分析】奇数次移动是左移,偶数次移动是右移,第n次移动n个单位.每左移右移各一次后,点A右移1个单位,故第2018次右移后,点A向右移动1×(2018÷2)个单位,第2019次左移2019个单位,故点A2019表示的数是1×(2018÷2)﹣2019×1+2.【解答】解:第n次移动n个单位,第2019次左移2019×1个单位,每左移右移各一次后,点A右移1个单位,所以A2019表示的数是1×(2018÷2)﹣2019×1+1=﹣1008.故答案为:﹣1008.【点评】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于26,那么n的最小值是17.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于26时,n的最小值是17.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,A14表示的数为19+3=22,A16表示的数为22+3=25,A18表示的数为25+3=28,所以点A n与原点的距离不小于26,那么n的最小值是17,故答案为:17.【点评】本题考查了规律型:认真观察、仔细思考,找出点表示的数的变化规律是解题关键.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是﹣2.【分析】设点C表示的数是x,利用AB=AC﹣BC=1,列出方程解答即可.【解答】解:设点C表示的数是x,则AC=x﹣(﹣9)=x+9,BC=4﹣x,∵AB=1,即AC﹣BC=x+9﹣(4﹣x)=2x+5=1,解得:x=﹣2,∴点C表示的数是﹣2.故答案为:﹣2.【点评】本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式用含x 的式子表示出线段的长度.4.已知a、b、c均是不等于0的有理数,则的值为7或﹣1.【分析】分a、b、c三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【解答】解:①a、b、c三个数都是正数时,a>0,b>0,c>0,ab>0,ac>0,bc>0,abc>0,原式=1+1+1+1+1+1+1,=7;②a、b、c中有两个正数时,不妨设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,abc<0,原式=1+1﹣1+1﹣1﹣1﹣1,=﹣1;③a、b、c有一个正数时,不妨设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,abc>0,原式=1﹣1﹣1﹣1﹣1+1+1,=﹣1;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,abc<0,原式=﹣1﹣1﹣1+1+1+1+1﹣1,=﹣1;综上所述,原式的值为7或﹣1,故答案为:7或﹣1.【点评】本题考查了有理数的除法,绝对值的性质,难点在于根据三个数的正数的个数分情况讨论.二.解答题(共19小题)5.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;﹣4<﹣3<﹣1.5<0< 2.5<3(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.【分析】(1)根据数轴是表示数的一条直线,可把数在数轴上表示出来;(2)根据数轴上的点表示的数右边的总比左边的大,可得答案;(3)根据数轴上两点间的距离是大数减小数,可得答案【解答】解:(1)如图;,(2)由数轴上的点表示的数右边的总比左边的大,得﹣4<﹣3<﹣1.5<0<2.5<3,故答案为:﹣4,﹣3,﹣1.5,0,2.5,3,(3)对.﹣4与﹣3之间距离等于2.5与3之间距离都是0.5.或者﹣4与﹣1.5之间距离等于2.5与0之间距离是2.5.【点评】本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.6.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为﹣24,点B表示的数为﹣12.(2)用含t的代数式表示P到点A和点C的距离:P A=2t,PC=36﹣2t.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q 点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.【分析】(1)因为点A在原点左侧且到原点的距离为24个单位长度,所以点A表示数﹣24;点B在点A右侧且与点A的距离为12个单位长度,故点B表示:﹣24+12=﹣12.(2)因为点P从点A出发,以每秒运动2两个单位长度的速度向终点C运动,则t秒后点P表示数﹣24+2t(0≤t≤18,令﹣24+2t=12,则t=18时点P运动到点C),而点A 表示数﹣24,点C表示数12,所以P A=|﹣24+2t﹣(﹣24)|=2t,PC=|﹣24+2t﹣12|=36﹣2t.(3)以点Q作为参考,则点P可理解为从点B出发,设点Q运动了m秒,那么m秒后点Q表示的数是﹣24+4m,点P表示的数是﹣12+2m,再分两种情况讨论:①点Q运动到点C之前;②点Q运动到点C之后.【解答】解:(1)设A表示的数为x,设B表示的数是y.∵|x|=24,x<0∴x=﹣24又∵y﹣x=12∴y=﹣24+12=﹣12.故答案为:﹣24;﹣12.(2)由题意可知:∵t秒后点P表示的数是﹣24+2t(0≤t≤18),点A表示数﹣24,点C 表示数12∴P A=|﹣24+2t﹣(﹣24)|=2t,PC=|﹣24+2t﹣12|=36﹣2t.故答案为:2t;36﹣2t.(3)设点Q运动了m秒,则m秒后点P表示的数是﹣12+2m.①当m≤9,m秒后点Q表示的数是﹣24+4m,则PQ=|﹣24m+4m﹣(﹣12+2m)|=2,解得m=5或7,此时P表示的是﹣2或2;②当m>9时,m秒后点Q表示的数是12﹣4(m﹣9),则PQ=|12﹣4(m﹣9)﹣(﹣12+2m)|=2,解得m=,此时点P表示的数是.答:P、Q两点之间的距离能为2,此时点P点表示的数分别是﹣2,2,.【点评】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解.7.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【分析】(1)根据定义发现:奇点表示的数到{M,N}中,前面的点M是到后面的数N 的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知:分两种情况列式:①PB=3P A;②P A =3PB;可以得出结论.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)30﹣(﹣50)=80,80÷(3+1)=20,30﹣20=10,﹣50+20=﹣30,故P点运动到数轴上的﹣30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为:3;﹣1.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.8.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+6,﹣3,+11,﹣9,﹣7,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+6)+(﹣3)+(+11)+(﹣9)+(﹣7)+(+12)+(﹣10)=(6+11+12)﹣(3+9+7+10)=29﹣29=0答:守门员最后回到了球门线的位置.(2)由观察可知:6﹣3+11=14米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+6|+|﹣3|+|+11|+|﹣9|+|﹣7|+|+12|+|﹣10|=6+3+11+9+7+12+10=58米.答:守门员全部练习结束后,他共跑了58米.【点评】本题考查了有理数的加减混合运算.关键是根据题意,正确列出算式.9.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x =3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x =﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求的值.(3)若abcd≠0,直接写出+的值.【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【解答】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,=1+1+1=3;③a,b,c两负一正,=﹣1﹣1+1=﹣1;④a,b,c两正一负,=﹣1+1+1=1.故的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则+=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则+=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则+═﹣3+1=﹣2;④若a,b,c,d有四个负数,则+═﹣4;⑤若a,b,c,d有四个正数,则+═4;故+的值为:±2,±4,0.【点评】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意=±1(x>0,结果为1,x<0,结果为﹣1).10.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是2,数轴上表示数x和3的两点之间的距离表示为|x﹣3|或|3﹣x|;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:5,式子|x+3|+|x+2|的最小值是1.②请你在草稿纸上画出数轴,当x等于2时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是7.【分析】(1)根据数轴上A、B两点之间的距离AB=|a﹣b|=|b﹣a|的表达式计算出绝对值;(2)要去掉绝对值符号,需要抓住已知点在数轴上进行分段讨论,写出去绝对值后的表达式讨论计算即可.【解答】解:(1)根据题意知﹣3和﹣5的两点之间的距离可表示为:|﹣3﹣(﹣5)|=2;数x和3的两点之间的距离|x﹣3|或|3﹣x|;故答案为2,|x﹣3|或|3﹣x|;(2)①∵﹣3≤x≤2,∴x+3≥0,x﹣2≤0,∴|x+3|+|x﹣2|=x+3﹣(x﹣2)=5所以当﹣3≤x≤2时,|x+3|+|x﹣2|的值总是一个固定的值为5.|x+3|+|x+2|是表示x到A、C的距离之和,可观察下图.当﹣3≤x≤﹣2时,由①可知|x+3|+|x+2|=1当﹣2<x≤2时,|x+3|+|x+2|=|x+2|+1+|x+2|=2|x+2|+1>1∴当﹣3≤x≤﹣2时,式子|x+3|+|x+2|的最小值是1.故答案为5,1.②画出图形,则可知,|x﹣4|+|x+3|+|x﹣2|是表示x的点到A、B、C三点距离之和.如下图分区间来讨论,可以得出当﹣3≤x≤2时,|x﹣4|+|x+3|+|x﹣2|=﹣x+4+x+3﹣x+2=﹣x+9,可见x=2取得最小值,﹣x+9=7;当2≤x≤4时,|x﹣4|+|x+3|+|x﹣2|=﹣x+4+x+3+x﹣2=x+5,x=2时取得最小值,x+5=7.所以式|x﹣4|+|x+3|+|x﹣2|当x等于2时,最小值是7.故答案为2,7.【点评】本题考查的是数轴上两点之间的距离和数的绝对值计算之间的关系,去掉绝对值之后代数式的表达是解题的关键,解此类题目要学会分区间讨论和数形结合的思想方法.11.已知a、b、c在数轴上的位置如图所示,回答下列问题:(1)化简:3|a﹣c|﹣2|﹣a﹣b|;(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值【分析】(1)从数轴上的标示可知c<0<a<b,由此去掉绝对值符号化简即可;(2)分区间进行去绝对值化简比较即可.【解答】解:(1)根据数轴上的标示知,c<0<a<b,∴a﹣c>0,﹣a﹣b<0,∴原式=3(a﹣c)﹣2(a+b)=3a﹣3c﹣2a﹣2b=a﹣2b﹣3c.(2)①当x≤c时,y=﹣x+a﹣x+b﹣x+c=﹣3x+a+b+c,因为该函数为减函数,所以当且仅当x=c时最小,最小值为:a+b﹣2c,②当c≤x≤a时,y=﹣x+a﹣x+b+x﹣c=﹣x+a+a﹣c,因为该函数为减函数,所以当且仅当x=a时最小,最小值为:a﹣c,③当a≤x≤b时,y=x﹣a﹣x+b+x﹣c=x﹣a+b﹣c,因为该函数为增函数,所以当且仅当x=b时最小,最小值为:2b﹣a﹣c,④当x≥b时,y=x﹣a+x﹣b+x﹣c=3x﹣a﹣b﹣c,因为该函数为增函数,所以当且仅当x=b时最小,最小值为:2b﹣a﹣c,从以上讨论中可知,只有当c≤x≤a时y的值是a﹣c,小于其他最小值,所以当c≤x≤a时y有最小值是a﹣c.【点评】本题不仅考查了数轴上的点的正、负和大小的判定,更重要的是考查了含绝对值符号的一元一次函数的极值问题,运用分类讨论的方法和函数的增加性来得出函数的极值的解题能力.12.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数.(1)计算:a2=,a3=4;(2)根据你发现的规律计算a2018的值.【分析】(1)根据规定的运算方法,依次计算出a2、a3;(2)进一步计算出a4、a5,即可发现每3个数为一个周期依次循环,然后用2018除以3,根据规律,即可得出答案.【解答】解:(1)a2==,a3==4.故答案为,4;(2)∵a1=﹣,a2=,a3=4,a4==﹣,a5==,…∴这列数以﹣,,4三个数依次不断循环出现;2018÷3=672…2,a2018=a2=.【点评】此题考查数字的变化规律,利用规定的运算方法,得出数字之间的循环规律,利用规律解决问题.13.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=.14.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=64=(8)2(2)用含有n的式子表示上面的规律:n(n+2)+1=(n+1)2.(3)用找到的规律解决下面的问题:计算:=.【分析】(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=82;含有n的式子表示的规律.(3)由(1+)(1+)=×××知,+…+(1+)=,利用此规律计算.【解答】解:(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;.【点评】本题考查了有理数的运算,是找规律题,找到+…+(1+)=××××××…××=是解题的关键.15.对于有理数,定义一种新运算“⊕”,观察下列各式:1⊕2=|1×4﹣2|=2,2⊕8=|2×4﹣8|=0,﹣3⊕4=|﹣3×4﹣4|=16(1)计算:(﹣4)⊕3=19,a⊕b=|4a﹣b|.(2)若a≠b,则a⊕b≠b⊕a(填入“=”或“≠”)(3)若有理数a,b在数轴上的对应点如图所示且a⊕(﹣b)=5,求[(a+b)⊕(a+b)]⊕(a+b)的值.【分析】(1)根据题目中的例子可以解答本题;(2)根据题目中的新定义和(1)中的结果,可以解答本题;(3)根据题意和题目中的式子可以求得所求式子的值.【解答】解:(1)(﹣4)⊕3=|(﹣4)×4﹣3|=19,a⊕b=|4a﹣b|,故答案为:19,|4a﹣b|;(2)∵a⊕b=|4a﹣b|,b⊕a=|4b﹣a|,a≠b,∴(4a﹣b)﹣(4b﹣a)=4a﹣b﹣4b+a=4(a﹣b)+(a﹣b)=5(a﹣b)≠0,∴a⊕b≠b⊕a,故答案为:≠;。
苏教版七年级上册数学 第二章 有理数2.6 有理数的乘法与除法第3课时 有理数的除法1. (扬州中考题)与-2的乘积为1的数是( ) A.2 B.-2 C.21 D.21- 2.(2019秋・邳州期中)如果1-=a a,那么a 是( )A.正数B.负数C.非负数D.非正数3.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数4.化简: =-436____________ =--4914____________ =--1236____________ 5. 计算:(1)-18÷0.6=____________(2)(-56)÷(-14)=____________(3)0.25÷(___________)=32- (4)(_________)÷1411=-4 6.若被除数是27-,除数比被除数小23,则商是____________. 7.计算: (1))32(2-÷ (2))6(7624-÷-(3))41(855.2-⨯÷- (4))32()143()74(-÷-÷-(5)2)21(214⨯-÷⨯- (6))3()25.0()58()32(-⨯-÷-÷-8. 某同学在计算-16÷a 时,误将“÷”看成“+”结果是-12,则-16÷a 的正确结果是( )A.6B.-6C.4D.-49.我们把2÷2÷2记作2③,(-4)÷(-4)记作(-4)②,那么计算9×(-3)④的结果为( ) A.1 B.3 C.31 D.91 10.某冷冻厂的冷库温度是-4℃,现有一批食品必须在-28℃下冷藏,如果每小时能降温6℃,则至少应等待_________小时才能放入该食品.11.(2019秋・滨州期中)已知4=x ,21=y ,且xy<0,则y x 的值等于_____________. 12.小丽在电脑中设置了一个有理数的运算程序:输入数“a”和“*”,再输入“b”,就可以得到运算a *b =(a-2b)÷(2a -b)的结果.则(-3)*31的值为_____________. 13.计算: (1))14534(9)11936(-⨯÷- (2)()7)412(54)721(5÷-⨯⨯-÷-(3))3210(]83)83[(8-÷⨯-÷-14. (2019秋・莱西期中)数学老师布置了一道思考题:“计算:)6531()121(-÷-”.小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为6104)12()6531()121()6531(=+-=-⨯-=-÷-, 所以61)6531()121(=-÷-. (1)请你判断小明的解答是否正确,并说明理由;(2)请你运用小明的解法解答下面的问题.计算:)836131()241(+-÷-15计算:)13111171()139711197214(++÷++15. (2019秋・重庆沙坪坝区校级月考)阅读下列材料:⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,,,即当x <0时,1-=-=xx x x 。
第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。
第二章《有理数》选择、填空专题练习一.选择题1.下面几个数中,属于正数的是()A.3 B.﹣0.5 C.﹣10 D.02.上升5cm,记作+5cm,下降6cm,记作()A.6cm B.﹣6cm C.+6cm D.负6cm3.下列数是无理数的是()A.πB.C.D.04.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个5.﹣8的相反数是()A.﹣8 B.C.8 D.﹣6.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣7.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣8.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣19.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1 B.3 C.﹣1 D.﹣310.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和11.若a≠0,b≠0,则代数式的取值共有()A.2个B.3个C.4个D.5个12.若|a﹣b|=1,|b+c|=1,|a+c|=2,则|a+b+2c|等于()A.3 B.2 C.1 D.013.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣314.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)15.计算+++++……+的值为()A.B.C.D.16.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大17.﹣|﹣|的负倒数是()A.B.C.D.18.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×10619.遗爱湖有5400亩,15亩=10000平方米,用科学记数法表示遗爱湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米20.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A.4.07×105元B.4.07×106元C.4.07×107元D.4.07×108元21.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201822.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入﹣1,并将所显示的结果再次输入,这时显示的结果应当是()A.2 B.3 C.4 D.523.定义一种运算:C=,则C=()A.10 B.C.D.2024.定义运算a⊗b=a(1﹣b),则下面的结论正确的是()A.2⊗(﹣2)=﹣2 B.a⊗b=b⊗aC.若a+b=0,则(a⊗a)+(b⊗b)=2ab D.若a⊗b=0,则a=025.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元二.填空题26.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.27.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.28.﹣2018的绝对值是.29.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.30.若x是实数,则y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为.31.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c ﹣d|+|d﹣a|的最大值是.32.计算:|﹣3|﹣1=.33.计算1+4+9+16+25+…的前29项的和是.34.从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有个.35.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.36.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.37.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.38.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.39.按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)40.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.答案与解析一.选择题1.【分析】根据正数和负数的定义可直接解答.【解答】解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选:A.【点评】此题考查的知识点是正数和负数,解答此题要熟知正数和负数的概念:大于0的数叫正数,小于0的数为负数,0既不是正数也不是负数.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可知上升为+,则下降为﹣,所以下降6cm,记作﹣6cm.故选答案B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,关键是能够根据一个数的平方正确估算无理数的大小,结合数轴确定两点之间的整数.5.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.6.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.7.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.8.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.9.【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.10.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11.【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.【点评】本题主要考查了绝对值的运用,绝对值都为非负数.这一点必须牢记.12.【分析】把a+c写成a﹣b+b+c,然后根据绝对值的性质求出a﹣b、b+c,再求出a+c,然后代入代数式根据绝对值的性质解答即可.【解答】解:|a+c|=|a﹣b+b+c|=2,∵|a﹣b|=1,|b+c|=1,∴a﹣b=b+c=1或a﹣b=b+c=﹣1,①a﹣b=b+c=1时,a+c=2,所以,|a+b+2c|=|a+c+b+c|=|1+2|=3,②a﹣b=b+c=﹣1时,a+c=﹣2,所以,|a+b+2c|=|a+c+b+c|=|﹣1﹣2|=3,故|a+b+2c|=3.故选:A.【点评】本题考查了绝对值,熟记性质并观察已知条件的特征求出a﹣b=b+c=1或a﹣b=b+c=﹣1是解题的关键.13.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.16.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.17.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.19.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400÷15×10000=3600000=3.6×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.22.【分析】先根据显示屏的结果总等于所输入有理数的平方与1之和这个条件,由此得出显示屏的结果,即可得出正确结论.【解答】解:∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,∴若输入﹣1,则显示屏的结果为(﹣1)2+1=2,再将2输入,则显示屏的结果为22+1=5.故选:D.【点评】本题主要考查了有理数的混合运算,在解题时要注意这个计算程序的条件.23.【分析】根据题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:==10,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】根据定义的运算方法逐一运算,【解答】解:A、2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,此选项不正确;B、a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b=b⊗a只有在a=b时成立,此选项不正确;C、a+b=0,a=﹣b,(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2=2ab,此选项正确;D、a⊗b=0,a(1﹣b)=0,a=0或b=1,此选项不正确.故选:C.【点评】此题主要考查了有理数的混合运算,理解和掌握新运算的计算方法是解决问题的关键.25.【分析】认真分析表格,弄清返购物券的标准与使用购物券的条件,从而确定最佳方案.【解答】解:∵买化妆品不返购物券,∴先购买鞋,利用所得购物券再买衣服,需要现金(280+220)元,得到200购物券,利用购物券,现金100元,购买化妆品即可.张阿姨购买这三件物品实际所付出的钱的总数为:280+220+100=600元.故选:B.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.二.填空题26.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.28.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.29.【分析】分三种情况:x<﹣1;﹣1≤x≤4;x>4;去绝对值后解方程即可求解.【解答】解:x<﹣1时,﹣x﹣1﹣x+4=7,解得x=﹣2;﹣1≤x≤4时,x+1﹣x+4=7,方程无解;x>4时,x+1+x﹣4=7,解得x=5.故答案为:﹣2或5.【点评】考查了绝对值,注意分类思想的运用,是中档题型.30.【分析】分6个区域:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55;比较最小值,即可求得答案.【解答】解:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5,则y没有最小值;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55,则y没有最小值;故当x=4时,|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为15.故答案为:15.【点评】此题考查了绝对值的最值问题.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.31.【分析】若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,再代入计算即可求解.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值=0+0+8+8=16.故答案为:16.【点评】此题考查了绝对值,要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1,再根据低位上的数字不小于高位上的数字解答.32.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.33.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.34.【分析】两个数相加最小的和是1+4=5,最大的和是295+298=593,和也是隔3的自然数,根据等差数列通项公式求出项数即可求解.【解答】解:1+4=5,295+298=593,和是隔3的自然数,n=(593﹣5)÷3+1=588÷3+1=197.故答案为:197.【点评】考查了有理数的加法,等差数列通项公式,关键是求出两个数相加最小的和,以及最大的和.35.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.36.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.37.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x 的一元一次方程是解题的关键.39.【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.40.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.。
苏科版七年级上第二章有理数拓展提优试卷(含答案)第二章《有理数》拓展提优试卷【单元综合】1. 下列说法正确的个数是()①一个有理数不是整数就是分数;②无限循环小数是无理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C. 3D. 42. 已知 n 为正整数,则 ( 1)2n ( 1)2 n 1 ()A. 2B. 1C. 0D. 23.1)的相反数是 (61A. B.64. 下列等式成立的是() 1D. 6C. 66A. 8 8B. ( 1) 1C.1 ( 3)12 3 6D.35.某市为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止共有 60 000户家庭建立了“低碳节能减排家庭档案”,则 60 000 用科学记数法可表示为 ()A. 60 104B. 6 105C. 6 104D. 0.6 10 66. 数学家发明了一个魔术盒,当任意有理数对( a, b) 进入其中时,会得到一个新的有理数:a2 b 1+ b -.例如,把 (3, 2) 放入其中,就会得到32 (2)1 6 .现将有理数对( 1,3) 放入其中,得到有理数m ,再将有理数对(m,1) 放入其中后,得到的有理数是( )A.3B.6C.9D.127. 观察图中正方形四个顶点所标的数字规律,可知数 2 017 应标在 ( )A. 第 504 个正方形的左下角B.第 504 个正方形的右下角C.第 505 个正方形的左上角D.第 505 个正方形的右下角8.0.2 的倒数的绝对值是.9. 在数轴上,大于 2.5 且小于 3. 2 的整数有. 10. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示:输入 1 2 3 4 5输出1 2 3 4 5 25101726那么当输入的数据是 8 时,输出的数据是.11. 如图所示,数轴的单位长度为 1, P, A, B, Q 是数轴上的 4 个点,其中点 A, B 表示的数互为相反数 .( 1)点 P 表示的数是,点 Q 表示的数是;( 2)若点 P 向数轴的正方向运动到点B 右侧,且以线段 BP 的长度为边长作正方形,当该正方形的周长为12 时,点 P 在数轴上表示的数是;( 3)若点 A 以每秒 1 个单位长度的速度向数轴的正方向运动,点B 也以每秒 1 个单位长度的速度向数轴的负方向运动,且两点同时开始运动 .则当运动时间为秒时, A, B 两点之间的距离恰好为1.12. 计算 :(1)3 (2)24 (12) 8 (2)23 33(2)( 8) (153) 15 6 12 1013. 先化简,再在数轴上表示下列各数,并用“ <”号连接起来 .3 ,02017, 32, ( 2)3, ( 2 1), 242 814. 小军在计算 ( 426) 6 时,使用运算律解题过程如下 :7解:( 426) 6 ( 42 6)142161 716677 66 7 677他的解题过程是否正确 ?如果不正确,请你帮他改正 .15. 小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A, B, C , D ,学校位于小明家西150 米,邮局位于小明家东100 米,图书馆位于小明家西400 米.(1)用数轴表示A, B, C , D (以小明家为原点);( 2)一天小明从家里先去邮局寄信后,以每分钟50 米的速度往图书馆方向走了约8 分钟,试问这时小明约在什么位置?距图书馆和学校各约多少米?16.某灯具厂计划一天生产 300 盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入 .下表是某周的生产情况 (增产记为正、减产记为负 ): 星期一二三四五六日增减 3 5 2 9 7 12 3( 1)求该厂本周实际生产景观灯的盏数;( 2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;( 3)该厂实行每日计件工资制,每生产一盏景观灯可得60 元,若超额完成任务,则超过部分每盏另奖20 元,若未能完成任务,则少生产一盏扣25 元,那么该厂工人这一周的工资总额是多少元?【拓展训练】1. 定义 : f (a, b) (b, a) , g( m,n) ( m, n) ,例如 f (2,3) (3,2) ,g( 1, 4) (1,4) ,则 g( f ( 5,6)) 等于 ( )A. ( 6,5)B.( 5, 6)C. (6, 5)D. ( 5,6)2. 一个容器装有 1 升水,按照如下要求把水倒出:第 1 次倒出12 次倒出的水量升水,第2是1升的1,第 3 次倒出的水量是1升的1,第 4 次倒出的水量是1升的1按照2 3 3 4 4 5这种倒水的方法,倒了10 次后容器内剩余的水量是( )1B. 1C.1 1A. 升升升 D. 升8 9 10 113.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算89 和 7 8 的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算 7 9,左、右手依次伸出手指的个数是()3A.2,3B.3,3C.2,4D.3,44. 如图,已知在纸面上有一数轴.操作一 :( 1)折叠纸面,使表示 1 的点与表示 1的点重合,则表示 2 的点与表示的点重合 ; 操作二 :( 2)折叠纸面,使表示1的点与表示 3 的点重合,回答下列问题:①表示 5 的点与表示的点重合 ;②若数轴上A, B 两点之间的距离为 9( A 在 B 的左侧 ),且折叠后A, B 两点重合,则点 A 表示的数为,点 B 表示的数为.5. 小明在电脑上设计了一个有理数运算程序:输入 a ,按 * 键,再输入 b ,得到a *b a b [2(a 31)1] (a b) 的值 .b( 1)求 2*(1) 的值 ;3( 2)小艳在运用此程序进行计算时,屏幕显示“ 该程序无法操作 ” ,你猜小艳在输入数据时,可能是出现了什么情况?为什么 ?6. 已知 A, B 在数轴上分别表示数 a, b ,给出如图所示的数轴 .对照数轴填写下表 :a2 20 2b3333A, B 两点间的距离试用含 a,b 的式子表示 A, B 两点间的距离 .【模拟精练】 1. 与2的和为 0 的数是 ( )A.2B.11D. 22C.22. 计算36 的结果为 ()A. 9B. 3C. 3D. 93. 与 a b 互为相反数的是 ()A. a bB. a bC. baD. ba4. 下列式子中成立的是 ()A. 5 4B. 3 3C.4 4D.5.5 55. 下列关于 1 的说法中,错误的是 ( )A.1 的绝对值是 1B.1 的倒数是 1C.1 的相反数是 1D.1 是最小的正整数6. 如图,数轴上有 A, B,C , D 四个点,其中绝对值为 2 的数对应的点是 ()A.点A与点CB.点A与点DC.点B与点CD.点B与点D7.检查 4 个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表 :篮球的编号 1 2 3 4与标准质量的差 /克 4 5 5 3则质量较好的篮球的编号是 ( )A.1B. 2C. 3D.48. 如图所示,下列图形都是由面积为 1 的正方形按一定的规律组成,其中,第 1 个图形中面积为 1 的正方形有 2 个,第 2 个图形中面积为 1 的正方形有 5 个,第 3 个图形中面积为 1 的正方形有9 个按此规律,则第 6 个图形中面积为 1 的正方形的个数为 ()A.20B.27C.35D.409. 计算:( 3) 2 4 .10. 观察给出的一列数,按某种规律填上适当的数: 1, 2,4,8, , .11. 在计一数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如 60 进位制 :60 秒化为 1 分, 60 分化为1 小时 ;24 进位制 :24 小时化为 1 天;7 进位制 :7 天化为 1 周等,而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表 :十进位制0 1 2 3 4 5 6二进位制0 1 10 11 100 101 110将二进位制数 10101010 写成十进位制数为.12. 把下列各数分别填入相应的集合里: 4, 4,0,22, 3.14, 2017, ( 5),0.567( 不3 7循环 ) ,0.202200220002( 1)整数集合 :{ } ( 2)分数集合 :{ } ( 3)无理数集合 :{ } ( 4)有理数集合 :{ }113. 画一条数轴,并在数轴上表示:3. 5 和它的相反数、和它的倒数、绝对值等于 3 的2数、最大的负整数和最小的正整数,并把这些数用“ <”号连接起来 .14. 计算:(1)[ 7 5 1 ( 2)] 518 12 6 9 36(2) 3 [ 2 ( 8) ( 0.125)](3)22 ( 2)2 (3)2 ( 2) 42 4315. 现有一组有规律排列的数:1, 1,2, 2,3, 3,1, 1,2, 2,3, 3 ,,其中1, 1,2, 2,3, 3 这六个数按此规律重复出现.问 :( 1)第 50 个数是什么 ?( 2)把从第 1 个数开始的前 2 015 个数相加,结果是多少?( 3)从第 1 个数起,把连续若干个数的平方相加,若和为510,则共有多少个数的平方相加 ?【真题强化】1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“ 方程” 一章,在世界数学史上首次正式引入负数.如果收人100 元记作100 ,那么80元表示()A.支出 20 元B.收入 20 元C.支出 80 元D.收入 80 元2. 如果 a 与3互为倒数,那么 a 是( )A. 3B. 31 1C. D.3 33.杨梅开始采摘啦 ! 每筐杨梅以 5 千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这 4 筐杨梅的总质量是()A.19.7 千克B. 19. 9 千克C.20.1 千克D. 20. 3 千克4. 在实数 2,2,0, 1中,最小的数是( )A. 2B. 2C. 0D. 15. 若等式01 1成立,则内的运算符号为 ( )A. B. C. D.6. 数轴上点 A, B 表示的数分别是5, 3 ,它们之间的距离可以表示为( )A.35B. 3 5C.35D. 3 57. 下列说法正确的是 ( )A. 一个数的绝对值一定比0 大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是 18. 如图 .数轴上点P对应的数为p对应的点是 ( ) p ,则数轴上与数2A.点AB.点BC.点CD.点D9. 神舟十号飞船是我国“ 神舟”系列飞船之一,每小时飞行约28 000 公里,将28 000 用科学记数法表示应为( )A. 2.8 103B. 28 103C. 2.8 104D. 0.28 10510. 如图,四个有理数在数轴上的对应点M , P, N ,Q ,若点 M , N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点MB.点NC.点PD.点Q11. 若有理数 m, n 满足 m 2 (n 2014)2 0 ,则 m n .12. 按照如图所示的操作步骤,若输入的值为3,则输出的值为.13. 定义一种新运算x 2 y 2 2 1. x* y ,如: 2*1 2 ,则(4*2)*( 1)x 214. 观察下列各式:13 1213 23 3213 23 33 6213 23 33 43 102猜想 13 23 33 103 .15. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1, 2, 3,4,接着甲报5,乙报 6后一位同学报出的数比前一位同学报出的数大 1,按此规律,当报到的数是50 时,报数结束 ;②若报出的数为 3 的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.16.计算:1 2 2 ( 3)217.计算: 4 23 3(5)18.请你参考黑板中老师的讲解,用运算律简便计算:(1)999 ( 15)( 2)999 1184999 (1) 999 183 5 5 5参考答案【单元综合】1.B2.C3.A4.A5.C6.C7.D8. 59.- 2,- 1,0,1,2,3810.655 711.(1) - 4 5(2)6(3)或2 2212. (1)20(2)34313.在数轴上表示如下用“ <”号连接为32 3( 2 1 ) 0 201724 ( 2)32 814.不正确 .正解: ( 42 6)÷ 6 717 715.(1) 如图所示 :(2)小明从邮局出发,以每分钟50 米的速度往图书馆方向走了约8 分钟,走的路程约为50× 8 = 400(米),由图知, C,D 之间相距 500 米,此时小明在学校与图书馆之间,距图书馆约 100 米,距学校约 150 米.16. (1)(3 - 5- 2 +9- 7+12- 3 ) + 300 ×7=2 107( 盏).(2)产量最多的一天生产景观灯300+12=312( 盏 ),产量最少的一天生产景观灯300-7=293(盏 ),312- 293=19( 盏 ).产量最多的一天比产量最少的一天多生产景观灯19 盏(3) 2 107 × 60+(3+9+12)×20- (5+2+7+3)×25 = 126 475(元).该厂工人这一周的工资总额是126 475 元.【拓展训练】1.A2.D3.C4.(1)2(2)①-3②-3. 5 5.55.(1) 4 2021b 0 或 a b 的情况,此时分母或除数为(2) 有两种可能,输入的数据有0.6.(1) 表中从左到右依次填 :1,5,3,1.对照数轴,表示2,3 的点均在原点的右侧,距原点的距离分别为 2 2, 3 3 ,因为3 2 1,所以当 a 2, b 3 时,A,B 两点间的距离为 1.同理可求得其他对应的数值依次为 5,3,1.(2) 由(1)知, 11 3 2 2 3 ,5 3 ( 2)2 3,3 0 3 3 0 ,1 2(3) 3 ( 2) 所以用含 a, b 的式子表示A,B两点间的距离为 a b 或b a .【模拟精练】1.D2.A3.D4.B5.C6.B7.D8.B9.-210. 16 -3211. 17012.( 1)整数集合 :{ 4,0, 2017, ( 5), }( 2)分数集合 :{422, , 3.14, }3 7 ( 3)无理数集合 :{ 0.567 (不循环 ),0.202200220002 , } ( 4)有理数集合 :{ 4,4 ,0, 22 , 3.14, 2017, ( 5), } 3 71 13. 3. 5 的相反数是 - 3.5, 的倒数是 - 2,绝对值等于3 的数是 +3 和 - 3,最大的负整数 2 是 -1, 最小的正整数是 1.画出数轴,表示出题中各数如图所示 : 把这些数用 “ <” 号连接起来为3.5 3 2 1 1 3 3.51 214.(1)- 3 (2)0 (3)- 1815. (1)因为 50÷ 6 =82,所以第 50 个数是 - 1.(2)因为 2 015÷ 6=3355,1+(- 1) +2+(- 2) +3+(- 3) =0,1+(- 1)+2+(- 2) +3=3,所以从第 1 个数开始的前 2 015 个数的和是 3.2 2 2 2 2 2(3)因为 1 +(- 1) +2 +(- 2) +3 +(- 3) =28, 2 22510÷ 28=18 6,且 1 +(- 1) +2 =6, 18× 6+3=111,所以共有 111 个数的平方相加 .【真题强化】1. C 2.D 3.C 4.A 5.B6.D7.D8.C9.C 10.C11. 201612. 5513. 014. 55215. 416. 1717. - 318. (1)- 14985(2)9990010。
1.2.5 有理数比大小【夯实基础】1.在0,2,−1,−2这四个数中,最小的数为( )A.0B.2C. −1D. −22.下列说法:①一个数的绝对值越大,这个数越大;②一个正数的绝对值越大,这个数越大;③一个数的绝对值越小,这个数越大;④一个负数的绝对值越小,这个数越大.其中正确的有( )A.1个B.2个C.3个D.4个3.下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( )A.潜山公园B.陆水湖C.隐水洞D.三湖连江4.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A.a >−1B.a <−2C.a >−bD.a <−b5.比较大小,在横线上填入“>”、“<”或“=”。
1 0; 0 -1; -1 -2; -5 -3; -2.5 2.5.6.在如图所示的数轴上表示下列各数:−(−4),−|−3.5|,+(−12),0,+(+2.5),112,并用“<”号把这些数连接起来.【能力提升】7.若a为有理数,则a与2a在数轴上的位置分别为( )A.表示a的点在左边,表示2a的点在右边B.表示a的点在右边,表示2a的点在左边C.表示a的点到原点的距离小于表示2a的点到原点的距离D.以上答案都不对8.有理数a,b,c在数轴上的对应点如图所示.(1)在横线上填入“>”或“<”:a________0,b________0,c________0,|c|_________|a|;(2)试在数轴上找出表示−a,−b,−c的点;(3)试用“<”将a,−a,b,−b,c,−c,0连接起来. 【思维挑战】。
七年级数学第二章《有理数》拓展提优一.填空题1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于26,那么n的最小值是.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.已知a、b、c均是不等于0的有理数,则的值为.二.解答题5.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;<<<<<(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.6.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为,点B表示的数为.(2)用含t的代数式表示P到点A和点C的距离:P A=,PC=.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q 点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.7.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?8.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+6,﹣3,+11,﹣9,﹣7,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?9.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x =3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x =﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求的值.(3)若abcd≠0,直接写出+的值.10.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是,数轴上表示数x和3的两点之间的距离表示为;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是.11.已知a、b、c在数轴上的位置如图所示,回答下列问题:(1)化简:3|a﹣c|﹣2|﹣a﹣b|;(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值12.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数.(1)计算:a2=,a3=;(2)根据你发现的规律计算a2018的值.13.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.14.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1==()2(2)用含有n的式子表示上面的规律:.(3)用找到的规律解决下面的问题:计算:=.15.对于有理数,定义一种新运算“⊕”,观察下列各式:1⊕2=|1×4﹣2|=2,2⊕8=|2×4﹣8|=0,﹣3⊕4=|﹣3×4﹣4|=16(1)计算:(﹣4)⊕3=,a⊕b=.(2)若a≠b,则a⊕b b⊕a(填入“=”或“≠”)(3)若有理数a,b在数轴上的对应点如图所示且a⊕(﹣b)=5,求[(a+b)⊕(a+b)]⊕(a+b)的值.16.已知有理数a、b互为相反数且a≠0,c、d互为倒数,有理数m和﹣2在数轴上表示的点相距3个单位长度,求|m|﹣+﹣cd的值.17.若a,b互为相反数且都不为零,c,d互为倒数,m与最小的正整数在数轴上对应点间的距离为2,求(a+b)•+mcd+的值.18.定义☆运算,观察下列运算:(+5)☆(+14)=+19,(﹣13)☆(﹣7)=+20,(﹣2)☆(+15)=﹣17,(+18)☆(﹣7)=﹣25,0☆(﹣19)=+19,(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号,异号.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.(2)计算:(+17)☆[0☆(﹣16)]=.(3)若2×(2☆a)﹣1=3a,求a的值.19.定义一种新运算:观察下列各式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=24(﹣4)⊙(﹣3)=﹣4×4﹣3=﹣19完成下列题目(1)2⊙(﹣3)=,(﹣5)⊙(﹣2)=(2)计算并比较1⊙[(﹣2)⊙1]与(﹣1)⊙[1⊙(﹣2)]的大小(3)计算1⊙(﹣1)+2⊙(﹣2)+3⊙(﹣3)+…+16⊙(﹣16)的值.20.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数1表示的点与﹣1表示的点重合,则数轴上数﹣5表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为7(A在B的左侧),并且A、B两点经折叠后重合,则A、B两点表示的数分别是.③若数轴上C、D两点之间的距离为d,C在D的左侧并且C、D两点经折叠后重合,求C、D两点表示的数分别是多少?(用含d的代数式表示)21.阅读下列材料,回答提出的问题我们知道:一个数a的绝对值可以表示成|a|,它是一个非负数,|a|在数轴上含义是:表示a这个数的点到原点的距离(距离,当然不可能是负数),这样就把|a|与数轴上的点建立了一种联系(这正是绝对值的几何意义),比如说|2|的几何意义就是:数轴上表示2这个数的点到原点的距离,它是2,所以说|2|=2,|﹣2|表示﹣2这个数在数轴上所对应的点到原点的距离,它也是2,所以说|﹣2|=2,严格来说,在数轴上,一个数a在数轴上所对应的点到原点(原点对应的数为0)的距离应该表示为|a﹣0|,但平时我们都写成|a|,原因你明白.(1)若给定|x|=3,要找这样的x,请按照上面材料中的说法,解释它的几何意义并找出对应的x;(2)实际上,对于数轴上任意两个数x1,x2之间的距离我们也可以表示为|x1﹣x2|,反过来,|x1﹣x2|这个绝对值的几何意义就是:数轴上表示x1与x2这两个数的点之间的距离,你能结合上面的叙述,解释|5﹣2|=3的几何意义吗?请按你的理解说明:|5+2|=7呢?如果能解释这个,你了不起;(3)若|x﹣2019|=1,请直接写出x的值.22.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值.23.已知数轴上两点A,B对应的是﹣2和4,点P为数轴上一动点,(1)若点P到点A和点B的距离相等,求点P对应的数.(2)若点P在点A和点B之间,且将线段AB分成1:3两部分,求点P对应的数.(3)数轴上是否存在点P,使得点P到点A的距离与到点B的距离之比为1:2?若存在,求点P对应的数;若不存在,说明理由.24.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若两点之间的距离为2,那么x值为;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.答案与解析一.填空题(共4小题)1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是﹣1008.【分析】奇数次移动是左移,偶数次移动是右移,第n次移动n个单位.每左移右移各一次后,点A右移1个单位,故第2018次右移后,点A向右移动1×(2018÷2)个单位,第2019次左移2019个单位,故点A2019表示的数是1×(2018÷2)﹣2019×1+2.【解答】解:第n次移动n个单位,第2019次左移2019×1个单位,每左移右移各一次后,点A右移1个单位,所以A2019表示的数是1×(2018÷2)﹣2019×1+1=﹣1008.故答案为:﹣1008.【点评】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于26,那么n的最小值是17.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于26时,n的最小值是17.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,A14表示的数为19+3=22,A16表示的数为22+3=25,A18表示的数为25+3=28,所以点A n与原点的距离不小于26,那么n的最小值是17,故答案为:17.【点评】本题考查了规律型:认真观察、仔细思考,找出点表示的数的变化规律是解题关键.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是﹣2.【分析】设点C表示的数是x,利用AB=AC﹣BC=1,列出方程解答即可.【解答】解:设点C表示的数是x,则AC=x﹣(﹣9)=x+9,BC=4﹣x,∵AB=1,即AC﹣BC=x+9﹣(4﹣x)=2x+5=1,解得:x=﹣2,∴点C表示的数是﹣2.故答案为:﹣2.【点评】本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式用含x 的式子表示出线段的长度.4.已知a、b、c均是不等于0的有理数,则的值为7或﹣1.【分析】分a、b、c三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【解答】解:①a、b、c三个数都是正数时,a>0,b>0,c>0,ab>0,ac>0,bc>0,abc>0,原式=1+1+1+1+1+1+1,=7;②a、b、c中有两个正数时,不妨设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,abc<0,原式=1+1﹣1+1﹣1﹣1﹣1,=﹣1;③a、b、c有一个正数时,不妨设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,abc>0,原式=1﹣1﹣1﹣1﹣1+1+1,=﹣1;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,abc<0,原式=﹣1﹣1﹣1+1+1+1+1﹣1,=﹣1;综上所述,原式的值为7或﹣1,故答案为:7或﹣1.【点评】本题考查了有理数的除法,绝对值的性质,难点在于根据三个数的正数的个数分情况讨论.二.解答题(共19小题)5.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;﹣4<﹣3<﹣1.5<0< 2.5<3(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.【分析】(1)根据数轴是表示数的一条直线,可把数在数轴上表示出来;(2)根据数轴上的点表示的数右边的总比左边的大,可得答案;(3)根据数轴上两点间的距离是大数减小数,可得答案【解答】解:(1)如图;,(2)由数轴上的点表示的数右边的总比左边的大,得﹣4<﹣3<﹣1.5<0<2.5<3,故答案为:﹣4,﹣3,﹣1.5,0,2.5,3,(3)对.﹣4与﹣3之间距离等于2.5与3之间距离都是0.5.或者﹣4与﹣1.5之间距离等于2.5与0之间距离是2.5.【点评】本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.6.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为﹣24,点B表示的数为﹣12.(2)用含t的代数式表示P到点A和点C的距离:P A=2t,PC=36﹣2t.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q 点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.【分析】(1)因为点A在原点左侧且到原点的距离为24个单位长度,所以点A表示数﹣24;点B在点A右侧且与点A的距离为12个单位长度,故点B表示:﹣24+12=﹣12.(2)因为点P从点A出发,以每秒运动2两个单位长度的速度向终点C运动,则t秒后点P表示数﹣24+2t(0≤t≤18,令﹣24+2t=12,则t=18时点P运动到点C),而点A 表示数﹣24,点C表示数12,所以P A=|﹣24+2t﹣(﹣24)|=2t,PC=|﹣24+2t﹣12|=36﹣2t.(3)以点Q作为参考,则点P可理解为从点B出发,设点Q运动了m秒,那么m秒后点Q表示的数是﹣24+4m,点P表示的数是﹣12+2m,再分两种情况讨论:①点Q运动到点C之前;②点Q运动到点C之后.【解答】解:(1)设A表示的数为x,设B表示的数是y.∵|x|=24,x<0∴x=﹣24又∵y﹣x=12∴y=﹣24+12=﹣12.故答案为:﹣24;﹣12.(2)由题意可知:∵t秒后点P表示的数是﹣24+2t(0≤t≤18),点A表示数﹣24,点C 表示数12∴P A=|﹣24+2t﹣(﹣24)|=2t,PC=|﹣24+2t﹣12|=36﹣2t.故答案为:2t;36﹣2t.(3)设点Q运动了m秒,则m秒后点P表示的数是﹣12+2m.①当m≤9,m秒后点Q表示的数是﹣24+4m,则PQ=|﹣24m+4m﹣(﹣12+2m)|=2,解得m=5或7,此时P表示的是﹣2或2;②当m>9时,m秒后点Q表示的数是12﹣4(m﹣9),则PQ=|12﹣4(m﹣9)﹣(﹣12+2m)|=2,解得m=,此时点P表示的数是.答:P、Q两点之间的距离能为2,此时点P点表示的数分别是﹣2,2,.【点评】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解.7.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【分析】(1)根据定义发现:奇点表示的数到{M,N}中,前面的点M是到后面的数N 的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知:分两种情况列式:①PB=3P A;②P A =3PB;可以得出结论.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)30﹣(﹣50)=80,80÷(3+1)=20,30﹣20=10,﹣50+20=﹣30,故P点运动到数轴上的﹣30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为:3;﹣1.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.8.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+6,﹣3,+11,﹣9,﹣7,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+6)+(﹣3)+(+11)+(﹣9)+(﹣7)+(+12)+(﹣10)=(6+11+12)﹣(3+9+7+10)=29﹣29=0答:守门员最后回到了球门线的位置.(2)由观察可知:6﹣3+11=14米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+6|+|﹣3|+|+11|+|﹣9|+|﹣7|+|+12|+|﹣10|=6+3+11+9+7+12+10=58米.答:守门员全部练习结束后,他共跑了58米.【点评】本题考查了有理数的加减混合运算.关键是根据题意,正确列出算式.9.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x =3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x =﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求的值.(3)若abcd≠0,直接写出+的值.【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【解答】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,=1+1+1=3;③a,b,c两负一正,=﹣1﹣1+1=﹣1;④a,b,c两正一负,=﹣1+1+1=1.故的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则+=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则+=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则+═﹣3+1=﹣2;④若a,b,c,d有四个负数,则+═﹣4;⑤若a,b,c,d有四个正数,则+═4;故+的值为:±2,±4,0.【点评】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意=±1(x>0,结果为1,x<0,结果为﹣1).10.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是2,数轴上表示数x和3的两点之间的距离表示为|x﹣3|或|3﹣x|;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:5,式子|x+3|+|x+2|的最小值是1.②请你在草稿纸上画出数轴,当x等于2时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是7.【分析】(1)根据数轴上A、B两点之间的距离AB=|a﹣b|=|b﹣a|的表达式计算出绝对值;(2)要去掉绝对值符号,需要抓住已知点在数轴上进行分段讨论,写出去绝对值后的表达式讨论计算即可.【解答】解:(1)根据题意知﹣3和﹣5的两点之间的距离可表示为:|﹣3﹣(﹣5)|=2;数x和3的两点之间的距离|x﹣3|或|3﹣x|;故答案为2,|x﹣3|或|3﹣x|;(2)①∵﹣3≤x≤2,∴x+3≥0,x﹣2≤0,∴|x+3|+|x﹣2|=x+3﹣(x﹣2)=5所以当﹣3≤x≤2时,|x+3|+|x﹣2|的值总是一个固定的值为5.|x+3|+|x+2|是表示x到A、C的距离之和,可观察下图.当﹣3≤x≤﹣2时,由①可知|x+3|+|x+2|=1当﹣2<x≤2时,|x+3|+|x+2|=|x+2|+1+|x+2|=2|x+2|+1>1∴当﹣3≤x≤﹣2时,式子|x+3|+|x+2|的最小值是1.故答案为5,1.②画出图形,则可知,|x﹣4|+|x+3|+|x﹣2|是表示x的点到A、B、C三点距离之和.如下图分区间来讨论,可以得出当﹣3≤x≤2时,|x﹣4|+|x+3|+|x﹣2|=﹣x+4+x+3﹣x+2=﹣x+9,可见x=2取得最小值,﹣x+9=7;当2≤x≤4时,|x﹣4|+|x+3|+|x﹣2|=﹣x+4+x+3+x﹣2=x+5,x=2时取得最小值,x+5=7.所以式|x﹣4|+|x+3|+|x﹣2|当x等于2时,最小值是7.故答案为2,7.【点评】本题考查的是数轴上两点之间的距离和数的绝对值计算之间的关系,去掉绝对值之后代数式的表达是解题的关键,解此类题目要学会分区间讨论和数形结合的思想方法.11.已知a、b、c在数轴上的位置如图所示,回答下列问题:(1)化简:3|a﹣c|﹣2|﹣a﹣b|;(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值【分析】(1)从数轴上的标示可知c<0<a<b,由此去掉绝对值符号化简即可;(2)分区间进行去绝对值化简比较即可.【解答】解:(1)根据数轴上的标示知,c<0<a<b,∴a﹣c>0,﹣a﹣b<0,∴原式=3(a﹣c)﹣2(a+b)=3a﹣3c﹣2a﹣2b=a﹣2b﹣3c.(2)①当x≤c时,y=﹣x+a﹣x+b﹣x+c=﹣3x+a+b+c,因为该函数为减函数,所以当且仅当x=c时最小,最小值为:a+b﹣2c,②当c≤x≤a时,y=﹣x+a﹣x+b+x﹣c=﹣x+a+a﹣c,因为该函数为减函数,所以当且仅当x=a时最小,最小值为:a﹣c,③当a≤x≤b时,y=x﹣a﹣x+b+x﹣c=x﹣a+b﹣c,因为该函数为增函数,所以当且仅当x=b时最小,最小值为:2b﹣a﹣c,④当x≥b时,y=x﹣a+x﹣b+x﹣c=3x﹣a﹣b﹣c,因为该函数为增函数,所以当且仅当x=b时最小,最小值为:2b﹣a﹣c,从以上讨论中可知,只有当c≤x≤a时y的值是a﹣c,小于其他最小值,所以当c≤x≤a时y有最小值是a﹣c.【点评】本题不仅考查了数轴上的点的正、负和大小的判定,更重要的是考查了含绝对值符号的一元一次函数的极值问题,运用分类讨论的方法和函数的增加性来得出函数的极值的解题能力.12.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数.(1)计算:a2=,a3=4;(2)根据你发现的规律计算a2018的值.【分析】(1)根据规定的运算方法,依次计算出a2、a3;(2)进一步计算出a4、a5,即可发现每3个数为一个周期依次循环,然后用2018除以3,根据规律,即可得出答案.【解答】解:(1)a2==,a3==4.故答案为,4;(2)∵a1=﹣,a2=,a3=4,a4==﹣,a5==,…∴这列数以﹣,,4三个数依次不断循环出现;2018÷3=672…2,a2018=a2=.【点评】此题考查数字的变化规律,利用规定的运算方法,得出数字之间的循环规律,利用规律解决问题.13.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=.14.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=64=(8)2(2)用含有n的式子表示上面的规律:n(n+2)+1=(n+1)2.(3)用找到的规律解决下面的问题:计算:=.【分析】(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=82;含有n的式子表示的规律.(3)由(1+)(1+)=×××知,+…+(1+)=,利用此规律计算.【解答】解:(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;.【点评】本题考查了有理数的运算,是找规律题,找到+…+(1+)=××××××…××=是解题的关键.15.对于有理数,定义一种新运算“⊕”,观察下列各式:1⊕2=|1×4﹣2|=2,2⊕8=|2×4﹣8|=0,﹣3⊕4=|﹣3×4﹣4|=16(1)计算:(﹣4)⊕3=19,a⊕b=|4a﹣b|.(2)若a≠b,则a⊕b≠b⊕a(填入“=”或“≠”)(3)若有理数a,b在数轴上的对应点如图所示且a⊕(﹣b)=5,求[(a+b)⊕(a+b)]⊕(a+b)的值.【分析】(1)根据题目中的例子可以解答本题;(2)根据题目中的新定义和(1)中的结果,可以解答本题;(3)根据题意和题目中的式子可以求得所求式子的值.【解答】解:(1)(﹣4)⊕3=|(﹣4)×4﹣3|=19,a⊕b=|4a﹣b|,故答案为:19,|4a﹣b|;(2)∵a⊕b=|4a﹣b|,b⊕a=|4b﹣a|,a≠b,∴(4a﹣b)﹣(4b﹣a)=4a﹣b﹣4b+a=4(a﹣b)+(a﹣b)=5(a﹣b)≠0,∴a⊕b≠b⊕a,故答案为:≠;。