《含30°角的直角三角形的性质》教学设计(河北省县级优课)
- 格式:docx
- 大小:17.02 KB
- 文档页数:3
课题 14.3.2.2等边三角形(第2课时)刘莹教学任务分析教学过程设计BD=2、如图1,∠ABC=30°,AC ⊥BC ,AB=4cm , (1) 求AC 的长,(2) 如图2,若D 是AB 中点,连结DC ,求DC 的长 (3) 如图3,若D 是AB 中点,DE ⊥BC ,求DE 的长A B C如图1 A B E CD 如图2 4、如图是屋架设计图的一部分, 点D 是斜梁AB A的中点,立柱BC 、DE 垂直于横梁AC , AB=7.4 m ,∠A=30°,立柱BC 、DE 要多长?追问:(1)若D 变成AB 上使CD ⊥AB 于D 的点,其它条件不变,如图a ,你能分解出30°角的直角三角形吗?求出那些线段的长?(2)如图a ,BD 与AB 有何数量关系,此结论与AB 的长度有关吗?(课后讨论)课堂练习:1、填空:∵Rt △ACB 中,∠C=90°,∠A=30° ∴BC= ( ) C .(1)、(3)D .(2)、(4)C AD B学生仔细读题,分析其中的数量关系 教师提示:要准确选择直角三角形请个别学生板演详细过程,强调解题格式要规范A B E C D 如图3分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=1/2AD ,BC=1/2AB ,又由D 是AB 的中点,所以DE=1/4AB .解:∵DE ⊥AC ,BC ⊥AC ,∠A=30°,∴ BC=1/2AB ,DE=1/2AD , ∴BC=1/2×7.4=3.7(m). 又∵AD=1/2AB ,∴DE=1/2AD=1/2×3.7=1.85(m). 答:立柱BC 的长是3.7 m ,DE 的长是1.85 m .B AE C D 图a 学生思考、讨论、整理(1)5个Rt △ADE ,Rt △DCE ,Rt 形是正确解题的关键课堂练习反馈调控综合应用,巩固提高课本例题涉及的线段、角较多,学生不易找到解题的突破口,因此设计该分层推进的补充题,为解答以下例题做好铺垫帮助学生进一步认识直角三角形的性质因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,鼓励学生积极参与数学活动,激发学生。
13.3.2 第2课时含30°角的直角三角形的性质(教案)教学目标: 1. 了解含有30°角的直角三角形的性质; 2. 知道如何通过已知条件求解含有30°角的直角三角形的未知量; 3. 能够应用学到的知识解决实际问题。
教学准备: 1. 教师准备:教学课件、黑板、粉笔、直角三角形模型等; 2. 学生准备:课本、笔记本。
教学过程:一、导入新知1.引入:今天我们将学习含有30°角的直角三角形的性质。
在这之前,请回顾一下正弦、余弦和正切的含义,以及它们的计算方法。
2.提问:在直角三角形中,如果有一个角为30°,另外两个角各为多少度?学生回答:另外一个角为60°,直角角为90°。
3.提问:直角三角形中的两个锐角之和为多少度?学生回答:直角三角形的两个锐角之和为90°。
4.引入:在直角三角形中,如果一个角为30°,则另一个锐角为60°,这也是因为直角三角形的两个锐角之和为90°。
接下来,我们将学习含有30°角的直角三角形的性质。
二、性质的讲解与讨论1.讲解:当一个角为30°时,我们可以根据三角函数的性质,得到以下结论:–正弦值:sin(30°) = 1/2–余弦值:cos(30°) = √3/2–正切值:tan(30°) = 1/√32.引导讨论:根据上述三角函数的性质,我们可以得出含有30°角的直角三角形的其他性质,例如边长比例等。
–边长比例:在含有30°角的直角三角形中,斜边与直角边的比例为2:1;斜边与另一个锐角边的比例为√3:1。
–高比:在含有30°角的直角三角形中,直角边与斜边的高比为√3:1;斜边与直角边的高比为1:√3。
–面积比:在含有30°角的直角三角形中,以直角边为底的三角形的面积是以斜边为底的三角形面积的一半;以斜边为底的三角形的面积是以直角边为底的三角形面积的2倍。
课题 14.3.2.2等边三角形(第2课时)刘莹教学任务分析教学过程设计AB=4,则BC= ,∠BCD= , BD=2、如图1,∠ABC=30°,AC ⊥BC ,AB=4cm , (1) 求AC 的长,(2) 如图2,若D 是AB 中点,连结DC ,求DC 的长 (3) 如图3,若D 是AB 中点,DE ⊥BC ,求DE 的长A B C 如图1 A BE CD 如图2 4、如图是屋架设计图的一部分, 点D 是斜梁AB A的中点,立柱BC 、DE 垂直于横梁AC , AB=7.4 m ,∠A=30°,立柱BC 、DE 要多长?追问:(1)若D 变成AB 上使CD ⊥AB 于D 的点,其它条件不变,如图a ,你能分解出30°角的直角三角形吗?求出那些线段的长?(2)如图a ,BD 与AB 有何数量关系,此结论与AB 的长度有关吗?(课后讨论)课堂练习:1、填空: ∵Rt △ACB 中,∠C=90°,∠A=30° ∴BC= ( ) C .(1)、(3)D .(2)、(4)C AD B学生仔细读题,分析其中的数量关系教师提示:要准确选择直角三角形请个别学生板演详细过程,强调解题格式要规范 A B E C D 如图3分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=1/2AD ,BC=1/2AB ,又由D 是AB 的中点,所以DE=1/4AB .解:∵DE ⊥AC ,BC ⊥AC ,∠A=30°,∴ BC=1/2AB ,DE=1/2AD , ∴BC=1/2×7.4=3.7(m). 又∵AD=1/2AB ,∴DE=1/2AD=1/2×3.7=1.85(m). 答:立柱BC 的长是3.7 m ,DE 的长是1.85 m .B AE C D 图a 学生思考、讨论、整理(1)5个Rt △ADE ,Rt △DCE ,Rt 直角三角形是正确解题的关键课堂练习反馈调控综合应用,巩固提高课本例题涉及的线段、角较多,学生不易找到解题的突破口,因此设计该分层推进的补充题,为解答以下例题做好铺垫帮助学生进一步认识直角三角形的性质因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系, 鼓励学生积极参与数学活动,。
含30度角的直角三角形性质教学设计教学内容:含30°角的直角三角形的性质(人教版八年级数学上P80-81)知识目标:1.理解掌握有一个角为30°的直角三角形的性质。
2.有一个角为30°的直角三角形的性质的简单应用.能力目标:1.经历“探索——发现——猜想——证明”的过程,培养学生观察、分析、归纳问题的能力。
2.通过运用性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
情感目标:引导学生对图形的观察、发现,激发学生的好奇心和求知欲.重点:含30°角的直角三角形的性质的发现与应用.难点:含30°角的直角三角形性质的探索与证明.复习提问:等边三角形的性质与判定。
新课:(一)活动问题1.1、我们刚才回答了等边三角形是轴对称图形,沿着对称轴折叠,得到一个什么三角形?今天,我们来研究这个含30度角的的直角三角形,看它的边具有什么性质.板书课题:含30°角的直角三角形的性质2、观察你的30°角的直角三角尺,角有什么性质?边有什么数量关系?30°角所对的直角边是斜边的一半.(或者说:30°角所对的直角边是斜边的2倍)3.、用直尺把斜边和30°角所对的直角边量一量,你有什么发现?30°角所对的直角边是斜边的一半.(或者说:30°角所对的直角边是斜边的2倍)4、对于任意大小的含30°角的直角三角形,是不是也具备这个性质?大家画一画,量一量,说一说。
(二)活动问题21、刚才我们通过猜想,测量,得到了性质,那怎样推理证明呢?请同桌把两个含30°角的直角三角形拼一拼,组成平面图形,有几种拼法?学生动手拼图,互相交流,找一学生演示。
学生观察摆出的两个三角形.讨论并回答,同学们从不同的角度说明,拼成的是等边三角形.2、探究:在这些图形中,重点说拼成的等边三角形。
若学生不能单独回答可以先与同伴交流结论成立的理由。
《含30度角的直角三角形性质》说课稿《含30度角的直角三角形性质》说课稿一、教材:1、教学内容:八年级第十三章第三节”等边三角形”第二课时“含30度角的直角三角形的性质”。
2、教材分析:本节内容是在学生学习了等边三角形的性质,由实验几何转向论证几何的基础上,学习含30度角的直角三角形的性质定理。
特别是定理证明的添设辅助线的方法相当重要,且难度较太。
3、学习目标:4、重点:含30度角的直角三角形性质定理的应用。
5、难点:含30度的直角三角形性质定理的证明思想方法。
二、教法与学法:为了达到教学目标,取得较好的教学效果,这节课的.教学采取了情景创设、提出问题、学生活动(观察、实验),教师启发点拨,师生归纳概括和学生掌握的再活动、再应用。
最大限度调动学生的积极性。
通过定理的证明,激发学生的求知欲,同时通过图形的变换,抓住关键,突出重点。
在课堂教学中充分发挥以教师为主导,以学生为主体,以训练为主线的“三主”作用。
通过学生自己动手帮助学生理解定理,便于记忆。
让学生通过教师的启发、分析、提问进行观察、对比、归纳、概括,达到共同参与的目的。
课堂形式活泼轻松,易于发挥。
通过图形的变换,培养学生的抽象能力和创新精神。
这样举一反三,易于迁移,引导学生发现并提出新问题,努力摆脱思维定势的影响,进行类比联想,促使学生的思维向多层次、多方位发散。
课堂设计从学生的生理、心理特点和思维特征出发,使课堂四十分钟充分发挥其效益。
三、教学步骤:1、引出定理,加以巩固。
由前面学过的三角形的内角和定理引出今天学习直角三角形的一些性质。
提出问题“直角三角形除了具备三角形的性质以外,还具备什么性质?”通过学生共同参与推出定理,并进行练习。
本教案把练习第一题作了适当的变动,目的是巩固定理,并为以后学习相似三角形打下基础。
2、启发诱导,证明定理。
针对新教材的要求和特点,通过学生动手操作得出直角三角形斜边上的中线等于它的一半这个命题,借助投影给学生一个旋转的直观认识,并加以论证。
人教版数学八年级上册《含30°角的直角三角形的性质》教案一. 教材分析人教版数学八年级上册《含30°角的直角三角形的性质》这一节,主要让学生掌握含30°角的直角三角形的性质。
在学习了锐角三角函数、直角三角形的性质等知识的基础上,通过探索含30°角的直角三角形的性质,培养学生的观察、思考、归纳能力。
二. 学情分析学生在之前的学习中,已经掌握了锐角三角函数、直角三角形的性质等知识,具备了一定的观察、思考、归纳能力。
但对于含30°角的直角三角形的性质,可能还较为陌生,需要通过实例来引导学生探索、总结。
三. 教学目标1.理解含30°角的直角三角形的性质。
2.能够运用含30°角的直角三角形的性质解决实际问题。
3.培养学生的观察、思考、归纳能力。
四. 教学重难点1.含30°角的直角三角形的性质的掌握。
2.运用含30°角的直角三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等,引导学生观察、思考、探索,培养学生的观察、思考、归纳能力。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)利用PPT课件,展示含30°角的直角三角形的图片,引导学生观察,激发学生的学习兴趣。
2.呈现(10分钟)教师通过三角板演示含30°角的直角三角形,让学生直观地感受其性质。
同时,引导学生思考、归纳,总结出含30°角的直角三角形的性质。
3.操练(10分钟)学生分组合作,利用三角板和练习题,进行实践活动,巩固含30°角的直角三角形的性质。
4.巩固(10分钟)教师通过PPT课件,呈现一些有关含30°角的直角三角形的性质的题目,让学生独立完成,检查学生对知识点的掌握情况。
5.拓展(10分钟)教师引导学生运用含30°角的直角三角形的性质,解决实际问题,如测量高度、距离等。
含30°角的直角三角形的性质【教学目标】1.知识与技能:使学生理解含30°角的直角三角形的性质。
2.过程与方法:(1)通过探究含30°角的直角三角形的性质,使学生进一步认识到数学来源于生活实践。
(2)体验用操作、归纳得出数学结论的过程。
(3)会用这一性质解决相关数学问题。
3.情感、态度与价值观:(1)通过拼等边三角形这一探究活动,培养学生的合作交流、乐于探究、大胆猜想等良好品质。
(2)使学生经历观察、探究、归纳、推理和证明的全过程,培养学生科学、严谨、求真的学习态度。
【教学重点:】理解含30°角的直角三角形的性质及应用。
【教学难点:】含30°角的直角三角形性质的探究。
【教学过程】活动一:旧知准备问题:已知△ABC,∠A=60°,()。
请你在括号内补充一个条件,使△ABC 能成为等边三角形。
学生活动:学生补充条件并说明。
教师活动:教师找学生补充条件,根据学生的叙述板书。
设计意图:此题的设计意图是通过问题形式回顾旧知,促使学生经常温故知新,同时为新课应用判定做铺垫。
传统的回顾旧知,一般是直接找学生背诵等边三角形的判定,容易产生误导:学习就是背诵定理、性质。
最终会造成学生会背性质、定理,却不能应用解决实际问题。
著名数学家哈墨斯曾经说过:“问题是数学的心脏!”这里通过一个半开放性的问题,可以使不同的学生想到不同的条件,如:∠B=60°(或∠C=60°)、AB=BC、AC=BC、AB=BC=AC等多种答案,对等边三角形的判定有一个深入的理解,而非机械记忆定理、性质所能解决的。
同时不同层次的学生也会在不同层面上体验到成功。
充分培养学生的创新精神和发散思维,使学生遇到问题学会思考,避免对性质、定理的学习停留在简单的对字面意思的理解上,有效克服学生的简单机械记忆。
活动二:探究直角三角形的性质1.拼一拼:你能用两个含有30°角的三角板摆放在一起构成一个等边三角形吗?你能借助这个图形,找到30°角所对的直角边与斜边之间的数量关系吗?组内交流自己的想法。
第2课时含30°角的直角三角形的性质<一>教学目标1.知识与技能目标:探索并理解含30°角的直角三角形的性质。
会应用含30°角的直角三角形的性质进行有关的证明和计算。
2.过程与方法目标:通过让学生探究,体会数学来源于生活。
3.情感态度与价值观目标:通过探究活动,培养学生的合作探究能力。
<二>教学重、难点1.重点:理解并掌握含30°角的直角三角形的性质定理。
2.难点:能灵活运用含30°角的直角三角形的性质定理解决有关问题。
<三>教学过程一、情境导入不知大家发现没有,我们学习用的工具——三角板都比较特殊。
都是一个含30°角的直角三角板或者是含45°的直角三角板。
能常用它们作图都肯定是有其特别的地方。
有什么特别的地方呢?今天我们就来研究含30°角的直角三角形的性质。
二、合作探究探究点:含30°角的直角三角形的性质1.请同桌之间相互合作,用两个全等的含30°的直角三角尺来拼一拼,看能拼出怎样的三角形?能拼出等边三角形吗?请说一说理由。
图一图二2.思考:借助图一这个拼图,请找一找含30°角的Rt△ABC的直角边BC与斜边AB之间的数量关系吗?3.提出猜想:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.4.请说一说猜想的条件与结论分别是什么?并结合图形请用符号语言表述出来。
5.验证猜想:证明:在△ABC 中,∵∠C =90°,∠A =30°, ∴∠B =60°.AB C DAB DC已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC =21AB.延长BC 到D ,使BD =AB ,连接AD ,则△ABD 是等边三角形.又∵AC ⊥BD, ∴BC =21BD .∴ BC =21AB . 6.得出结论:含30°角的直角三角形的性质文字语言:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵ 在Rt △ABC 中,∠C =90°,∠A =30°, ∴ BC =21AB . 三、思维发散1. 同学们还有其他方法证明吗?提示:要找两条线段之间的关系,如果能将短的一条线段转化到同一条线段上,就可以较好的研究。
含30度角的直角三角形的性质教案教案标题:含30度角的直角三角形的性质一、教学目标:1.理解含30度角的直角三角形的定义;2.掌握含30度角的直角三角形的性质;3.能够应用这些性质解决相关问题。
二、教学重点:1.含30度角的直角三角形的性质;2.运用这些性质解决相关问题。
三、教学难点:运用含30度角的直角三角形的性质解决相关问题。
四、教学方法:1.探究教学法:通过教师提问,引导学生分析、探究含30度角的直角三角形的性质;2.演绎法:通过推理、证明等方式,阐述含30度角的直角三角形的性质;3.课堂讨论:通过学生互相讨论和合作解决问题,加深对含30度角的直角三角形的理解。
五、教学准备:1.教师准备:教学设计、教学资料、示范练习;2.学生准备:学生课前预习、课堂展示。
六、教学过程:Step 1 导入(10分钟)1.教师出示一个三角形ABC,问学生三角形中是否有30度角,并请学生回答并说明理由;2.引导学生分析30度角的特点,并引出含30度角的直角三角形的定义。
Step 2 介绍含30度角的直角三角形的定义及性质(15分钟)1.教师介绍含30度角的直角三角形的定义:一个角是30度的直角三角形;2.教师引导学生分析并总结含30度角的直角三角形的性质,如:a.三角形中有一个角是30度,另外两个角之和是90度;b.三角形中的两条边与底边的夹角为30度;c.底边和斜边的比例关系等。
Step 3 示例演绎(20分钟)1.教师给出一些示例图形,通过演绎法帮助学生理解含30度角的直角三角形的性质;2.解答学生提出的问题,引导学生探究、证明其中的性质。
Step 4 知识扩展(20分钟)1.针对含30度角的直角三角形的性质,教师出示一些练习题,要求学生独立解答;2.学生相互交流解题思路,教师及时给予指导和反馈。
Step 5 知识应用(20分钟)1.教师出示一些生活实例,要求学生运用含30度角的直角三角形的性质解决实际问题;2.学生分组合作,完成教师布置的任务,并向全班展示解答过程和结果。
人教2011版初中数学八年级上册13.3.2等边三角形(2)——含30°角的直角三角形的性质一、教材分析本节课是等边三角形的第二课时,前面学习了等腰三角形的边角关系和等边三角形的对称性,在此基础上探究含在直角三角形中,30°的锐角所对的直角边和斜边的关系。
本课可以看成是前面所学知识应用和延伸。
二、学情分析学生能比较熟练地应用等边对等角和等角对等边描述边角关系,对等边三角形的对称性也比较熟练,有运用截长补短法探究线段和差关系的经验,但大多数同学不熟练。
三、教学目标知识与技能:掌握含30°角的直角三角形的性质,会运用性质进行计算与证明。
能用截长补短法探究线段关系。
过程与方法:通过画图活动和折纸活动,进一步体会等边三角形的对称性,体验数量的和差关系或倍数关系;让学生在画图过程中训练自己的直观想象能力;在猜想和归纳结论的过程中的过程中培养数学抽象能力、在量边长的过程中培养数据分析能力、在折纸过程中培养动手操作能力和探索精神,在证明过程中培养逻辑推理能力;情感态度与价值观:独立思考培养学生的独立性,尊重学生的个性化思维方式,交流环节培养学生与他人的合作能力,渗透信息共享意识。
四、重难点分析重点:含30°角的直角三角形的性质定理的发现与证明。
难点:性质的证明与数学思想方法的归纳与整理。
五、教学方法讲授、演示、讨论、实验操作、研究法、阅读指导,练习强化。
六、教学用具含30°角的直角三角尺、圆规、含30°角的直角三角形纸片。
教学过程设计一、新知探究活动1:画一画:用没有刻度的直尺和圆规画一个含30°角的直角三角形;利用一个有30°角的三角板画一个等边三角形。
学生代表展示画图过程,介绍作图的理论依据;活动2:猜一猜:一个直角三角形中,30°角所对的直角边与斜边有什么关系? 活动3:量一量自己所画的直角三角形中,30°的锐角所对的直角边和斜边的长度,验证猜想;折一折手中的纸片,尝试验证猜想。
《含30度角的直角三角形性质》一等奖说课稿《《含30度角的直角三角形性质》一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、《含30度角的直角三角形性质》一等奖说课稿一、教材:1、教学内容:八年级第十三章第三节”等边三角形”第二课时“含30度角的直角三角形的性质”。
2、教材分析:本节内容是在学生学习了等边三角形的性质,由实验几何转向论证几何的基础上,学习含30度角的直角三角形的性质定理。
特别是定理证明的添设辅助线的方法相当重要,且难度较太。
3、学习目标:4、重点:含30度角的直角三角形性质定理的应用。
5、难点:含30度的直角三角形性质定理的证明思想方法。
二、教法与学法:为了达到教学目标,取得较好的教学效果,这节课的教学采取了情景创设、提出问题、学生活动(观察、实验),教师启发点拨,师生归纳概括和学生掌握的再活动、再应用。
最大限度调动学生的积极性。
通过定理的证明,激发学生的求知欲,同时通过图形的变换,抓住关键,突出重点。
在课堂教学中充分发挥以教师为主导,以学生为主体,以训练为主线的.“三主”作用。
通过学生自己动手帮助学生理解定理,便于记忆。
让学生通过教师的启发、分析、提问进行观察、对比、归纳、概括,达到共同参与的目的。
课堂形式活泼轻松,易于发挥。
通过图形的变换,培养学生的抽象能力和创新精神。
这样举一反三,易于迁移,引导学生发现并提出新问题,努力摆脱思维定势的影响,进行类比联想,促使学生的思维向多层次、多方位发散。
课堂设计从学生的生理、心理特点和思维特征出发,使课堂四十分钟充分发挥其效益。
三、教学步骤:1、引出定理,加以巩固。
由前面学过的三角形的内角和定理引出今天学习直角三角形的一些性质。
提出问题“直角三角形除了具备三角形的性质以外,还具备什么性质?”通过学生共同参与推出定理,并进行练习。
本教案把练习第一题作了适当的变动,目的是巩固定理,并为以后学习相似三角形打下基础。
2、启发诱导,证明定理。
含30°角的直角三角形的性质教案一、教材内容分析直角三角形是在学习了等腰三角形、等边三角形后又一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,反映了直角三角形中角与角、边与角之间的关系,主要作用是解决直角三角形中的有关计算问题。
课标中的要求是探索并掌握直角三角形的性质。
二、教学目标(知识,技能,情感态度、价值观)1、知识与技能:(1)了解直角三角形的表示法。
(2)掌握直角三角形的三个性质定理,能利用直角三角形的性质定理进行有关的计算和证明2、过程与方法:经历“探索——发现——猜想——证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充。
3、情感态度与价值观:通过“探索——发现——猜想——证明”的过程体验数学活动中的探索与创新,感受数学的严谨性,激发学生的好奇心和求知欲,培养学习的自信心。
三、学生特征分析本节课的教学对象是八年级学生,学生已经学过了三角形的性质、全等的判定以及等腰三角形等边三角形的性质及判定等知识,有一定的证明基础。
他们的形象思维活跃,而且具备了通过观察得出简单的结论,通过互相讨论完善对知识的理解的能力,但对添加辅助线这种构图能力相对比较薄弱。
四、教学策略选择与设计由度量30°所对直角边和斜边的长度和折纸的方法激发学生的学习热情,也为定理的证明做了铺垫。
在教学过程中要让学生认真审题找准30°的直角三角形。
实战演练巩固所学知识提高学生对定理的认识。
五、教学环境及资源准备刻度尺、等边三角形纸片六、教学过程一、温故知新1.等边三角形的判断方法:①等边三角形;②等边三角形;③等边三角形。
二、合作交流、解读探究活动1(量一量). 自己动一动手用刻度尺测量含30°角的直角三角形的斜边和30°角所对的直角边,比较它们之间的数量关系, 你有什么发现?活动2(拼一拼).小组合作将两个含有30°的三角板如图摆放在一起,你能借助这个图形得到Rt△ABC的直角边BC(30°角所对的)与斜边AB之间的数量关系吗?并证明:含 30°角的直角三角形定理: 在直角三角形中,如果,那么 言:∵在 Rt △ABC 中,∠ A = 30 ∴BC= 1 2 AB (或 2BC=AB ) 试一: 判断 1)直角三形中 30°等于另一的一半.2)三角形中 30°等边的一半。
第2课时 含30°角的直角三角形的性质教学目标1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质. 2.有一个角为30°的直角三角形的性质的简单应用. 教学重点含30°角的直角三角形的性质定理的发现与证明. 教学难点1.含30°角的直角三角形性质定理的探索与证明. 2.引导学生全面、周到地思考问题. 教学过程Ⅰ.提出问题,创设情境我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,•它有什么不同于一般的直角三角形的性质呢?问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗? Ⅱ.导入新课用含30°角的直角三角尺摆出了如下两个三角形.(1)C AB(2)D CAB其中,图(1)是等边三角形,因为△ABD ≌△ACD ,所以AB=AC ,又因为Rt △ABD 中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC 是等边三角形.由此能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?你能证明它吗?定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=12AB . ABDC AB分析:从三角尺的摆拼过程中得到启发,延长BC 至D ,使CD=BC ,连接AD .证明:在△ABC 中,∠ACB=90°,∠BAC=30°,则∠B=60°. 延长BC 至D ,使CD=BC ,连接AD (如下图) ∵∠ACB=60°, ∴∠ACD=90°. ∵AC=AC ,∴△ABC ≌△ADC (SAS ).∴AB=AD (全等三角形的对应边相等).∴△ABD 是等边三角形(有一个角是60°的等腰三角形是等边三角形). ∴BC=12BD=12AB . [例]右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE 要多长?分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所D C AEB以DE=12AD,BC=12AB,又由D是AB的中点,所以DE=14AB.解:因为DE⊥AC,BC⊥AC,∠A=30°,由定理知BC=12AB,DE=12AD,所以BD=12×7.4=3.7(m).又AD=12 AB,所以DE=12AD=12×3.7=1.85(m).答:立柱BC的长是3.7m,DE的长是1.85m.[例]等腰三角形的底角为15°,腰长为2a,求腰上的高.已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.求:CD的长.分析:观察图形可以发现,在Rt△ADC中,AC=2a,而∠DAC是△ABC的一个外角,•则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,•可求出CD.解:∵∠ABC=∠ACB=15°,∴∠DAC=∠ABC+∠BAC=30°.∴CD=12AC=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).DC AⅢ.随堂练习1. Rt△ABC中,∠C=90°,∠B=2∠A,∠B和∠A各是多少度?边AB与BC•之间有什么关系?答案:∠B=60°,∠A=30°,AB=2BC.2.已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°.求证:BD=14 AB.证明:在Rt△ABC中,∠A=30°,∴BC=12 AB.在Rt△BCD中,∠B=60°,∴∠B CD=30°.∴BD=12 BC.∴BD=14 AB.2.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt△ABC中,∠A=90°,∠ABC=2∠C,BD是∠ABC的平分线.求证:CD=2AD.证明:在Rt△ABC中,∠A=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°.又∵BD是∠ABC的平分线,∴∠ABD=∠DBC=30°.∴AD=12BD,BD=CD.∴CD=2AD.DCA BDCABⅣ.课时小结这节课,我们在上节课的基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用.Ⅴ.课后作业板书设计含30°角的直角三角形的性质定理:在直角三角形中,有一个锐角是30°,那么它所对的直角边等于斜边的一半.。
含30°角的直角三角形的性质班级:姓名:【自学目标】1.自主探究,发现并归纳得出含30°教的直角三角形的性质。
2.能利用性质解决有关的计算、证明。
请同学们通过预习,结合课本完成下面问题。
1. 动一动手,自己完成下列活动。
(1)用刻度尺测量一下你手中含30°角的三角板斜边和较短直角边,记录下数据(2)剪一个等边三角形ABD,沿一边上的高AC对折,如下图所示:由上面的活动,你有什么发现?2. 自学完成课本55探究,完成下面的问题。
(1)因为图中的△ABD是一个三角形,且AC⊥BD所以,三边,AC又是BD边的所以可得BC= BD= AB(2)归纳:含30°角的直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么______即∵在Rt△ABC 中,∠A= 30 °∴______________.(或______________)(温馨提示:在应用性质时,一定要在直角三角形中找准斜边和30°角的对边)3.试一试:在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,AB=4,则BC= ,BD= 。
怎么样?懂了吗?那我们就来利用这条性质解决下面问题吧!请同学们根据性质,认真读题,观察图形,完成计算或证明。
1. 右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m, ∠A =30 °,立柱BC 、DE 要多长?2.将下面的空补充完整。
如图所示,已知△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠A=30°.求证:AB=4BD解:∵△ABC 中,∠ACB=90°,∠A=30°∴ BC= AB∠B=又∵△BCD 中,CD ⊥AB∴∠BCD=∴BD= BC∴BD= AB即3 .如图所示,已知△ABC 中,AB=AC ,∠C=30°,AB ⊥AD,AD=2㎝.求BC 的长.4.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?自我评价: 学科长评价: 教师评价:自学提示; 要求草皮的价钱,需要先求出△ABC 的面积,由150°的角你想到什么?请同学们大展身手,经过本节课的学习,相信你一定有能力完成下面的问题!1.三角形三个内角的度数比是1﹕2﹕3,它的最大边长为4㎝,那么它的最小边长为___.2.如图所示,已知△ABC中,∠ACB=90°,∠A=30°,BD平分ABC.求证:AD=2DC3. 如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4.求PD的长.自我评价:学科长评价:教师评价:小组交流,自我总结一下,学习完这节课,你有什么收获呢?在利用性质时应该注意什么呢?。
1334含30度角的直角三角形的性质教案教学目标:1.理解直角三角形的定义和性质2.了解30度角在直角三角形中的特殊性质3.能够应用直角三角形的性质解决相关问题教学内容:一、导入(150字)1.引入直角三角形的定义,告诉学生直角三角形是指其中一个角是直角,即90度。
2.引入30度角的概念,并告知学生30度角是一个较小的角,位于直角三角形的较小角。
3.提问:在生活中有哪些直角三角形的例子?二、直角三角形的性质(400字)1.介绍直角三角形的性质:直角三角形的两条边互相垂直,其中一个角是直角,而其余两个角的和为90度。
2.引导学生描绘出一个直角三角形,并标出直角、斜边和两个锐角。
3.强调直角三角形中直角的特殊性质,即直角三角形的两条边与斜边的关系。
三、30度角的特殊性质(400字)1.引导学生画出一个30度角,并标出角的度数。
2.给出一个含有30度角的直角三角形的例子,并引导学生观察和推理。
3.发现:直角三角形中含有30度角时,斜边和较大的直角边的比值为√3:1、即斜边的长度等于直角边的长度乘以√34.强调斜边和直角边的比值为√3:1是一个固定的规律,可以应用在其他含有30度角的直角三角形中。
四、应用直角三角形的性质解决问题(400字)1.提供一系列含有30度角的直角三角形的问题,并引导学生运用之前学习的知识解决。
2.鼓励学生尝试通过构造图形、应用三角函数等方法解决问题。
3.指导学生如何应用斜边和直角边的比值为√3:1求解问题。
五、总结(150字)1.结合学生的学习体验,总结直角三角形的定义和性质。
2.回顾30度角在直角三角形中的特殊性质,即斜边和直角边的比值为√3:13.强调直角三角形的应用,提醒学生在解决相关问题时运用直角三角形的性质。
六、作业(50字)布置作业:让学生列举出他们能想到的含有30度角的直角三角形的例子,并解释斜边和直角边的比值为√3:1的原因。
教学反思:本课程的目标是教会学生直角三角形的性质和30度角在其中的特殊性质,并能应用这些知识解决相关问题。
含30度角的直角三角形的教学及反思
教学目标(一)教学知识点
1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.
2.有一个角为30°的直角三角形的性质的简单应用.
(二)能力训练要求
1.经历“探索──发现──猜想──证明”的过程, 引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系.
2.培养学生用规范的数学语言进行表达的习惯和能力.
(三)情感与价值观要求
教学重点
1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.
2.体验数学活动中的探索与创新、感受数学的严谨性.
含30°角的直角三角形的性质定理的发现与证明.
教学难点
1.含30°角的直角三角形性质定理的探索与证明.
2.引导学生全面、周到地思考问题.
教学方法:探索发现法.
教具准备两个全等的含30°角的三角尺;
教学过程
一、提出问题,创设情境
我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形, 它有什么不同于一般的直角三角形的性质呢?
问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形? 能拼出一个等边三角形吗?说说你的理由.
由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?
二、导入新课
(让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明)
用含30°角的直角三角尺能摆出了如下两个三角形,你能说出这两个图形特征吗?
同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?
我们仅凭实际操作得出的结论还需证明,你能证明它吗?请根据图形写出已知、求证和证明过程。
已知:
求证:
证明:
这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看两个例题.
1.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?
2.等腰三角形的底角为15°,腰长为2a,求腰上的高.
已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.
求:CD的长.
三、展示平台
(一)基础部分
Rt△ABC中,∠C=90°,∠B=2∠A,∠B和∠A各是多少度?边AB与BC 之间有什么关系?(二)拓展提高
1.已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°.
求证:BD= AB.
2.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.
3.在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.写出书知、求证和证明过程。
提示:可以从证明“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.从辅助线的作法中得到启示.
已知:
求证:
证明:
4.已知,如图,点C为线段AB上一点,△ACM、△CBN是等边三角形.
求证:AN=BM.
5.一个直角三角形房梁如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm, CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少?
四、作业:
五、学习反馈:本节课你学会哪些知识,请归纳出来,不少于50字。
反思:
本节课我采用从生活中创设情景的激发学生们的学习兴趣,采用拼图形的方法创设问题的情景,引导学生自主探究活动,培养学生类比、猜想、论证的研究方法研究问题,培养学生善于动手、善于观察、善于思考的学习习惯。
利用学生的好奇心设疑、解疑,组织活泼互助,有效的教学活动,鼓励学生积极参与,大胆猜想,细心验证。
使学生在自主探索和合作交流中理解和掌握本节课的内容。
力求在整个探究学习的过程充满师生之间,生生这间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓信新知识的切入点,使学生进入一种“喜新不厌旧”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。
接下来让学生动手操作,并细心观察,大胆猜想。
在这一环节上,展现给学生一个实物,使学生获得直观感受。
并引导学生给出证明,证明自己的猜想的正确性。
使学生懂得,即使是通过实践得出的结论,还需理论上给予证明。
在性质证明完毕后,缺乏对学生记忆性练习。
习题1、2的设计是为了能让学生把理论知识付诸于实践,检验学生的学习效果,让学生分组练习,训练学生解决实际问题的能力,让学生在合作中交流中完成任务,体会合作学习的乐趣。
由学生讲解,我做必要的指导。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。
这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
“展示平台”及“拓展提高”部分给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。
在这一环节,。