平面直角坐标系的对称和平移
- 格式:ppt
- 大小:365.50 KB
- 文档页数:6
坐标平面内图形的轴对称和平移(基础)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4.(2016春•江西期末)如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S△ABO=3×4﹣×3×2﹣×4×1﹣×2×2=5;(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。
平面直角坐标系规律
在平面直角坐标系中,规律主要体现在点的坐标表示、距离
计算、直线方程和图形变换等方面。
1.坐标表示:
平面直角坐标系中,每个点都可以用一个有序对(x,y)表示,
其中x表示点在x轴上的投影长度,y表示点在y轴上的投影
长度。
根据坐标的正负,可以判断点在哪个象限。
2.距离计算:
两点之间的距离可以通过勾股定理计算,即
$d=\sqrt{(x_2x_1)^2+(y_2y_1)^2}$。
这个公式可以用来
计算两点之间的直线距离。
3.直线方程:
在平面直角坐标系中,直线可以用一般式、斜截式、点斜式
和截距式等多种形式表示。
例如,一般式表示为Ax+By+C=0,其中A、B、C为常数;斜截式表示为y=kx+b,其中k为斜率,b为y轴截距;点斜式表示为yy_1=k(xx_1),其中(x_1,y_1)
为直线上一点的坐标;截距式表示为x/a+y/b=1,其中a、b
为x和y轴的截距。
4.图形变换:
平面直角坐标系中,常见的图形变换包括平移、旋转、缩放和对称等。
平移是通过给坐标加上一个平移向量实现,旋转是通过坐标旋转变换矩阵实现,缩放是通过给坐标乘上一个缩放因子实现,对称是通过以某一直线或点为中心实现。
总结一下,平面直角坐标系中的规律主要体现在坐标表示、距离计算、直线方程和图形变换等方面。
这些规律在几何学、图像处理、物理学等领域中都有广泛应用。
平面直角坐标系点的坐标移动规律平面直角坐标系中的点的坐标移动规律在平面直角坐标系中,点的坐标移动规律是描述点在平面上移动的方式和规则。
点的坐标由x轴和y轴上的数值组成,通过改变这些数值,我们可以改变点在平面上的位置。
点的坐标移动可以有多种方式,下面我们将介绍一些常见的移动规律。
1. 平移:平移是指点在平面上沿着某个方向移动一定的距离。
平移可以分为水平平移和垂直平移两种。
水平平移是指点在x轴方向上移动,垂直平移是指点在y轴方向上移动。
在平移过程中,点的x 轴和y轴坐标同时改变,但是它们的差值保持不变。
2. 旋转:旋转是指点围绕某个固定点旋转一定的角度。
旋转可以分为顺时针旋转和逆时针旋转两种。
顺时针旋转是指点沿着一个圆周顺时针方向旋转,逆时针旋转是指点沿着一个圆周逆时针方向旋转。
在旋转过程中,点的坐标随着旋转角度的变化而改变。
3. 缩放:缩放是指改变点到固定点的距离。
缩放可以分为放大和缩小两种。
放大是指点到固定点的距离变大,缩小是指点到固定点的距离变小。
在缩放过程中,点的x轴和y轴坐标同时改变,但是它们的比例保持不变。
4. 对称:对称是指点关于某条直线或某个点对称。
关于直线对称是指点在直线两侧对称,关于点对称是指点关于一个点对称。
在对称过程中,点的x轴和y轴坐标同时改变,但是它们的符号改变。
这些移动规律可以单独应用,也可以同时应用。
通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。
在实际应用中,点的坐标移动规律被广泛应用于几何学、物理学、计算机图形学等领域。
在几何学中,点的坐标移动规律可以用来描述线段、角度、面积等几何概念。
在物理学中,点的坐标移动规律可以用来描述物体的运动轨迹和变形过程。
在计算机图形学中,点的坐标移动规律可以用来生成图像和动画效果。
点的坐标移动规律是描述点在平面上移动的方式和规则。
通过改变点的x轴和y轴坐标,我们可以改变点在平面上的位置。
这些移动规律可以单独应用,也可以同时应用,通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。
平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
初中数学平面直角坐标系与坐标变换平面直角坐标系是数学中常用的坐标系之一,用于描述二维平面上的点的位置。
学会使用平面直角坐标系及其坐标变换,对于数学的学习和解题能力的提高至关重要。
本文将介绍平面直角坐标系的概念、性质以及常用的坐标变换方法。
一、平面直角坐标系平面直角坐标系是由一个平面上的两个相互垂直的直线(通常称为x轴和y轴)所确定的。
x轴和y轴的交点称为原点O,它是平面直角坐标系的起点。
在平面直角坐标系中,每个点都可以用一个有序数对(x, y)来表示,其中x代表点在x轴上的坐标,y代表点在y轴上的坐标。
二、平面直角坐标系的性质1. 坐标轴:平面直角坐标系中的x轴和y轴互相垂直,且相交于原点O。
x轴是水平方向的,y轴是垂直方向的。
2. 坐标轴的正方向:x轴从左往右延伸,正方向是从左往右;y轴从下往上延伸,正方向是从下往上。
3. 坐标轴的刻度:x轴和y轴上的刻度表示数值,用来表示点在坐标轴上的位置。
沿x轴和y轴的正方向,每个刻度之间的距离相等。
4. 坐标轴的单位:坐标轴上的单位长度可以自行确定,一般用数值表示。
5. 坐标变换:平面直角坐标系可以通过平移、旋转等方式进行坐标变换,不改变原点的位置和坐标轴的方向。
三、坐标变换1. 平移变换:平移变换是平面直角坐标系中最基本的坐标变换。
平移变换只改变点的位置,不改变点的坐标值。
假设有一个点A(x, y),平移变换后的点A'的坐标为(x+a, y+b),其中a和b分别表示平移的横向和纵向距离。
例题:已知点A(2, 3),对平面直角坐标系进行平移变换,使得点A'的坐标为(-1, 4),求平移的向量。
解答:设平移的向量为(a, b),根据平移变换的定义可得:-1 = 2 + a4 = 3 + b解方程组可得 a = -3,b = 1。
因此,平移的向量为(-3, 1)。
2. 旋转变换:旋转变换是将平面直角坐标系绕原点进行旋转的变换。
旋转变换可以按顺时针或逆时针方向进行。
坐标平面内图形的轴对称和平移(提高)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化. 【典型例题】类型一、用坐标表示轴对称1.在直角坐标系中,已知点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.【思路点拨】(1)根据在平面直角坐标系中,关于y 轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a ,b 即可解答本题;(2)根据点B 关于x 轴的对称的点是C ,得出C 点坐标,进而利用三角形面积公式求出即可.【答案与解析】解:(1)∵点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称,∴2250a b aa b a -=-⎧⎨++-=⎩,解得:13a b =⎧⎨=⎩, ∴点A 、B 的坐标分别为:(4,1),(-4,1);(2)∵点B关于x轴的对称的点是C,∴C点坐标为:(-4,-1),∴△ABC的面积为:12×BC×AB=12×2×8=8.【总结升华】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.举一反三:【变式】小华看到了坐标系中点B关于X轴的对称点为C(-3,2),点A关于Y轴对称点为D(-3,4),若将A、B、C、D顺次连接,此图形的面积是多少?【答案】解:∵B关于x轴的对称点为C(-3,2),∴B(-3,-2),∵点A关于y轴对称点为D(-3,4),∴A(3,4),∴△ABD的面积为:12×AD×DB=12×6×6=18.2.已知点A(a,3)、B(-4,b),试根据下列条件求出a、b的值.(1)A、B两点关于y轴对称;(2)A、B两点关于x轴对称;(3)AB∥x轴;(4)A、B两点在第二、四象限两坐标轴夹角的平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数.(2)关于x轴对称,x不变,y变为相反数.(3)AB∥x轴,即两点的纵坐标不变即可.(4)在二、四象限两坐标轴夹角的平分线上的点的横纵坐标互为相反数,即分别令点A,点B的横纵坐标之和为0,列出方程并解之,即可得出a,b.【答案与解析】解:(1)A、B两点关于y轴对称,故有b=3,a=4;(2)A、B两点关于x轴对称;所以有a=-4,b=-3;(3)AB∥x轴,即b=3,a为≠-4的任意实数.(4)如图,根据题意,a+3=0;b-4=0;所以a=-3,b=4.【总结升华】本题主要考查学生对点在坐标系中的对称问题的掌握;在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.类型二、用坐标表示平移3.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为.【思路点拨】(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【答案与解析】解:(1)A′为(4,0)、B′为(1,3)C′为(2,﹣2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.【总结升华】此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)举一反三:【变式】(大庆校级模拟)如图所示,△COB是由△AOB经过某种变换后得到的图形,观察点A与点C的坐标之间的关系,解答下列问题:(1)若点M的坐标为(x、y),则它的对应点N的坐标为.(2)若点P(a,2)与点Q(﹣3,b)关于x轴对称,求代数式…的值.【答案】解:(1)由图象知点M和点N关于x轴对称,∵点M的坐标为(x、y),∴点N的坐标为(x,﹣y);(2)∵点P(a,2)与点Q(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴…=+++…+,=﹣+﹣+…+,=﹣,=.类型三、综合应用4. 如图是某台阶的一部分,如果建立适当的坐标系,使A点的坐标为(0,0),B点的坐标为(1,1)(1)直接写出C,D,E,F的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?【思路点拨】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;(2)利用平移的性质求出横向与纵向的长度,然后求解即可.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.。
初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
坐标平面内的图形的轴对称和平移知识提要1.关于坐标轴对称的两个点的坐标关系在直角坐标系中,若点A与点A1关于x轴对称,则横坐标不变,纵坐标互为相反数;若点A与点A2关于y轴对称,则纵坐标不变,横坐标互为相反数.即点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b).2.坐标平面内图形的轴对称坐标平面内图形的轴对称是借助平面直角坐标系进行的一种图形的基本变换.(1)如果两个图形关于x轴对称,那么这两个图形的对应点的横坐标不变,纵坐标互为相反数.(2)如果两个图形关于y轴对称,那么这两个图形的对应点的纵坐标不变,横坐标互为相反数.(3)如果两个图形关于原点对称,那么这两个图形的对应点的横、纵坐标分别互为相反数.3.坐标平面内图形平移时对应点之间的坐标关系(1)原图形上的点(a,b)向左平移n(n>0)个单位,平移后对应点的坐标为(a-n,b);(2)原图形上的点(a,b)向右平移n(n>0)个单位,平移后对应点的坐标为(a+n,b);(3)原图形上的点(a,b)向上平移n(n>0)个单位,平移后对应的点坐标为(a,b+n);(4)原图形上的点(a,b)向下平移n(n>0)个单位,平移后对应点的坐标为(a,b-n).(5)点的坐标平移口诀:右加左减,上加下减.练习一、选择题1.在平面直角坐标系中,点A(-1,2)关于x轴的对称点B的坐标为( D )A. (-1,2)B. (1,2)C. (1,-2)D. (-1,-2)2.点A(-4,0)与点B(4,0)的位置关系是( B )A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 不能确定3.(福州中考)如图,在3×3的正方形网格中有四个格点A, B, C, D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( B )A.点AB. 点BC. 点CD. 点D4.(贵港中考)在平面直角坐标系中,若点P(m,m-n)与点Q(-2,3)关于原点对称,则点M(m,n)在( A )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解】由题意,得m=2,m-n=-3,∴n=5.∴点M(m,n)在第一象限.5.将下列图形画在平面直角坐标系中:①圆心在原点的圆;②与y轴垂直的一条直线;③与y轴平行的一条直线;④一个等边三角形的一个顶点与原点重合,且一条边在x轴的正半轴上.若图形上各点的横坐标均乘-1,纵坐标不变,则图形不发生变化的是( C )A.①④B.②④C.①②D.②③【解】图形上各点的横坐标乘-1,纵坐标不变,即将图形作一次关于y轴的轴对称变换,不发生变化的只有①②.6.已知点P(1,2)与点Q(x,y)在同一条平行于x轴的直线上,且点Q到y轴的距离等于2,则点Q的坐标是( C )A. (2,2)B. (-2,2)C. (-2,2)或(2,2)D. (-2,-2)或(2,-2)7.在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A′B′.若点A′的坐标为(-2,2),则点B′的坐标为( B)A. (4,3)B. (3,4)C. (-1,-2)D. (-2,-1)【解】由点A(-4,-1)平移到点A′(-2,2),可知点A向右平移了2个单位,向上平移了3个单位.∴点B (1,1)也按此规律平移,平移后的点B ′的坐标为(3,4).8.已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( A )【解】∵点M (1-2m ,m -1)关于x 轴的对称点(1-2m ,1-m )在第一象限,∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎪⎨⎪⎧m <12,m <1.故选A. 9. 点P ⎝ ⎛⎭⎪⎫ac2,b a 在第二象限,点Q(a ,b)关于y 轴对称的点在( D ) A .第一象限B .第二象限C .第三象限D .第四象限【解析】D 第二象限点的横坐标为负,纵坐标为正,即ac2<0且b a >0,∴a<0,b<0,∴Q(a ,b)在第三象限,∴点Q 关于y 轴的对称点在第四象限.二、填空题1. 在平面直角坐标系中,把点P (a ,b )先向左平移1个单位,再向上平移2个单位,再把所得的点以x 轴为对称轴作轴对称变换,最后所得的像的坐标为(-4,6),则a =__-3__,b =__-8__.【解】用逆推法先求出(-4,6)关于x 轴的对称点是(-4,-6),再把(-4,-6)向右平移1个单位,向下平移2个单位得点(-3,-8), 即点P (a ,b ).2.已知点P(a +1,2a -1)关于x 轴的对称点在第一象限,则|a +2|-|1-a|=2a +1.3.把以(-3,6)和(-3,-2)为端点的线段向左平移4个单位,所得的像上任意一点的坐标可表示为(-7,y ),其中-2≤y ≤6.【解】 原线段向左平移4个单位后的端点分别为(-7,6),(-7,-2),此线段与y 轴平行,横坐标都为-7,纵坐标y 的取值范围是-2≤y ≤6.4.如图,在平面直角坐标系中,右边的图案是左边的图案经过平移得到的,左边的图案中,左、右两只眼睛的坐标分别是(-4,2),(-2,2),右边的图案中左眼的坐标是(3,4),则右边的图案中右眼的坐标是(5,4).5.已知平面直角坐标系中一点P (2x -y ,3x +2y ),先将它关于x 轴作一次轴对称变换,再关于y 轴作一次轴对称变换,最终得到点(-3,-8),则点Q (x ,y )的坐标为 .【解】 由题意,得⎩⎨⎧2x -y =3,3x +2y =8,解得⎩⎨⎧x =2,y =1.∴点Q 的坐标为(2,1).6. 如图,把∴ABC 经过一定的变换得到∴A′B′C′,如果∴ABC 上点P 的坐标为(a ,b),那么这个点在∴A′B′C′中的对应点P′的坐标为________.【解析】由题意可知,图形是向右平移3个单位,向上平移2个单位, 从而可知点P′的坐标为(a +3,b +2).答案:(a +3,b +2)7.如图,弹性小球从点P(0,3)出发,沿箭头方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…第n次碰到矩形的边时的点为Pn,则点P3的坐标是_(8,3)________,点P2 020的坐标是(5,0)_________.【解析】如答图,当点P第6次碰到矩形的边时,点P回到出发点(0,3),当点P第3次碰到矩形的边时,点P3的坐标是(8,3).∴2 020÷6=336……4,∴当点P第2 020次碰到矩形的边时为第337个循环组的第4次反弹,∴点P2 020的坐标是(5,0).三、解答题1.已知点A(-4,3),它与点B(a,b)在同一条平行于y轴的直线上,且AB=6,求点B的坐标.【解】∵点A(-4,3),AB∥y轴,∴点B的横坐标为-4.当点B在点A的上边时,点B的纵坐标为3+6=9;当点B在点A的下边时,点B的纵坐标为3-6=-3,∴点B的坐标为(-4,9)或(-4,-3).2.在平面直角坐标系中,点P的坐标为(a+1,3a-1).将点P向下平移2个单位,再向左平移1个单位后得到点Q,若点Q在第一象限,求a的取值范围.【解】∵将点P(a +1,3a -1)向下平移2个单位,再向左平移1个单位后得到点Q ,∴点Q 的坐标为(a ,3a -3).∵点Q 在第一象限,∴⎩⎨⎧a >0,3a -3>0,解得a >1.3.如图点P 的坐标为(4,3),把点P 绕坐标原点O 逆时针旋转90°后得到点Q .(1)点Q 的坐标为(-3,4).(2)若把点Q 向右平移m 个单位,向下平移2m 个单位后,得到的点Q ′恰好在第三象限,求m 的取值范围.【解】 (2)把点Q(-3,4)向右平移m 个单位,向下平移2m 个单位后, 得到的点Q′的坐标为(-3+m ,4-2m).∵点Q′在第三象限,∴⎩⎨⎧-3+m<0,4-2m<0,解得2<m<3.4.△ABO如图所示.(1)写出△ABO各顶点的坐标,以及它们关于y轴的对称点的坐标,描出这些对称点并将它们连结起来.(2)写出△ABO各顶点关于x轴的对称点的坐标,描出这些对称点并将它们连结起来.并说明这三个三角形之间的关系.【解】(1)点A(2,3),B(3,1),O(0,0);它们关于y轴的对称点的坐标分别是A′(-2,3),B′(-3,1),O′(0,0),如图所示.(2)点A,B,O关于x轴的对称点的坐标分别是A″(2,-3),B″(3,-1),O″(0,0),如图所示.关系:△ABO≌△A′B′O′≌△A″B″O″,△A′O′B′与△AOB关于y轴对称,△A″O″B″与△AOB关于x轴对称,△A′O′B′与△A″O″B″关于原点对称.5.如图,某公路(可视为x轴)的同一侧有A,B,C三个村庄,要在公路边建一货仓D,向A,B,C三个村庄送农用物资,路线是D→A→B→C→D.(1)试问:在公路边是否存在一点D,使送货路程最短?(2)求出点D的坐标.【解】 (1)存在.(2)∵路程为DA +AB +BC +CD ,AB +BC 的长度固定,∴要使路程最短,只需DA +CD 最短即可.作点A 关于x 轴的对称点A ′(0,-2),连结A ′C ,则A ′C 与x 轴的交点即为所求的点D ,过点C 作CE ⊥x 轴于点E ,则点E (5,0),易得△OA ′D ≌△ECD ,得OD =ED ,∴点D ⎝ ⎛⎭⎪⎫52,0.6.如图,已知点P(3,4),MN 是第一、三象限夹角平分线,求点P 关于直线MN 的对称点P 1的坐标.【解】 如解图,过点P 作PE ⊥MN 于点E ,延长PE 至点P 1 ,使PE =P 1E ,则点P 1就是点P 关于直线MN 的对称点.连结OP ,OP 1,则有OP =OP 1,∠POE =∠P 1OE.过点P 作PD ⊥y 轴于点D ,过点P 1作P 1H ⊥x 轴于点H.∵MN 是第一、三象限夹角平分线,∴∠DOE =∠HOE =45°,∴∠1=∠2.在Rt △PDO 和Rt △P 1HO 中,∵⎩⎨⎧∠1=∠2,∠PDO =∠P 1HO ,OP =OP 1,∴Rt △PDO ≌Rt △P 1HO(AAS),∴PD =P 1H =3,OD =OH =4,∴点P 1的坐标为(4,3).7.如图①,在6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换.将图形F 沿x 轴向右平移1格得到图形F 1,称为作1次P 变换;将图形F 沿y 轴翻折得到图形F 2,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得到图形F 3,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;R n 变换表示作n 次R 变换,解答下列问题:(1)作R 4变换相当于至少作__2__次Q 变换.(2)请在图②中画出图形F 作R 2017变换后得到的图形F 4.(3)PQ 变换与QP 变换是否是相同的变换?请在图③中画出PQ 变换后得到的图形F 5,在图④中画出QP 变换后得到的图形F 6.【解】(1)根据操作,观察发现:每作4次R变换便与图形F重合.因此R4变换相当于作2n次Q变换(n为正整数).(2)由于2017=4×504+1,故R2017变换即为R1变换,其图象如解图①.(3)PQ变换与QP变换不是相同的变换.正确画出图形F5,F6,如解图②③.。
平面直角坐标系与平移变换平面直角坐标系是我们常见的一种表示平面上点位置的方式,而平移变换则是一种常见的几何变换方式。
本文将介绍平面直角坐标系的概念和表示方法,以及平移变换的原理和应用。
一、平面直角坐标系平面直角坐标系是一种用于表示平面上点位置的坐标系。
它由两条垂直于彼此的直线组成,一条为水平的x轴,另一条为垂直的y轴。
这两条直线的交点被称为坐标原点,通常用O表示。
根据右手法则,水平的x轴被称为横坐标轴,垂直的y轴被称为纵坐标轴。
在平面直角坐标系中,每个点都可以用一对有序实数(x, y)来表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。
这对实数被称为点的坐标,通常用大写字母表示点,如A、B、C等。
平面直角坐标系的优点在于可以用简洁的方式表示平面上的点位置,并且可以进行简单的几何计算,如计算两点之间的距离、点的对称位置等。
二、平移变换平移变换是一种保持形状和大小不变,只改变位置的几何变换方式。
在平面直角坐标系中,平移变换可以通过将点的坐标进行移动来实现。
平移变换的原理是将所有点沿着指定的平行方向以相同的距离进行移动。
具体而言,给定一个平面上的点A(x, y),经过平移变换后的点A’(x', y')的坐标可以通过下式得到:x' = x + ay' = y + b其中,a和b分别表示水平方向和垂直方向上的移动距离。
平移变换常用于平面上物体的移动、图形的平移以及地图的漂移等应用场景。
它可以通过改变点的坐标来实现,也可以通过向量的加法来表示。
三、平面直角坐标系与平移变换的关系平面直角坐标系和平移变换是紧密相关的。
通过平面直角坐标系,我们可以对平移变换进行准确的描述和计算。
在平面直角坐标系中,每个点都有唯一的坐标表示。
当对某个点进行平移变换时,我们只需要将该点的坐标加上平移向量的对应分量即可得到新的坐标。
例如,给定平面上的一个点A(2, 3),如果需要将该点沿着横轴正向平移3个单位,纵轴负向平移2个单位,可以根据平移变换的原理,得到新的点A’的坐标为A’(2+3, 3-2),即A’(5, 1)。
平面直角坐标系变化规律一、平面直角坐标系中的平移变化规律1. 点的平移- 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x + a,y)(或(x - a,y));- 将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y + b)(或(x,y - b))。
- 例如:点A(2,3)向右平移3个单位长度,得到点A'(2 + 3,3)=(5,3);点A(2,3)向下平移2个单位长度,得到点A''(2,3 - 2)=(2,1)。
2. 图形的平移- 图形的平移实际上就是图形上各个点的平移。
例如,三角形ABC三个顶点A(x_1,y_1)、B(x_2,y_2)、C(x_3,y_3),将三角形ABC向右平移a个单位长度,再向上平移b个单位长度,则A点变为A'(x_1 + a,y_1 + b),B点变为B'(x_2+a,y_2 + b),C点变为C'(x_3 + a,y_3 + b),新的三角形A'B'C'就是原三角形ABC平移后的图形。
二、平面直角坐标系中的对称变化规律1. 关于x轴对称- 点(x,y)关于x轴对称的点的坐标为(x,-y)。
- 例如:点P(3,4)关于x轴对称的点P'(3,-4)。
- 对于图形来说,图形关于x轴对称,就是图形上所有点关于x轴对称后得到的新图形。
如三角形ABC关于x轴对称,A(x_1,y_1)变为A''(x_1,-y_1),B(x_2,y_2)变为B''(x_2,-y_2),C(x_3,y_3)变为C''(x_3,-y_3),新的三角形A''B''C''就是三角形ABC关于x轴对称后的图形。
2. 关于y轴对称- 点(x,y)关于y轴对称的点的坐标为( - x,y)。
判断平面直角坐标系中的对称性在平面直角坐标系中,对称性是指图形在某个特定的变换下不变。
这些变换包括关于x轴、y轴或原点的对称变换,以及关于某一直线或点的对称变换。
通过判断图形是否具有对称性,我们可以更好地理解和描述图形的性质和特点。
下面将介绍如何判断平面直角坐标系中的对称性。
一、关于x轴对称:当一个图形在关于x轴的对称变换下不变时,我们称其具有关于x 轴的对称性。
具体判断方法如下:1. 对于一段直线,如果该直线与x轴垂直,那么它是关于x轴对称的。
例如:y = a(a为常数)。
2. 对于一个点(x, y),如果这个点与另一个点(x, -y)关于x轴对称,那么这个点也具有关于x轴对称性。
3. 对于一个函数图像,如果该函数图像关于x轴对称(即对于任意点(x, y)在图像上,点(x, -y)也在图像上),那么该函数具有关于x轴的对称性。
例如:y = sin(x)。
二、关于y轴对称:当一个图形在关于y轴的对称变换下不变时,我们称其具有关于y 轴的对称性。
具体判断方法如下:1. 对于一段直线,如果该直线与y轴垂直,那么它是关于y轴对称的。
例如:x = a(a为常数)。
2. 对于一个点(x, y),如果这个点与另一个点(-x, y)关于y轴对称,那么这个点也具有关于y轴对称性。
3. 对于一个函数图像,如果该函数图像关于y轴对称(即对于任意点(x, y)在图像上,点(-x, y)也在图像上),那么该函数具有关于y轴的对称性。
例如:y = x^2。
三、关于原点对称:当一个图形在关于原点的对称变换下不变时,我们称其具有关于原点的对称性。
具体判断方法如下:1. 对于一段直线,如果该直线通过原点且斜率不存在或为0,那么它是关于原点对称的。
2. 对于一个点(x, y),如果这个点与另一个点(-x, -y)关于原点对称,那么这个点也具有关于原点的对称性。
3. 对于一个函数图像,如果该函数图像关于原点对称(即对于任意点(x, y)在图像上,点(-x, -y)也在图像上),那么该函数具有关于原点的对称性。
知识巩固1.对称:①点(x ,y )关于横轴(x 轴)的对称点为(x ,-y );②点(x ,y )关于纵轴(y 轴)的对称点为(-x ,y );③点(x ,y )关于原点(0,0)的对称点为(-x ,-y );④点(x ,y )关于点(a ,b )的对称点为(2a -x ,2b -y );2.平移:⑴点平移:①将点(x ,y )向右(或向左)平移a 个单位可得对应点(x +a ,y )或(x -a ,y )。
②将点(x ,y )向上(或下)平移b 个单位,可得对应点(x ,y +b )或(x ,y -b )。
⑵图形平移:①把一个图形各个点的横坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位。
②如果把图形各个点的纵坐标都加上(减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位。
重点题与易错题【例1】点P (3,-5)关于x 轴对称的点的坐标为( )A .(-3,-5)B .(5,3)C .(-3,5)D .(3,5)【例2】点P (-2,1)关于y 轴对称的点的坐标为( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)【例3】在平面直角坐标系中,点P (2,-3)关于原点对称点P ′的坐标是_______, 关于(3,4)的对称点为______。
【例4】点P (2,3)关于直线x =3的对称点为______,关于直线y =5的对称点为______。
【例5】已知点P (x ,y )的坐标满足方程()2|1|20x y ++-=,则点P 关于x 轴的对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限【例6】已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围。
平面直角坐标系与点对称【例7】平面直角坐标系中,线段A ′B ′是由线段AB 经过平移得到的,点()-2,1A 的对应点为()3,4A ′,点B 的对应点为()4,0B ′,则点B 的坐标为( )。
坐标平面内图形的轴对称和平移(基础)责编:杜少波【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______.【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b =-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为( )A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】(1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=A△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。
平面直角坐标系中的几何变换在数学中,几何变换是一种将图形从一个位置或形状转移到另一个位置或形状的方法。
在平面直角坐标系中,有许多常见的几何变换,如平移、旋转、缩放和翻转等。
这些变换不仅在数学中有着重要的应用,也在计算机图形学、物理学和工程学等领域中扮演着重要的角色。
平移是最简单的几何变换之一。
它通过将图形的每个点沿着指定的向量移动一定的距离来改变图形的位置。
在平面直角坐标系中,平移可以通过将图形的每个点的坐标分别增加或减少相同的数值来实现。
例如,将一个三角形沿着向量(2, 3)平移,可以将每个点的x坐标增加2,y坐标增加3。
这样,原来的三角形将平移至新的位置。
旋转是另一种常见的几何变换。
它通过围绕一个点或围绕坐标轴旋转图形来改变图形的方向。
在平面直角坐标系中,旋转可以通过将图形的每个点绕着指定的旋转中心旋转一定的角度来实现。
旋转的角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。
例如,将一个矩形绕着原点逆时针旋转90度,可以通过将每个点的坐标(x, y)变换为(-y, x)来实现。
缩放是改变图形大小的几何变换。
它通过乘以一个比例因子来增加或减少图形的尺寸。
在平面直角坐标系中,缩放可以通过将图形的每个点的坐标分别乘以相同的数值来实现。
如果缩放因子大于1,图形将变大;如果缩放因子小于1,图形将变小。
例如,将一个圆的半径缩小为原来的一半,可以将每个点的坐标乘以0.5。
翻转是将图形沿着某个轴对称的几何变换。
它通过改变图形的左右或上下位置来改变图形的方向。
在平面直角坐标系中,翻转可以通过将图形的每个点的坐标的一个分量取反来实现。
例如,将一个三角形关于x轴翻转,可以将每个点的y坐标取反。
除了以上几种常见的几何变换,还有一些其他的变换,如错切、投影和仿射变换等。
错切是通过将图形的每个点的坐标的一个分量增加或减少与另一个分量成比例的数值来改变图形的形状。
投影是将三维图形映射到二维平面上的几何变换。
仿射变换是一种将图形进行平移、旋转、缩放和错切等组合的变换。
平面直角坐标系对称变换【摘要】平面直角坐标系对称变换是一种重要的数学概念,通过在平面直角坐标系下进行对称变换,可以改变图形的位置、形状和大小。
本文将介绍关于平面直角坐标系的基本概念,平面对称变换的定义以及其意义,同时讨论了各种对称变换方法和如何进行平面直角坐标系对称变换。
对称变换在几何学和工程学等领域有着广泛的应用,能够简化问题的求解过程并提高计算效率。
平面直角坐标系对称变换不仅在理论研究中具有重要意义,而且在实际应用中也起到了重要的作用。
展望未来,随着科学技术的不断发展,平面直角坐标系对称变换将继续在更多领域展现其重要性,成为数学研究和工程实践中不可或缺的一部分。
【关键词】平面直角坐标系对称变换、对称变换、基本概念、定义、意义、方法、应用领域、重要性、未来发展。
1. 引言1.1 什么是平面直角坐标系对称变换平面直角坐标系对称变换是指在平面直角坐标系中,通过某种规则将图形围绕某个中心点或轴进行对称操作,从而得到新的图形。
这种变换通常可以分为对称轴对称和点对称两种形式。
对称轴对称是指当图形绕着一条直线旋转180度时,图形和原图形完全一致;而点对称是指当图形围绕一个点旋转180度时,图形和原图形完全一致。
在平面几何学中,对称变换是一种非常重要的变换方式。
通过对称变换,我们可以更好地理解图形的性质、特点和关系。
对称变换可以帮助我们简化问题,找出规律,从而更加高效地解决一些复杂的数学问题。
对称变换还可以美化图形,增加图形的美感和艺术性,使得图形更加优雅和动人。
平面直角坐标系的对称变换是一种非常有趣且实用的数学概念,对于我们理解几何学、数学建模、图形设计等领域具有重要意义。
通过对称变换,我们可以更深入地探索数学世界的奥秘,同时也可以在实际应用中发挥其巨大的作用。
1.2 对称变换的重要性对称变换在平面直角坐标系中起着重要的作用,它能够帮助我们更好地理解和描述几何形体的特性和性质。
通过对称变换,我们可以将一个图形沿着某条直线、某个点或某个平面进行镜像、旋转或平移,从而得到新的图形。
轴对称和平移的坐标表示(最新版)目录1.轴对称的定义及应用2.平移的定义及应用3.轴对称和平移的坐标表示4.学习方法和建议正文一、轴对称的定义及应用轴对称是指一个图形围绕某一条直线旋转 180 度后,能够与原来的图形完全重合。
这条直线被称为对称轴。
在数学中,轴对称常用于解决几何问题,例如求解线段的中垂线、求解图形的面积等。
二、平移的定义及应用平移是指将一个图形上的所有点都按照某个方向作相同距离的移动。
平移后,图形的位置改变,但形状和大小不变。
平移在数学和物理中都有广泛的应用,例如在坐标系中求解点的移动规律、求解物体的运动轨迹等。
三、轴对称和平移的坐标表示在平面直角坐标系中,轴对称和平移可以通过坐标表示来描述。
设一个点 P(x, y) 关于 y 轴对称的点为 P"(x", y"),则有:x" = -xy" = y设一个点 P(x, y) 向右平移 a 个单位长度后的点为 P"(x", y"),则有:x" = x + ay" = y四、学习方法和建议1.以课本为主,吃透课本内容。
课本中的例题和公式定理是学习的基础,要注重理解和运用。
2.预习和复习。
预习可以帮助我们提前了解新知识,带着问题听课可以提高学习效率;复习可以帮助我们巩固已学知识,加深理解。
3.多做练习题。
通过练习题,我们可以检验自己的学习效果,及时发现并弥补知识漏洞。
4.注重学习方法和策略。
学习方法和策略可以帮助我们提高学习效率,更好地掌握知识。
总之,轴对称和平移是数学中常见的几何变换,它们在解决实际问题中具有重要作用。
我们要掌握它们的定义、性质和坐标表示,并学会运用它们解决实际问题。
轴对称和平移的坐标表示轴对称和平移是几何中常见的两种基本变换。
它们在平面几何中有着重要的作用,并且在日常生活中也经常会遇到。
在这篇文章中,我将介绍轴对称和平移的坐标表示,以及它们的基本性质和应用。
首先,我们来看轴对称的坐标表示。
轴对称是指物体关于某个轴对称。
在平面直角坐标系中,如果一个点关于x轴对称,那么它的轴对称点的坐标就是(x, -y);如果一个点关于y轴对称,那么它的轴对称点的坐标就是(-x, y)。
以原点为中心的对称点坐标表示时,可以通过将原点的坐标互换,然后取负号得到对称点的坐标。
例如,对于点A(3, 4)关于x轴的对称点是A'(3, -4),对于点B(-2, 5)关于y轴的对称点是B'(2, 5)。
这种坐标表示方法可以非常方便地确定轴对称点的坐标。
接下来是平移的坐标表示。
平移是指物体在平面上按照某个方向和距离进行移动。
对于直角坐标系中的平移,我们可以利用向量的表示来描述。
设平移向量为(u, v),则原点坐标(x, y)平移后的坐标可以表示为(x + u, y + v)。
这就是平移的基本坐标表示方法。
举个例子,如果点C(1, 2)按照向量(3, -1)进行平移,那么它的平移后的坐标就是C'(4, 1)。
这个方法也可以用于描述物体在平面上的整体平移,对于物体上的所有点都可以使用同一个平移向量进行平移。
轴对称和平移都是平面几何中很重要的变换,它们有着一些非常有用的性质和应用。
首先,轴对称是一个保角变换,也就是说它不改变角度。
这意味着轴对称变换前后的两条线段或者两个角度的度数是相等的。
这个性质在解题中很有用,可以利用它来求解一些几何问题。
其次,轴对称和平移都是保距的变换,也就是说它们不改变点之间的距离。
这个性质在解题中同样有着重要的作用,可以用来求解距离问题或者证明一些性质。
比如,如果一条线段经过轴对称变换后的长度不变,那么可以推断这条线段关于某个轴对称。
另外,轴对称和平移在计算机图形学和计算机动画中也有着广泛的应用。