固体核磁共振波谱基本理论19年3月共37页文档
- 格式:ppt
- 大小:3.56 MB
- 文档页数:24
固体核磁共振19.1 固体核磁共振基本原理19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品内部的相互作用及由外加环境施加与样品的作用。
前者主要是样品内在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内在电磁场屏蔽外磁场的强度、方向等),分子内与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。
外部环境施加与样品的主要作用有:1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency);2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。
与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。
经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。
此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一特定的角度。
由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。
在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相对较强的分子间偶极自旋偶合相互作用在大多数体系中由于分子的热运动而被平均化。
但是在固体核磁共振实验中,由于分子处于固体状态从而难以使体系中的偶极自旋偶合作用通过分子热运动而平均化。
固体核磁共振简介彭路明南京大学化学化工学院介观化学教育部重点实验室0. 从液体核磁共振到固体核磁共振核磁共振现象源于核自旋和磁场的相互作用,1945年由Edward Mills Purcell 和Felix Bloch分别发现。
核磁共振谱学从此日渐成为探索物质物理、化学、电子等性质和分子结构的重要工具。
在核磁共振中,有许多核自旋的相互作用,每一种都可能包含着丰富的结构和动力学信息,加上能够定量分析、对样品无损伤以及可针对特定的原子(核)等特点,使核磁共振成为一种十分理想的强大的分析手段。
在核磁共振的这些相互作用中,有一些是各向同性的相互作用,另一些则是各向异性的相互作用。
它们的区别在,前者对核磁共振信号频率的影响与分子的空间取向无关,而后者则有关,故后者可能因为被测分子空间取向的不同而造成谱线的宽化,导致分辨率和灵敏度的降低。
在液体中,由于分子的快速翻滚运动,消除了各种可能使谱线宽化的各向异性的核磁共振相互作用。
因此,液体核磁共振谱图中的共振信号十分尖锐,有很高的分辨率,这是液体核磁共振成为测定溶液中化合物结构的最强大的方法的原因之一。
但在固体中,由于上述分子运动的缺失导致核磁共振信号受到各向异性的相互作用影响而被展宽,分辨率和灵敏度低。
如果希望得到类似液体核磁共振所给出的信息,必须通过高分辨率固体核磁共振技术才能实现。
以下将分别简要介绍固体核磁共振中的一些重要相互作用以及部分高分辨率固体核磁共振技术。
1. 固体核磁共振中的相互作用核磁共振中核自旋的相互作用可以分为两大类:外部相互作用(external spin interactions )和内部相互作用(internal spin interactions )。
前者是核自旋和外部仪器设备产生的磁场(如静磁场,射频场)的相互作用。
后者则相反,是核自旋和样品本身所产生的磁场和电场的相互作用,这些作用包括屏蔽作用(化学位移,奈特位移,顺磁位移等),偶极作用(直接和间接),四极作用等等。