§4-5锅炉受热面讲解
- 格式:ppt
- 大小:1.41 MB
- 文档页数:24
锅炉各受热面的结构及布置形式-图文省煤器在锅炉中的主要作用是:①吸收低温烟气的热负以降低排烟温度,提高锅炉效率,节省燃料。
②由于给水在进入蒸发受热而之前先在省煤器内加热,这样就减少了水在蒸发受热面内的吸热量,因此可用省煤器替代部分造价较高的蒸发受热面。
也就是以管径较小、管壁较薄、传热温差较大、价格较低的省煤器来代替部分造价较高的蒸发受热面。
③提高了进入汽包的给水温度,减少于给水与汽包壁之间的温差,从而使汽包热应力降低。
基于这些原因,省煤器已成为现代锅炉必不可少的部件。
按照省煤器出口工质的状态省煤器可分为沸腾式和非沸腾式两种。
如出口水温低于饱和温度,叫做非沸腾式省煤器,如果水被加热到饱和温度并产生部分蒸汽,就叫做沸腾式省煤器。
省煤器按所用材质又可分为铸铁式和钢管式,铸铁式耐磨损和耐腐蚀但不能承受高压。
钢管省煤器应用于大型锅炉,它是由许多并列(平行)图6-3错列布置省煤器的结构1—蛇形臂;2—进口联箱;3—出口联箱;4—支架;5—支承梁;6—锅炉钢架;7—炉墙;8—进水管的管径为28~42mm的蛇形管组成。
蛇形管可以顺列也可错列。
为使省煤器受热面结构紧凑,一般总是力求减小管间节距。
管子多数为错列布置。
错列布置省煤器的结构如图6—3所示。
蛇形管的两端分别与进口联箱和出口联箱相连,联箱一般布置在烟道外。
省煤器的管子固定在支架上,支架支承在横梁上而横粱则与锅炉钢架相连接。
省煤器管子一般为光管,为了强化烟气侧热交换和使省煤器结构更紧凑可采用鳍片管、肋片管和膜式受热面,它们的结构如图6—4所示。
焊接鳍片管省煤器所占据的空间比光管式大约少20%~25%,轧制鳍片管省煤器可使外形尺寸减少40%一50%。
鳍片管和膜式省煤器还能减轻磨损。
这主要是因为它比光管省煤器占有空间小,因此在烟道截面不变的情况下,可采用较大的横向节距。
从而使烟气流通截面增大,烟气流速下降磨损减轻。
肋片式省煤器主要特点是热交换面积明显增大,这对缩小省煤器的体积、减少材料消耗很有意义。
1. 绪论1.1 课题背景能源问题已成为世界各国所关注的重大问题,我国用于发电、工业生产和生活取暖等锅炉的煤耗量要点总开采量的一半以上。
为了保证锅炉工作安全可靠和节约能源,当今锅炉工作者的重点应着眼于锅炉的烟气侧,即锅炉受热面外部工作过程――结渣、积灰、腐蚀和磨损。
而力求消除和减轻灰渣污染与金属磨蚀,是研究锅炉受热面外部工作的主要任务。
燃用化石矿物燃料的锅炉受热面,或多或少都会遭受到烟气流中固体质点和酸性与有害气体的污染。
燃煤锅炉的炉膛结渣(亦称结焦),对流受热面的积灰与低温腐蚀是屡见不鲜的。
结渣属于粘结性灰污,其带来的危害性通常要比松散性灰污严重得多。
当锅炉发生结渣时,由于灰污具有比金属壁大得多的的热阻,因而降低了传热效果,增加了锅炉排烟损失,使锅炉效率降低,且增加了通风电耗。
同时,由于结渣具有局部性,因而影响到受热面内部汽水正常工作。
严重的结渣将堵塞烟气通道及炉膛排渣口和使汽水管过热爆管,破坏设备连续运行。
大的渣块掉下,则可能砸坏冷灰斗。
结渣也加剧了金属的腐蚀。
为清除结渣有时不得不停炉。
为防止结渣,也迫使一些锅炉长期在低负荷下运行。
因此,结渣严重影响锅炉的可用率、出力及安全性。
带来巨大的经济损失。
我国近年来,由于电站用煤品种多变,劣质煤的大量使用,锅炉结渣情况日益突出。
对我国电站调查表明,有相当数量的锅炉存在不同程度的结渣。
由此,不仅造成了经济上的损失,也加剧了我国电力不足的矛盾。
如何消除和防止锅炉受热面结渣已成为我国锅炉工作者的一大任务。
1.2 本课题国内外研究现状受热面结渣是一极为复杂的理化过程,影响因素很多,不仅牵扯到煤中矿物结构、组成等,还与矿物质在炉内加热过程中的理化变化以及在炉内的运动和炉内气氛等有关。
国外虽研究多年,但到今尚未能达到准确的科学性,依据仍然是经验。
国内近几年在一些单位开展的研究,还不能满足锅炉设计人员和运行人员的迫切需要。
因此,为了进一步向锅炉设计、运行和添加剂等提供选用的认识,消除或减轻受热面结渣,提高锅炉可用率、经济性和安全性,节约能源,加强受热面结渣机理的研究是很有必要和很有现实意义的。
锅炉过热器、再热器壁温测量装置安装说明前言:为保证锅炉过热器、再热器壁温测量装置正确安装,保证壁温测量正确无误,为锅炉运行提供正确依据,确保锅炉安全运行,根据锅炉厂图纸和有关资料特编写本说明。
一、壁温测点的编号原则管屏的编号:面对锅炉前墙,从左侧墙至右侧墙横向第1排为#1屏,其余以此类推。
(与集箱布置位置无关)同屏管子的编号:每屏的外圈管均定为#1管,其余以此类推。
二、锅炉过热器、再热器壁温布置(进入控制室的热电偶总共294个测点,其中出口286点,进口8点)1、一级过热器:(进口悬吊管共89排,每排7根;下管屏22排,分前、后墙,每排14根)进入控制室的热电偶共52点1.1 位于第20排上第#1—#14管(前墙、后墙共26点,其中#14管已包含在下面的第20排中)。
一般情况下#20排温度偏高。
1.2 位于横向第1,3,5,8,15,18,20,22排的第#14管(前墙、后墙共16点)。
同屏#14管温度最高。
1.3 位于横向第11、12排的第#5、#6管(共8点)。
该管易堵垃圾。
1.4 进口炉外测点:第23、67排第#1管(共2点)注:出口管的测点编号由下往上为#1管(外圈管),其余依此类推;进口管的测点编号由上往下为#1管(外圈管),其余依此类推。
2、二级过热器:(上管组共178排,每排7根; 下管组共89排,每排14根)进入控制室的热偶共41点。
2.1位于第15和75排上第#1,#3,#5,#7,#9,#11,#14管(共12点,其中#1管已包含在下面的第15和第75排#1管中),一般情况下#15、#75排温度偏高。
2.2位于横向第1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,89排的第#1管(共19点),同屏#1管温度最高。
2.3位于横向第22、23、67、69排的第#6、#7管(共8点)。
该管易堵塞垃圾。
2.4 进口炉外测点:第45、134排第#1管(共2点)注:出口管的测点编号由下往上为#1管(外圈管),其余依此类推;进口管的测点编号由上往下为#1管(外圈管),其余依此类推。
第4章过热器与再热器4.1 过热器与再热器的结构型式过热器的作用是将蒸汽从饱和温度加热到额定的过热温度。
在锅炉负荷或其它工况变动时,应保证过热温度的波动处在允许的范围之内。
在现代电站锅炉中,蒸汽过热器是锅炉的一个必备的重要部件,在很大程度上影响着锅炉的经济性和运行安全性。
在工业锅炉中,一般采用饱和蒸汽,常把过热器看作为辅助受热面,过热汽温不超过400℃,通常布置在对流管束中间的烟温小于700~800℃的区域中,工作是可靠的。
在电站锅炉中,提高过热蒸汽的参数是提高火力发电站热经济性的重要途径。
过热蒸汽参数的提高受到金属材料的限制。
过热器的设计必须确保受热面管子的外壁温度低于钢材的抗氧化允许温度并保证其机械强度。
随着锅炉用金属材料的发展,我国电站锅炉已普遍采用了高压高温(9.8MPa,540℃)和超高压参数(13.7MPa,540和555℃),并已发展亚临界压力参数(16.7MPa,540和555℃),国外已有不少锅炉采用超临界压力(24.5MPa,540~570℃)参数,也有个别机组采用更高的压力和温度参数。
随着蒸汽压力的提高,为了减少汽轮机尾部的蒸汽湿度以及进一步提高电站的热经济性,在高参数电站中普通采用中间再热系统,即将汽轮机高压缸的排汽再回到锅炉中加热到高温,然后再送到汽轮机的中压缸及低压缸中膨胀作功。
这个再加热的部件称为再热器。
通常把高压过热器中加热的蒸汽称为(一次)过热蒸汽,再热器中加热的蒸汽称为再热蒸汽(二次过热蒸汽)。
再热蒸汽的参数与热力循环的经济性有关。
一般,再热蒸汽的压力大致为过热蒸汽压力的五分之一左右,温度与一次过热汽温相近。
例如我国125MW,400t/h锅炉中,过热蒸汽的参数为13.7MPa,555℃;再热蒸汽的进出口压力为2.5/2.35MPa,温度也为555℃。
200MW,670t/h锅炉中,过热蒸汽的参数为13.7MPa,540℃;再热蒸汽进出口压力为2.7/2.5MPa,温度也为540℃。