差分放大电路仿真分析报告
- 格式:doc
- 大小:469.00 KB
- 文档页数:11
差分放大电路仿真一、实验目的1.掌握差动放大电路对放大器性能的影响。
2.学习差动放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法。
3.学习掌握Multisim交流分析4.学会开关元件的使用二、实验原理图3.2-1是差动放大器的基本结构。
它由两个元件参数相同的基本共发射放大电路组成。
当开关K 拨向左边时,构成典型的差动放大器。
调零电位器RP用来调节VT1、VT2管的静态工作点,使得输入信号Ui=0时,双端输出电压Uo=0。
R E为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。
图3.2-1 差动放大器原理电路在设计时,选择VT1、VT2特性完全相同,相应的电阻也完全一致,调节电位器RP的位置置50%处,则当输入电压等于零时,UCQ1= UCQ2,即Uo=0。
双击图中万用表XMM1、XMM2、XMM3分别显示出UCQ1、、UCQ2、Uo电压,其显示结果如图3.2-2所示。
(a)UCQ1显示结果(b)Uo显示结果(c)UCQ2显示结果图3.2-2 UCQ1、、UCQ2、Uo显示结果三、虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表四、实验内容与步骤1. 差动放大器的静态工作点分析 典型差动放大器电路静态工作点EBEEE E R U U I -≈(认为UB1=UB2≈0),E C2C1I 21I I ==恒流源差动放大器电路静态工作点E1BEEE CC 212E3C3R U )U (U R R R I I -++≈≈,C3C1C1I 21I I == (1)按下图3.2-3输入电路图3.2-3(2)调节放大器零点把开关S1和S2闭合,S3打在最左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment 值)。
(3)直流分析启动直流分析,将测量结果填入下表:2. 差模电压放大倍数和共模电压放大倍数 (1)测量差模电压放大倍数当差动放大器的发射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数Ad 由输出端方式决定,而与输入方式无关。
仿真实验三差分电路仿真实验一、实验目的(1)通过Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻;(2)加深对差分放大电路原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用;二、实验平台Multisim 10.0三、实验原理差放的外信号输入分差模和共模两种基本输入状态。
当外信号加到两输入端子之间,使两个输入信号V i1、V i2的大小相等、极性相反时,称为差模输入状态。
此时,外输入信号称为差模输入信号,以V id表示,且有:当外信号加到两输入端子与地之间,使V i1、V i2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以V ic表示,且:当输入信号使V i1、V i2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号V ic两部分组成,其中动态时分差模输入和共模输入两种状态。
(1)对差模输入信号的放大作用当差模信号V id输入(共模信号V ic=0)时,差放两输入端信号大小相等、极性相反,即V i1=-V i2=V id/2,因此差动对管电流增量的大小相等、极性相反,导致两输出端对地的电压增量,即差模输出电压V od1、V od2大小相等、极性相反,此时双端输出电压V o=V od1-V od2=2V od1=V od,可见,差放能有效地放大差模输入信号。
要注意的是:差放公共射极的动态电阻R e对差模信号不起(负反馈)作用。
(2)对共模输入信号的抑制作用当共模信号V ic输入(差模信号V id=0)时,差放两输入端信号大小相等、极性相同,即V i1=V i2=V ic,因此差动对管电流增量的大小相等、极性相同,导致两输出端对地的电压增量,即差模输出电压V oc1、V oc2大小相等、极性相同,此时双端输出电压V o=V oc1-V oc2=0,可见,差放对共模输入信号具有很强的抑制能力。
此外,在电路对称的条件下,差放具有很强的抑制零点漂移及抑制噪声与干扰的能力。
差分放大器实验报告差分放大器实验报告引言差分放大器是一种常见的电路,广泛应用于模拟电路和信号处理领域。
本实验旨在通过搭建差分放大器电路并进行测试,探究其工作原理和性能特点。
一、实验原理差分放大器是由两个共尺度的放大器组成,分别对输入信号进行放大后再作差。
其主要特点是具有较好的抑制共模干扰能力和较高的增益。
差分放大器的工作原理如下:1. 差模放大差分放大器的输入信号分为差模信号和共模信号。
差模信号是两个输入信号之间的差值,而共模信号是两个输入信号之和的一半。
差分放大器会将差模信号放大,而对共模信号进行抑制。
2. 共模抑制比共模抑制比是衡量差分放大器抑制共模信号能力的指标。
通常用分贝(dB)来表示,计算公式为:CMRR = 20log10(差模增益/共模增益)。
共模抑制比越大,说明差分放大器对共模信号的抑制能力越强。
二、实验器材和步骤实验器材:1. 功放芯片2. 电阻、电容等被动元件3. 示波器4. 函数信号发生器5. 直流电源实验步骤:1. 搭建差分放大器电路,包括两个放大器、输入电阻、反馈电阻等元件。
2. 连接示波器和函数信号发生器,用于输入和观测信号。
3. 打开直流电源,调节电压至适当数值。
4. 调节函数信号发生器,输入差模信号和共模信号。
5. 观察示波器上的输出波形,并记录数据。
6. 根据记录的数据,计算差分放大器的增益和共模抑制比。
三、实验结果与分析通过实验,我们得到了差分放大器的输出波形和相关数据。
根据这些数据,我们可以计算出差分放大器的增益和共模抑制比。
1. 增益差分放大器的增益可以通过测量输出信号的峰值电压和输入信号的峰值电压来计算。
增益的计算公式为:差分增益 = 输出峰值电压 / 输入峰值电压。
根据实验数据,我们可以得到差分放大器的增益值。
2. 共模抑制比共模抑制比的计算需要用到差分增益和共模增益的值。
根据实验数据,我们可以计算出共模抑制比的数值,并进行比较分析。
通过对实验结果的分析,我们可以得出差分放大器具有较高的增益和较好的共模抑制能力。
差分电路放大电路实验报告差分电路放大电路实验报告引言:差分放大电路是电子工程中常用的一种电路,它具有放大信号、抵消噪声等优点。
本实验旨在通过搭建差分电路放大电路,探究其工作原理和性能表现。
一、实验目的通过差分电路放大电路的实验,达到以下目的:1. 掌握差分放大电路的基本原理;2. 了解差分放大电路的性能指标;3. 实际搭建差分放大电路,观察其放大效果。
二、实验原理差分放大电路由两个输入端和一个输出端组成,其中输入端的信号被分别送入两个放大器中,再将两个放大器的输出信号相减得到差分输出信号。
差分放大电路的工作原理基于放大器的放大特性,通过差分输入信号的放大,可以得到更高的输出信号。
三、实验步骤1. 准备实验所需材料:电源、电阻、电容、运放等;2. 按照电路图搭建差分放大电路,注意连接的正确性和稳定性;3. 调整电源电压,使其符合放大电路的工作要求;4. 输入不同的信号,观察输出信号的变化,并记录数据;5. 对比不同输入信号的放大效果,分析差分放大电路的性能。
四、实验结果与分析通过实验,我们得到了一系列的实验数据,并进行了分析。
在不同的输入信号下,差分放大电路的输出信号均有所放大,而且在抵消噪声方面表现出色。
这验证了差分放大电路的工作原理和性能。
五、实验总结差分放大电路是电子工程中常用的一种电路,它具有放大信号、抵消噪声等优点。
通过本次实验,我们对差分放大电路的原理和性能有了更深入的了解。
在实际应用中,差分放大电路可以用于信号放大、噪声抑制等方面,具有广泛的应用前景。
六、实验心得通过本次实验,我对差分放大电路有了更加深入的认识。
在搭建电路的过程中,我学会了正确连接电路元件,保证电路的稳定性。
在观察实验结果时,我发现不同的输入信号对输出信号的影响,这让我对差分放大电路的性能有了更加直观的认识。
通过实验,我不仅提高了实验操作能力,还加深了对电子工程的理解。
七、参考文献[1] 电子电路设计与仿真实验教程. 邓志东, 陈乃渊. 电子工业出版社, 2009.[2] 电子电路实验与设计教程. 刘同英, 刘红刚. 电子工业出版社, 2016.[3] 电子电路基础与实验. 赵文瑞, 姚文涛. 电子工业出版社, 2018.注:本实验报告仅供参考,实际操作请遵循实验室安全规定。
差分放大电路实验报告差分放大电路实验报告引言:差分放大电路是电子工程中常见的一种电路,它具有放大信号、抑制噪声等优点,因此在信号处理、通信系统等领域得到了广泛的应用。
本实验旨在通过搭建差分放大电路并进行实际测量,验证其性能和特点。
一、实验器材和原理本实验所需器材包括函数发生器、示波器、电阻、电容、运放等。
差分放大电路由两个输入端和一个输出端组成,输入端通过电阻与电源相连,输出端与负反馈电阻相连。
差分放大电路的原理是:当两个输入端的电压不同时,输出端会产生一个差分电压,其放大倍数由负反馈电阻决定。
二、实验步骤1. 按照电路图连接实验电路,注意正确接线和电阻、电容的数值。
2. 将函数发生器的输出接入电路的输入端,设置合适的频率和幅度。
3. 使用示波器测量电路的输入电压和输出电压,并记录数据。
4. 逐渐改变函数发生器的频率和幅度,观察电路的响应情况,并记录数据。
三、实验结果及分析在实验中,我们分别测量了电路的输入电压和输出电压,并记录了数据。
通过数据的分析,我们可以得出以下结论:1. 输入电压与输出电压之间存在一定的线性关系,即差分放大电路具有线性放大的特性。
2. 随着输入电压的增加,输出电压也相应增加,但增长的速率逐渐减小,说明差分放大电路具有饱和特性。
3. 在一定频率范围内,输入电压和输出电压之间的相位差保持不变,说明差分放大电路具有相位不变性。
四、实验总结通过本次实验,我们对差分放大电路的原理和性能有了更深入的了解。
差分放大电路在实际应用中具有很高的实用性,可以用于信号放大、噪声抑制等方面。
在今后的学习和工作中,我们将进一步探索差分放大电路的应用,并不断提高自己的实验技能和理论水平。
结语:差分放大电路是一种重要的电子电路,在信号处理和通信系统中具有广泛的应用。
通过本次实验,我们不仅加深了对差分放大电路的理解,还提高了实验操作和数据分析的能力。
希望今后能够将所学知识应用于实际工程中,为科学技术的发展做出自己的贡献。
差分放大电路实验报告一、实验目的1.了解差分放大电路的基本原理和特点;2.掌握差分放大电路的设计和调试方法;3.熟悉差分放大电路的频率特性;4.学习使用示波器进行电路信号的观测和测量。
二、实验器材1.差分放大电路实验箱;2.示波器;3.信号源;4.直流电压源。
三、实验原理差分放大电路是众多电子设备中常见的一类电路,采用了差分输入方式可以有效降低共模干扰,提高了电路的抗干扰能力。
它由两个共模输入信号为零的晶体管组成,通过二极管连接的虚地点对共模信号进行抑制,只放大差模信号。
差模信号指的是两个输入信号的差值,共模信号指的是两个输入信号的平均值。
在差分放大电路中,晶体管的放大倍数由输入电流决定,输入电流越大,放大倍数越大。
同时,将两个输入信号松耦合,可以大幅度减小共模信号的放大倍数,从而达到抑制共模干扰的目的。
四、实验步骤1.搭建差分放大电路,接入示波器和信号源;2.分别接入正向输入信号和负向输入信号,将其调节至理想值;3.调节直流电压源和输入电阻,使差分放大电路的工作点稳定;4.调节输入信号频率,记录输出信号幅度和相位的变化情况;5.结束实验,关闭相关设备。
五、实验结果与分析通过实验,我们可以得到差分放大电路的输入输出特性曲线。
根据实验数据,我们可以计算出差分传输增益、共模抑制比和输出相位等。
实验结果显示,差分放大电路能够很好地放大差模信号,同时将共模信号压制得很低。
由于输入阻抗大,输入信号能够有效地传入差分放大电路中,而输出阻抗小,可以将信号有效地传递到下一个级联电路中。
此外,差分放大电路的相位可以随输入信号的频率变化而变化,相位差可达到180度。
六、实验总结通过本次实验,我们了解了差分放大电路的基本原理和特点,掌握了差分放大电路的设计和调试方法。
实验结果表明,差分放大电路能够有效地抑制共模干扰,提高电路的抗干扰能力。
在实际应用中,差分放大电路被广泛应用于增加电路增益、提高系统灵敏度、减小噪声等方面。
一.实验目的1.熟悉差分放大电路的结构。
2.了解差分放大电路抑制零点漂移的原理。
3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。
4.掌握差分放大电路的电压放大倍数、输入电阻、输出电阻的估算方法及仿真分析方法。
5.了解差分放大电路的大信号特性。
6.理解差分放大电路提高共模抑制比的方法。
二、实验原理1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。
2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC时比值为4:3,当负载为空载时比值为2:1。
3.共模电压放大倍数为负值。
4.恒流源差分放大电路抑制共模信号的能力远大于长尾差分放大电路。
5.对于长尾差分放大电路而言,增大RE的值能提高抑制共模信如图为长尾差放(J1开关拨到右边即为恒流源差放)当信号由3端口输出时,估算电路的电压放大倍数示波器观察到的1、3端口波形如图。
仿真分析差模放大倍数:长尾差放的输出电压和输入电压:恒流源差放的输出电压和输入电压:2):如图为长尾差放(J1开关拨到右边即为恒流源差放),当信号由4端口输出时,估算电路的电压放大倍数示波器观察到的1、3端口波输入端1加上ib另一端2加上-i在Re上压降Vre=Re*(1+β)*ib+Re*(1+β)*(-ib)=0,Vb=Vbe+Vre=Vbe+0=Vbe即没有使Vbe减小,(Vb=常数)5.共模电压放大倍数总是负值吗?为什么?不是。
所谓的共模信号是指两个差动放大管VT1和VT2的基极接入幅度相同、极性相同的信号。
共模电压放大倍数就是接入的信号是电压信号的放大倍数。
共模信号对两个管子的作用是同相的,若两个电压信号均为正,将引起两个管子电流同量增加,而两个管子集电极电压将同量减少,故从两个管子集电极输出的共模电压为零。
所以,共模电压放大倍数为零。
差分放大电路仿真分析差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。
作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。
差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。
电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。
实验内容:一、理想差分放大电路1、绘制电路图启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。
双击正弦电压源VS^图标,在弹出的窗口中设置AC为10mV DC为0V, VOFF 为0, VAMP齿10m VFREQIkHzVS-的设置除AC为-10mV外,其余均与VS+R]。
Rs2*---------------------\CFF= 0FREQ = 1kHz—-12V2、直流工作点分析选择Spice | New Simulation Profile 功能选项或单击旦按钮,打开NewSimulation 对话框,在Name文本框中输入Bias,单击Create 按钮,弹出Simulation Settings-Bias 对话框,设置如下:保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D 窗口中选择View | OutPut Filse 功能菜单选项,查看输出文件。
翰入贸单文件,志…INCLUDING ***** source EX053O_CL OUT! 1100633 M00714 Q2N22220^C4 N00714 H01090 1101193 Q2N22190~02 0UT2 iI00931 W00714 Q2N2222R[Rcl 0UT1 N00633 3kR[Rc2 0UT2 N00833 3kR[R已N01246 W011B3 ikV-Va+ M00595 0 DC 0.5638V AC 10117+5IN 0 IO H V IkHs 000R_R2 N01246 IJ01217 2kR[R时M00633 N00595 100V^VS-M00960 0 DC 0.5638V AC -LCmV+SIM 0lOnV IkHa 000R_Rs2 H00960 N00931 100VZV2 ND1246 0 -127R[RL N01D90 0 10kV^Vl N00333 0 12VQ Z03N01090 N01090 M01217 Q2N2219晶体管的模型爵数:1Q2N2222 Q2N2219NPN NPN13L4.34D000E-L5 14.340000E-15BF255.9 255.3NF11VAF74*0374.33IKF.2S47 . 2647ISE14.340000E-15 L4.340000E-15NE1,3071,307BR6,092 6.092NR111010RC 11CJE 22.010000E-1222.ai0C00E-12HJE.377.377CJC7.306000E-U 7.306000E-12MJC .3416.3416TF4L1.100000E-L2 411.1DOOOOC-12XTF 33VTF 1.7 1.7ITF.6MTR 46.910000E-0946.910CD0E-O9XTB 1.5 1.5CN 2.422*42.87.37D n冬个节点电压:NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE (otrnj9.2426(01JT2)9.2426(KaoS9S) .5638 (N00633J.5632 (N00714) -.0776 (100833)12.0000(N00931) , 5632(N00960) , 5638 (N01090) *9.4010 (N0L168)-10.1400 (JT01217) -10.1250 (IT01246) -12.0000电旗工作请况:VOLTAGE SOURCE CURREHTSNAJE CURRENTV_V3+ -5..S74E-06V^Vs- -5. 574E-05V~V2 2.798E-03V^Vl -1.B38E-03总功耗,TOTAL POWER DISSIPATION S.S6E-02 WATTSm宣E1T BIPOLAR JUNCTION TRA1J5IST0R5各民体管的工作点:NAME Q_Q1Q_Q4 Q_Q2 Q_Q3MODEL Q2N2222 Q2W2219Q2N2222 Q2N2219IB 5.67E-D6 l*06E-05 5.67E-06 6.34EF6IC 9.19E-04 1.8SE-03 9.19E-04 9.31E-04VBE 6.41E-016,59E-Q1 6.41E-01 6,4^E-Q1VBC-e.60E+OO -9,40E+00-9.60E+OO 0,OOE+OOVCE9.33E+皿 1.01E+01 9.32E+00 6.44E-01BETADC 1.62E+02 1.74E+02 1.62E+02 1.47E+02GH 3.54E-02 7.11E-02 3.54E-02 3.59E-02RPI 5.DTE+Q3 2*68E+03 5.07E+03 4.53E+03PX1,OOE+Ol 1.ODE+01 1.OOE+Ol L.OOE+OlRO 9.0QE+04 4,51E+Q4 9.0OE+04 7,95E+O4CEE 5.O0E-11 6,60E-ll 5.O0E-11 5.L1E-11CBC 3.OBE-12 3,OOE-12 3.0SE-12 7.31E-12CJS o.ooE+ao O.OOE+OO 0.OOE+OO0.OOE+OOBETAAC l.SOE+02 l*91E+02 1.SOE+02 1.62E+02CBX/CBX2O.OOE+OO O.OOE+OO 0.OOE+OO O.OOE+OOFT/FT2 l,D5E+06 L.64E+08 1.0SE+D69.78E+07作电压与电流值,如下图:3、双端输入是的基本特性上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。
基于Multisim的差分放大电路仿真分析差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。
但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。
Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。
因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。
通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。
1 Multisim8软件的特点Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。
它具有这样一些特点:(1)系统高度集成,界面直观,操作方便。
将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。
采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
操作方法简单易学。
(2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。
既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。
(3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。
(4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。
一、实验目的1. 加深对差分放大电路性能及特点的理解。
2. 学习差分放大电路主要性能指标的测试方法。
3. 掌握差分放大电路的组装与调试技巧。
4. 分析差分放大电路在实际应用中的优势。
二、实验原理差分放大电路由两个结构相同、参数对称的共射放大电路组成,其核心原理是利用两个输入信号之间的差分来抑制共模信号,提高电路的共模抑制比(CMRR)。
差分放大电路具有以下特点:1. 差模放大:对差模信号有放大作用,对共模信号有抑制作用。
2. 共模抑制:提高CMRR,降低共模干扰。
3. 零点漂移抑制:通过调整电路参数,减小零点漂移。
4. 输出阻抗高:提高电路的驱动能力。
差分放大电路的原理图如下:```+---------+| Q1 | Q2+---------+ +---------+| || |+-------+ +-------+| | | || R1 | | R2 || | | |+-------+ +-------+| || |+---------+||V+-------+| || Vout || |+-------+```三、实验设备及器材1. 模拟电路实验箱2. 实验线路板3. 万用电表4. 信号发生器5. 示波器6. 线路连接线四、实验过程及数据记录1. 按照原理图搭建差分放大电路。
2. 调整电路参数,使电路工作在最佳状态。
3. 使用信号发生器输入差模信号和共模信号,观察输出波形。
4. 测量差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标。
5. 记录实验数据。
五、数据处理与分析1. 分析差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标与理论值的差异。
2. 分析电路参数对性能指标的影响。
3. 总结差分放大电路在实际应用中的优势。
六、实验结论1. 通过本次实验,加深了对差分放大电路性能及特点的理解。
2. 掌握了差分放大电路主要性能指标的测试方法。
3. 熟悉了差分放大电路的组装与调试技巧。
差分发大电路实验报告实验课程:差分发大电路实验实验目的:1.了解差分发大电路的工作原理;2.学习差分放大电路的特点及应用;3.掌握差分放大电路的设计和调试方法。
实验仪器:1.函数发生器;2.示波器;3.电压表;4.实验电路板;5.其他常用仪器。
实验材料:1.电阻、电容、二极管等无源元件;2.集成电路及其外围元件;3.其他辅助材料。
实验原理:差分放大电路是一种常用的信号放大电路,由两个互补的晶体管或运放组成。
其输入信号通过一个耦合电容耦合到两个晶体管的基极,晶体管的发射极与负电源相连,集电极通过负载电阻与正电源相连。
差分放大电路的优点是具有较好的抗共模干扰能力,可以实现较大的信号增益。
实验步骤:1.按照电路图搭建差分发大电路,并连接所需的外围元件;2.将函数发生器连接到输入端,调整函数发生器的输出频率、幅值和波形,并将示波器连接到输出端来观察输出信号;3.逐渐调整输入信号的幅度,并记录输入和输出电压的数值;4.通过改变负载电阻的数值来观察输出信号的改变,并记录相应的数据;5.分析实验结果,绘制输入输出电压的关系曲线,并计算出差分放大电路的增益;6.根据实验结果,总结出差分放大电路的特点和应用。
实验结果和数据:1.通过调整函数发生器的输出频率、幅值和波形,观察到输出信号随输入信号的变化;2.记录了不同输入信号幅度下的输入输出电压数据,并绘制了相关曲线;3.通过改变负载电阻的数值,观察到输出信号的变化,并记录了相应的数据。
实验分析和讨论:1.根据实验数据,计算出差分放大电路的增益,并与理论值进行比较;2.通过观察实验数据,分析差分放大电路的特点和应用,如抗共模干扰能力和信号增益等;3.对比不同输入信号幅度、频率和负载电阻下的输出结果,探讨差分放大电路的适用范围和工作条件。
实验总结:通过本次实验,我对差分放大电路的工作原理、特点和应用有了更深入的理解。
通过搭建实验电路、调试和观察实验结果,我学会了差分放大电路的设计和调试方法,并能够根据实验数据进行相应的分析和计算。
模电实验五差分式放大电路实验报告一、实验目的1.学习差分输入放大电路的基本原理;2.掌握差分输入放大电路的工作特性以及参数计算方法;3.了解差分输入放大电路的应用场景。
二、实验仪器和器件1.示波器;2.信号发生器;3.功率放大器;4.电阻箱;5.电容;6.芯片等。
三、实验原理差分式放大电路是一种常见的放大电路,其输入端分别连接两个输入信号,输出端是两个输入信号的差值经过放大后的输出信号。
差分输入放大电路主要由差动输入级、差动放大级和输出级组成。
差动输入级是差分放大电路的核心部分,一般由一个差动对组成。
差动对由两个晶体管组成,它们的集电极或漏极通过电流源连接在一起。
其中一个晶体管的基极或栅极输入信号,另一个晶体管的基极或栅极输入其负反馈信号。
这样,当输入信号变化时,两个晶体管的工作状态会相应改变,产生一个差电流,从而使输出电压发生变化,从而实现差动放大。
差动放大级主要负责将差动输入信号放大,使得输入信号的微小变化可以在输出端得到放大。
在差动放大级中,使用了共射或共源放大电路,将差动对的差分电流经过共射或共源放大,增加输出信号的幅度。
输出级是差分放大电路的最后一级,其主要功能是将差动放大电路的输出信号变为单端输出信号。
在输出级中,可以通过改变集电阻或漏极负载来实现不同的放大增益和输出阻抗。
四、实验内容1.搭建差分输入放大电路;2.测量并记录输入信号和输出信号;3.分析实验数据,计算电路的放大增益和输入输出阻抗;4.探索差分输入放大电路在信号处理中的应用。
五、实验步骤1.搭建差分输入放大电路,调整电阻和电容的数值以及芯片的型号;2.连接示波器,设置输入信号的频率、幅度和波形;3.测量输入信号和输出信号;4.记录实验数据并计算电路的放大增益和输入输出阻抗;5.根据实验结果分析差分输入放大电路的性能;6.进一步探索差分输入放大电路在信号处理中的应用。
六、实验结果分析根据实验测量得到的数据,可以计算差分输入放大电路的放大增益和输入输出阻抗。
差分放大电路实验报告一、实验目的。
本实验旨在通过搭建差分放大电路并进行实验验证,加深对差分放大电路原理的理解,掌握差分放大电路的基本特性和参数测量方法。
二、实验仪器和设备。
1. 示波器。
2. 函数信号发生器。
3. 直流稳压电源。
4. 电阻、电容等元件。
5. 多用表。
三、实验原理。
差分放大电路是一种特殊的放大电路,它能够对输入信号进行差分放大,即对两个输入信号进行放大,并输出它们的差值。
差分放大电路通常由差分放大器和后级放大器组成,其中差分放大器起到差分放大的作用,后级放大器起到整体放大的作用。
四、实验步骤。
1. 按照电路图搭建差分放大电路,注意连接正确,电阻、电容等元件的参数选择要符合实验要求。
2. 将示波器和函数信号发生器连接到差分放大电路的输入端,设置合适的信号频率和幅度。
3. 调节直流稳压电源,给差分放大电路提供适当的工作电压。
4. 使用多用表测量差分放大电路的输入电压、输出电压等参数,并记录实验数据。
5. 调节输入信号的频率和幅度,观察差分放大电路的输出变化,并记录实验现象。
五、实验数据记录与分析。
1. 记录不同输入信号频率和幅度下的差分放大电路的输入电压、输出电压等参数,并绘制相应的波形图。
2. 根据实验数据和波形图,分析差分放大电路的放大倍数、频率响应等特性,验证差分放大电路的工作原理。
六、实验结果与讨论。
通过实验数据分析和波形图观察,我们得出差分放大电路在不同输入信号条件下的放大倍数、频率响应等特性。
实验结果与理论预期基本吻合,证明了差分放大电路的工作原理和特性。
七、实验总结。
本实验通过搭建差分放大电路并进行实验验证,加深了对差分放大电路原理的理解,掌握了差分放大电路的基本特性和参数测量方法。
同时,实验中我们也发现了一些问题,例如在实际搭建电路中要注意连接的稳定性,以及测量参数时要准确使用仪器等。
总之,本实验取得了良好的实验效果,对于差分放大电路的原理和特性有了更深入的了解,为今后的学习和科研打下了良好的基础。
差分放大电路实验报告一、引言在现代电子科技发展中,放大电路是一项非常重要的技术。
差分放大电路是其中一种广泛应用于通信系统、测量仪器和音频设备中的放大电路。
本实验旨在通过搭建差分放大电路并进行相关参数测量,探究差分放大电路的原理和应用。
二、实验原理1. 差分放大电路介绍差分放大电路是由两个输入信号源、一个放大器和一个输出负载组成的系统。
两个输入信号源维持在不同的电位上,输入信号的差异将被放大器放大后传递给输出负载。
差分放大电路可以消除共模噪声并增强差模信号。
2. 放大器原理放大器是差分放大电路中最重要的组成部分。
常见的放大器类型包括共源共栅放大器、共集放大器等。
放大器可以实现信号的放大功能,通过选择合适的放大器类型和电路参数,可以获得所需的放大倍数和频率响应。
三、实验步骤1. 搭建差分放大电路根据实验指导书上的电路图,使用电路板等元器件搭建差分放大电路。
确保电路连接正确可靠,各器件之间没有接触不良或短路现象。
2. 连接信号源和输出负载将信号源与放大电路的输入端相连,一般使用函数信号发生器作为信号源。
将输出负载与放大电路的输出端相连,可以使用示波器或电阻等作为输出负载。
3. 测量电路参数使用示波器和万用表等测试仪器,测量差分放大电路的各项参数。
包括输入电阻、输出电阻、共模抑制比等。
通过测量数据分析,优化电路参数,以达到预期的放大效果。
四、实验结果与分析根据实验测量数据,可以获得差分放大电路的各项参数。
以差模电压增益为例,可以通过测量输入信号和输出信号的电压,计算出差模电压增益的数值大小。
进一步分析数据,可以研究不同的电路参数对于差分放大电路性能的影响。
五、实验应用差分放大电路在现实生活中应用广泛。
例如,在通信领域中,差分放大电路被用于传输线路和信号处理中,可以提高通信系统的抗干扰能力和信号质量。
此外,在音频设备中,差分放大电路也常用于扬声器驱动和音频放大等方面。
六、实验总结通过本次差分放大电路实验,我们深入了解了差分放大电路的原理和应用。
实验三:差动放大器分析与设计1. 实验目的:(1)通过使用Multisim来仿真电路,测试如图3所示的差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻。
(2)加深对差分放大电路工作原理的理解。
(3)通过仿真,体会差分放大电路对温漂的抑制作用。
2.实验电路3.实验步骤(1)直流工作点分析:Vbe=-2.35+588=0.6V>0,Vbc=-2.35-5.85=-8.2V<0,说明三极管发射结正偏,集电结反偏,因此三极管工作在放大区。
放大倍数304/2.35=130。
(2)如图,电流表串接于镜像电流源的输出端,选择直流档,读数为722.394uA。
理论值应为12V/16KOhm=750uA.(3) 测量输入电阻:用交流表分别测量输入端的电压和电流,两者之商即为输入电阻值。
输入电阻(没接负载):R i=7.071mV/205.085nA=34.5 KOhm测量输出电阻:a.在输出端补接1千欧负载,并接交流电压表,测得U1;b.不接负载,测得U2;c.用公式Ro=RLU2/U1-1)所以Ro= 1000*(41.005/19.897-1)=1.06 KOhm(单端输出,双端输出要乘以2)(4)测量差模放大倍数:a.用交流电压表测量输入电压Ui;b.用交流电压表测量输出负载两端电压Uo;c.放大倍数Ad=Uo/Ui;所以差动放大倍数Ad=19.889/7.071=2.8(单端输出,带载)。
(若不带载,则Ad=41.005/7.071=5.8)(5)测量幅频特性和相频特性a.用波特仪:b.用交流分析:(6)对以上差动放大电路进行温度扫描:(0~100°C)对相同静态工作点的单管共射放大电路如下:Vbe=0.585V,Vbc=-5.3V,Ib=2.31uA,Ic=296uA,工作点大致相同。
对该电路进行温度扫描:对比得出结论:差动放大电路比单管放大电路对温度的稳定性好,受温度影响小。
差分放大电路的分析与仿真作者:李然岳永哲来源:《电脑知识与技术》2018年第09期摘要:差分放大电路是模拟电路学习中常用到的放大电路,其抑制零点飘移的良好电气特性,使它经常被用作多级放大电路的输入级。
本文通过对差分电路的静态及动态分析及仿真,让学生能够对差分放大电路有深入的了解。
关键词:零点漂移;差分放大;仿真分析中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2018)09-0246-011 引言当今世界之所以能称之为智能化的时代,是由于各种智能化的设备得到了普及,而这些智能化设备之所以能够智能化,离不开功能各异的各种传感器,而这些传感器所采集到的电信号一般都很微弱,同时这些微弱的电信号往往不是周期性的,所以对这些信号进行放大处理时,需要采用直接耦合放大电路进行放大,所谓直接耦合即输入信号引入放大电路及放大电路与其负载的连接都是靠导线直接连接,因此直接耦合连接方式有很好的低频特性同时又很容易做成集成电路。
直接耦合放大电路虽然有以上几大优势,但普通的直接耦合放大电路存在零点漂移现象,所谓“零点漂移”,就是当输入信号为零时面输入信号不为零。
差分放大电路是一种直接耦合放大电路,差分电路本身具有良好的电气对称性,使其对模性号有很强的抑制作用,所以能有效地抑制零点漂移现象的发生。
2 差分放大电路抑制温漂的原理分析零点漂移现象的产生,其原因有很多,但最为主要的原因还是晶体管受到外部温度变化所引起的静态工作点的波动,所以零点漂移也常被称为温度漂移,简称温漂。
那差分放大电路是如何做到抑制温漂的呢?图1所示电路为长尾差分放大电路,当两端的输入信号电压uI1=uI2=0时,也就是电路处于完全的直流分量控制静态状态,因为T1与T2管的电气特性完全相同,其外接电阻参数也都相同,那么就有集电极对地电位UCQ1=UCQ2的结果,所以静态时的输出电压UO=0。
如果外界温度升高了,ICQ1和ICQ2也会同时增大,而且其增大幅度完全相同,从而导致两个集电极电阻上的压降出现等值幅度的增大,进而使UCQ1和UCQ2同时等值幅度变小,所以输出UO=UCQ1–UCQ2=0保持不变。
差分放大电路仿真分析差分放大电路是一种常见的电路结构,在工业和通信领域广泛应用。
它以两个输入信号进行放大,并输出差分信号的电路。
在实际应用中,差分放大电路的性能稳定性和放大倍数都是非常重要的影响因素。
因此,进行差分放大电路的仿真分析,能够帮助我们更好地理解其工作原理和性能特点。
差分放大电路的基本原理是利用差分放大器放大两个输入信号的差值。
它由一个差分对和一个差分放大电路组成。
差分对是由一个电流源和两个晶体管组成的差分放大器的基本单元。
差分对通过差分放大电路将两个输入信号进行放大,并输出它们的差值。
1.差分对的静态工作点分析:在差分放大电路中,静态工作点的选择对电路的性能有着重要的影响。
通过仿真分析,可以确定差分对的电流源和晶体管的工作电流,以及选择合适的电流源和晶体管参数,以达到最佳的电路性能。
2.输入电阻和差分增益的分析:差分放大电路的输入电阻和差分增益是衡量其工作性能的重要指标。
通过仿真分析,可以获得差分放大电路的输入电阻和差分增益的数值,并比较不同参数下的性能差异。
同时,还可以通过改变差分对的电源电压、晶体管的尺寸等参数,来优化电路的输入电阻和差分增益。
3.噪声分析:噪声是影响差分放大电路性能的重要因素。
通过仿真分析,可以了解差分放大电路的噪声功率谱密度和噪声等效电荷的数值。
同时,还可以通过改变电源电压、电流源的数值等参数,来降低差分放大电路的噪声。
4.输出阻抗和共模抑制比的分析:差分放大电路的输出阻抗和共模抑制比是衡量其输出性能的重要指标。
通过仿真分析,可以获得差分放大电路的输出阻抗和共模抑制比的数值,并比较不同参数下的性能差异。
同时,还可以通过改变晶体管的尺寸和电流源的数值等参数,来优化电路的输出阻抗和共模抑制比。
总的来说,差分放大电路的仿真分析主要包括静态工作点分析、输入电阻和差分增益的分析、噪声分析以及输出阻抗和共模抑制比的分析。
通过仿真分析,可以更好地理解差分放大电路的工作原理和性能特点,并通过改进电路参数来优化电路性能,满足实际应用需求。
差分放大电路仿真分析
差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。
作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。
差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。
电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。
实验内容:
一、理想差分放大电路
1、绘制电路图
启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。
双击正弦电压源VS+的图标,在弹出的窗口中设置AC为10mV,DC为0V,VOFF 为0,VAMPL为10m,VFREQ1kHz。
VS-的设置除AC为-10mV外,其余均与VS+同。
2、直流工作点分析
选择Spice | New Simulation Profile功能选项或单击按钮,打开New
Simulation对话框,在Name文本框中输入Bias,单击 Create按钮,弹出Simulation Settings-Bias对话框,设置如下:
保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D窗口中选择View | OutPut Filse功能菜单选项,查看输出文件。
在Capture CIS窗口中,单击
作电压与电流值,如下图:
3、双端输入是的基本特性
上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。
将分析类型设为交流扫描分析AC Sweep。
选择PSpice | New Simulation
Profile功能选项或单击按钮,打开New Simulation对话框,在Name文本
框中输入AC,单击 Create按钮,弹出Simulation Settings-AC对话框,设置如下:
启动PSpice A/D仿真程序,显示空的PSpice A/D窗口,选择Trace | Add Trace命令,在Add Trace窗口中设置如下图,即观察单端输出时的电压增益:V(OUT1)/ (V(VS+:+)-V(Vs-:+))。
再次弹出Add Trace窗口,设置仿真输出变量为双端电压增益,表达式为:(V(OUT1)-V(OUT2))/(V(VS+:+)-V(Vs-:+)),结果如下图。
利用光标工具Cusor测得单端输出时的差模电压增益正好是双端输出时的一半。
由于差分放大电路的两边完全对称,所以两个输出端输出的是幅度相同,相位相差180度的信号。
图中可以测得两条曲线的上行截止频率相同。
对于双端输入的共模特性分析如下:
对电路图中信号源VS-的AC属性改为10mV,其它与信号源VS+一样,这样就相当于在两个输入端上加了相同的信号。
分析类型仍然为交流扫描分析。
启动PSpice A/D仿真程序,显示空的PSpice A/D窗口,选择Trace | Add Trace命令,在Add Trace窗口中设置如下图,即观察单端输出时的电压增益:V(OUT1)/ V(VS+:+)。
再次弹出Add Trace窗口,设置仿真输出变量为双端电压增益,表达式为:
(V(OUT1)-V(OUT2))/V(VS+:+),结果如下图。
双端输出的共模电压增益为零。
在中低频段单端输出时的共模电压增益也很
小。
随着频率的增加,共模电压增益会急剧增加,增加到一定程度后不会再有剧烈的增减,但无论如何这个小于1。
4、单端输入时的基本特性
在差分放大电路中如果输入信号是通过在两个输入端加上大小相等、相位相反的信号,则称为双端输入,如果输入信号是从一端接入,而另一端输入信号为零,则称为单端输入。
修改电路图,双击电源VS-,将其AC、VOFF、VAMPL及FREQ属性均该为零。
选择PSpice | Markers | Voltage Level 功能选项或单击按钮分别在
OUT1和OUT2各放置一个电压探针,再选择PSpice | Markers | Voltage Differential功能选项,观察两个节点之间的电压差,将正端放置在OUT1,负端放置在OUT2,结果如下图:
分析类型选择交流扫描分析AC Sweep。
分析设置与前面的双端输入时分析差模电压增益时一样。
启动PSpice A/D仿真程序,输出曲线如下图:
图中可以看到三条曲线,使用工具Cusor 测得输出端OUT1和OUT2的输出电压均为503.286mV,双端输出电压正好是单端输出电压的两倍。
观察各种输出方式中各输出端输出的瞬态波形和相位关系。
选择PSpice | New Simulation Profile功能选项或单击按钮,打开New Simulation对话框,在Name文本框中输入Tran,单击Create按钮,弹出Simulation
Settings-Tran对话框,设置如下:
防止探针同上,启动PSpice A/D仿真程序,输出曲线如下图:
图中可以看出输出端OUT1和OUT2的输出也是幅度大小形同、相位相反的正弦波,而且在直流输出时具有直流偏移,这个直流偏移是由两个晶体管Q1和Q2的的静态电压偏置电压引起的。
而在双端输出时,直流偏移为零,这是由于两端(OUT1、OUT2)的直流偏移相反,互相抵消的缘故。
通过上述分析可知,无论是单端输入方式还是双端输入方式,只要输出方式一致,放大倍数就相等,而且单端输出时的放大倍数是双端输出时的一半。
二、非理想对称的差分放大电路
在实际的差分放大电路中往往很难实现电路的完全对称,由于配对晶体管参数失配和集电极负载电阻Rc的失配而使差分放大电路的性能变差,主要表现为:当输入加差模信号时输出会产生共模分量,当输入加共模信号分量时输出会产生差模分量。
如果下一级也是差分放大电路,这种差模输入—共模输出的转换将对整个放大电路的性能产生不利影响。
修改前面的电路,将R1的大小改为5k,将集电极电阻Rc2调整为2.5k。
选中晶体管Q2,选择Edit | PSpice Model 功能菜单,修改元件的Bf为200,Ise 为20F,Rb为20,并保存。
先输入差模信号,即修改RS2的AC为-10mV,其余项与RS1相同。
在OUT1与OUT2端分别放置一个电压探针,进行交流小信号分析。
启动PSpice
A/D仿真程序,输出曲线如下图:
使用贯标工具Cursor可测得在中低频正向输出端电压和反相端电压,两者相位相反。
差模输入—共模输出这种输出模式对多级差分放大电路对的影响不大。
下面讨论共模输入—差模输出的电路特性。
修改输入信号源VS+和VS-的AC 项都为1V,进行交流小信号分析设置。
设置与前面理想差分放大电路中的双端
输入的分析相同。
输出的共模信号在经过下一级差分放大电路时经过强烈的抑制作用使其迅速衰减,而输出的差模信号时下一级差分放大电路的输入信号,会被放大传送到输出端,这点影响很大。
通过分析表明,对于非理想对称的差分放大电路,在差模输入—共模输出和
共模输入—差模输出两种情况下,共模输入—差模输出由于共模输入产生的差模
实用文档
信号本身就是干扰信号,这个差模信号经过下一级会被放大,对真正的差模信号会形成干扰,因而干扰十分严重;而差模输入产生的共模信号比差模信号小很多,而且经过下一级差分放大电路的共模抑制作用,它的影响将非常小。