与圆相关的动态几何问题
- 格式:docx
- 大小:9.98 KB
- 文档页数:1
圆中的重要几何模型-隐圆模型隐圆是各地中考选择题和填空题、甚至解答题中常考题,题目常以动态问题出现,有点、线的运动,或者图形的折叠、旋转等,大部分学生拿到题基本没有思路,更谈不上如何解答。
隐圆常见的有以下四种形式,动点定长、定弦对直角、定弦对定角、四点共圆(对角互补或等弦对等角),上述四种动态问题的轨迹是圆。
题目具体表现为折叠问题、旋转问题、角度不变问题等,此类问题综合性强,隐蔽性强,很容易造成同学们的丢分。
本专题就隐圆模型的相关问题进行梳理及对应试题分析,方便掌握。
模型1、动点定长模型(圆的定义)若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径圆的定义:平面内到定点的距离等于定值的所有点构成的集合.寻找隐圆技巧:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.例1.(2020·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.22-2C.22+2D.22【答案】B【分析】根据等腰直角三角形的性质得到斜边AB=42,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【详解】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=42,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=12AB=22,∵PC=2,∴PM=CM-CP=22-2,故选:B.【点睛】本题考查线段最小值问题,涉及等腰三角形的性质和点到圆的距离,解题的关键是能够画出图形找到取最小值的状态然后求解.例2.(2020·江苏连云港市·中考真题)如图,在平面直角坐标系xOy中,半径为2的eO与x轴的正半轴交于点A,点B是eO上一动点,点C为弦AB的中点,直线y=34x-3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【答案】2【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE 的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴DE=OE2+OD2=32+42=5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MNOE=DMDE,∴MN3=35,∴MN=95,当点C与C′重合时,△C′DE的面积最小,△C′DE的面积最小值=12×5×95-1,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.例3.(2022·北京市·九年级专题练习)如图,四边形ABCD中,AE、AF分别是BC,CD的中垂线,∠EAF=80°,∠CBD=30°,则∠ABC=,∠ADC=.【答案】 40°; 60°【分析】连接AC,根据线段垂直平分线的性质可得AB=AC=AD,从而得到B、C、D在以A为圆心,AB为半径的圆上,根据圆周角定理可得∠DAC=2∠DBC=60°,再由等腰三角形的性质可得∠DAF=∠CAF=30°,即可求解.【详解】解:连接AC,∵AE、AF分别是BC、CD的中垂线,∴AB=AC=AD,∴B、C、D在以A为圆心,AB为半径的圆上,∵∠CBD=30°,∴∠DAC=2∠DBC=60°,∵AF⊥CD,CF=DF,∴∠DAF=∠CAF=30°,∴∠ADC=60°,∵AB=AC,BE=CE,∴∠BAE=∠CAE,又∵∠EAC=∠EAF-∠CAF=80°-30°=50°,∴∠ABC=∠ACE=90°-50°=40°.故答案为:40°,60°.【点睛】本题主要考查了圆周角定理,线段垂直平分线的性质,等腰三角形的性质,根据题意得到B、C、D在以A为圆心,AB为半径的圆上是解题的关键.例4.(2022·广东·汕头市一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD =3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【答案】35-3##-3+35【分析】先由折叠判断出F的运动轨迹是为以D为圆心,CD的长度为半径的圆,当B、D、F共线且F在B、D之间时BF最小,根据勾股定理及圆的性质求出此时BD、BF的长度即可.【详解】解:由折叠知,F点的运动轨迹为:以D为圆心,CD的长度为半径的圆,如图所示,可知,当点B、D、F共线,且F在B、D之间时,BF取最小值,∵∠C=90°,AC=8,AB=10,∴BC=6,在Rt△BCD中,由勾股定理得:BD=CD2+BC2=32+62=35,∴BF=BD-DF=35-3,故答案为:35-3.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题型,根据折叠确定出F点运动轨迹是解题关键.模型2、定边对直角模型(直角对直径)固定线段AB 所对动角∠C 恒为90°,则A 、B 、C 三点共圆,AB 为直径寻找隐圆技巧:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.例1.(2022·湖北·武汉九年级阶段练习)如图,AB 是⊙O 的直径,AB =4,C 为AB的三等分点(更靠近A 点),点P 是⊙O 上一个动点,取弦AP 的中点D ,则线段CD 的最大值为.【答案】3+1【分析】如图,连接OD ,OC ,首先证明点D 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点D 在CK 的延长线上时,CD 的值最大,利用勾股定理求出CK 即可解决问题.【详解】解:如图,连接OD ,OC ,∵AD =DP ,∴OD ⊥PA ,∴∠ADO =90°,∴点D 的运动轨迹为以AO 为直径的⊙K ,连接CK ,AC ,当点D 在CK 的延长线上时,CD 的值最大,∵C 为AB的三等分点,∴∠AOC =60°,∴△AOC 是等边三角形,∴CK ⊥OA ,在Rt △OCK 中,∵∠COA =60°,OC =2,OK =1,∴CK =OC 2-OK 2=3,∵DK =12OA =1,∴CD =3+1,∴CD 的最大值为3+1,故答案为:3+1.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点D 的运动轨迹,学会构造辅助圆解决问题.例2.(2022·山东泰安·中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52B.125C.13-32D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的园上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的园上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.例3.(2022·内蒙古·中考真题)如图,⊙O 是△ABC 的外接圆,AC 为直径,若AB =23,BC =3,点P 从B 点出发,在△ABC 内运动且始终保持∠CBP =∠BAP ,当C ,P 两点距离最小时,动点P 的运动路径长为.【答案】33π.【分析】根据题中的条件可先确定点P 的运动轨迹,然后根据三角形三边关系确定CP 的长最小时点P 的位置,进而求出点P 的运动路径长.【详解】解:∵AC 为⊙O 的直径,∴∠ABC =90°.∴∠ABP +∠PBC =90°.∵∠PAB =∠PBC ,∴∠PAB +∠ABP =90°.∴∠APB =90°.∴点P 在以AB 为直径的圆上运动,且在△ABC 的内部,如图,记以AB 为直径的圆的圆心为O 1,连接O 1C 交⊙O 1于点P ,连接O 1P ,CP .∵CP ≥O 1C -O 1P ,∴当点O 1,P ,C 三点共线时,即点P 在点P 处时,CP 有最小值,∵AB =23∴O 1B =3在Rt ΔBCO 1中,tan ∠BO 1C =BC O 1B =33= 3.∴∠BO1C =60°.∴BP =60π×3180=33π.∴.C ,P 两点距离最小时,点P 的运动路径长为33π.【点睛】本题主要考查了直径所对圆周角是直角,弧长公式,由锐角正切值求角度,确定点P 的路径是解答本题的关键.模型3、定边对定角模型(定弦定角模型)固定线段AB 所对同侧动角∠P =∠C ,则A 、B 、C 、P 四点共圆根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.寻找隐圆技巧:AB 为定值,∠P 为定角,则P 点轨迹是一个圆.例1.(2021·广东·中考真题)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D 为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为.【答案】5-2【分析】由已知∠ADB =45°,AB =2,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO -OD .【详解】如图:以12AB 为半径作圆,过圆心O 作ON ⊥AB ,OM⊥BC ,以O 为圆心OB 为半径作圆,则点D 在圆O 上,∵∠ADB =45°∴∠AOB =90°∵AB =2AN =BN =1∴AO =12+12=2∵ON =OM =12AB =1,BC =3∴OC =12+(3-1)2=5∴CO -OD =5-2线段CD 长度的最小值为:5-2.故答案为:5-2.【点睛】本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.例2.(2022·浙江湖州·中考真题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是()A.42B.6C.210D.35【答案】C 【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M 、N 作以点O 为圆心,∠MON =90°的圆,则点P 在所作的圆上,观察圆O 所经过的格点,找出到点M 距离最大的点即可求出.【详解】作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P 位置时,恰好过格点且P M 经过圆心O ,所以此时P M 最大,等于圆O 的直径,∵BM =4,BN =2,∴MN =22+42=25,∴MQ =OQ =5,∴OM =2MQ =2×5=10,∴P M =2OM =210,故选C .【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.例3.(2022·广西贵港·中考真题)如图,在边长为1的菱形ABCD 中,∠ABC =60°,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接AG ,DF ,若AF =BE ,则下列结论错误的是()A.DF =CEB.∠BGC =120°C.AF 2=EG ⋅ECD.AG 的最小值为223【答案】D 【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE GE=CE BE ,即可判断C 项答案正确,由∠BGC =120°,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG =33,即可判断D 项错误.【详解】解:∵四边形ABCD 是菱形,∠ABC =60°,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12×(180°-∠ABC )=60°=∠ABC ,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE GE=CE BE ,∴BE 2=GE ∙CE ,∵AF =BE ,∴AF 2=GE ∙CE ,故C 项答案正确,∵∠BGC =120°,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF ⊥AC ,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴AG 2=12AG 2+12 2,解得AG =33,故D 项错误,故应选:D 【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.模型4、四点共圆模型(对角互补模型与等弦对等角)1)若平面上A 、B 、C 、D 四个点满足∠ABC +∠ADC =180°,则A 、B 、C 、D 四点共圆.条件:1)四边形对角互补;2)四边形外角等于内对角.2)若平面上A、B、C、D四个点满足∠ADB=∠ACB,则A、B、C、D四点共圆.条件:线段同侧张角相等.例1.(2022·广东·九年级专题练习)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD =2,E是AC的中点,连接DE,则线段DE长度的最小值为.【答案】3-1【分析】先判断出四边形ABCD是圆内接四边形,得到∠ACD=∠ABD=30°,根据题意知点E在以FG为直径的⊙P上,连接PD交⊙P于点E,此时DE长度取得最小值,证明∠APD=90°,利用含30度角的直角三角形的性质求解即可.【详解】解:∵∠BAD=∠BCD=90°,∴四边形ABCD是圆内接四边形,∴∠ACD=∠ABD=30°,∴∠ADB=60°,∵AD=2,∴BD=2AD=4,分别取AB、AD的中点F、G,并连接FG,EF,EG,∵E是AC的中点,∴EF∥BC,EG∥CD,∴∠AEF=∠ACB,∠AEG=∠ACD,∴∠AEF+∠AEG=∠ACB+∠ACD=90°,即∠FEG=90°,∴点E在以FG为直径的⊙P上,如图:当点E恰好在线段PD上,此时DE的长度取得最小值,连接PA,BD=2,∴∵F、G分别是AB、AD的中点∴FG∥BD,FG=12∠ADB=∠AGF=60°,∵PA=PG,∴△APG是等边三角形,∴∠APG=60°,∵PG=GD=GA,且∠AGF=60°,∴∠GPD=∠GDP=30°,∴∠APD=90°,∴PD=AD2-PA2=22-12=3,∴DE长度的最小值为(3-1).故答案为:(3-1).【点睛】本题考查了圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质,得到点E 在以FG 为直径的⊙P 上是解题的关键.例2.(2022陕西中考模拟)如图,在等边△ABC 中,AB =6,点P 为AB 上一动点,PD ⊥BC 于点D ,PE ⊥AC 于点E ,则DE 的最小值为.【答案】92【详解】如解图,∵∠PEC =∠PDC =90°,故四边形PDCE 对角互补,故P 、D 、C 、E 四点共圆,∠EOD =2∠ECD =120°,故ED =3R ,要使得DE 最小,则要使圆的半径R 最小,故直径PC 最小,当CP ⊥AB 时,PC 最短为33,故R =332,故DE =3R =3×332=92.例3.(2022江苏九年级期末)如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,点P 为平面内一点,且∠CPB =∠A ,过C 作CQ ⊥CP 交PB 的延长线于点Q ,则CQ 的最大值为()A.175B.154C.455D.655【答案】B【分析】根据题意可得A 、B 、C 、P 四点共圆,由AA 定理判定三角形相似,由此得到CQ 的值与PC 有关,当PC 最大时CQ 即取最大值.【详解】解:∵在Rt △ABC 中,∠ACB =90°,∠CPB =∠A ,BC =3,AC =4∴A 、B 、C 、P 四点共圆,AB 为圆的直径,AB =BC 2+AC 2=5∵CQ ⊥CP ∴∠ACB =∠PCQ =90°∴△ABC ∽△PQC∴AC BC =PC CQ ,43=PC CQ,即CQ =34PC ∴当PC 取得最大值时,CQ 即为最大值∴当PC =AB =5时,CQ 取得最大值为154故选:B .【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.课后专项训练例4.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.【答案】 80 4-3##-3+4【分析】利用SAS证明△BDC≌△AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠BAC=∠ACB=∠DCE =60°,∴∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB=∠ECA,在△BCD和△ACE中,CD=CE∠BCD=∠ACE BC=AC,∴△ACE≌△BCD(SAS),∴∠EAC=∠DBC,∵∠DBC=20°,∴∠EAC=20°,∴∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∵△ACE≌△BCD∴AE=BD,∠EAC=∠DBC,且∠AHF=∠BHC,∴∠AFB=∠ACB=60°,∴A、B、C、F四个点在同一个圆上,∵点D在以C为圆心,3为半径的圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,∴此时线段AF长度有最小值,在Rt△BCD中,BC=5,CD=3,∴BD=52-32=4,即AE=4,∴∠FDE=180°-90°-60°=30°,∵∠AFB=60°,∴∠FDE=∠FED=30°,∴FD=FE,过点F作FG⊥DE于点G,∴DG=GE=32,∴FE=DF=DGcos30°=3,∴AF=AE-FE=4-3,故答案为:80;4-3.【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例5.(2021·湖北鄂州·中考真题)如图,Rt △ABC 中,∠ACB =90°,AC =23,BC =3.点P 为ΔABC 内一点,且满足PA 2+PC 2=AC 2.当PB 的长度最小时,ΔACP 的面积是()A.3B.33C.334D.332【答案】D 【分析】由题意知∠APC =90°,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt ΔBCO 中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到ΔPCO 是等边三角形,利用特殊Rt ΔAPC 三边关系即可求解.【详解】解:∵PA 2+PC 2=AC 2∴∠APC =90°取AC 中点O ,∴AO =PO =CO =12AC 点P 的轨迹为以O 为圆心,12AC 长为半径的圆弧上由题意知:当B 、P 、O 三点共线时,BP 最短∵CO =12AC =12×23=3,BC =3∴BO =BC 2+CO 2=23∴BP =BO -PO =3∴点P 是BO 的中点∴在Rt ΔBCO 中,CP =12BO =3=PO ∴ΔPCO 是等边三角形∴∠ACP =60°∴在Rt ΔAPC 中,AP =CP ×tan60°=3∴S ΔAPC =12AP ×CP =3×32=332.【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.例6.(2020·西藏中考真题)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把沿PE 折叠,得到,连接CF .若AB =10,BC =12,则CF 的最小值为.【答案】8【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】如图所示,点F 在以E 为圆心EA 为半径的圆上运动,当E 、F 、C 共线时时,此时CF 的值最小,根据折叠的性质,△EBP ≌△EFP ,∴EF ⊥PF ,EB =EF ,∵E 是AB 边的中点,AB =10,∴AE =EF =5,∵AD =BC =12,∴CE ===13,∴CF =CE -EF =13-5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.例7.(2022·北京·清华附中九年级阶段练习)如图,四边形ABCD 中,DA =DB =DC ,∠BDC =72°,则∠BAC 的度数为.【答案】36°##36度【分析】根据题意可得A ,B ,C 三点在以D 为圆心DA 为半径的圆上,根据圆周角定理即可求解.【详解】解:如图,∵DA =DB =DC ,∴A ,B ,C 三点在以D 为圆心DA 为半径的圆上,∵∠BDC =72°,CB =CB ∴∠BAC =12∠BDC =36°.故答案为:36°.【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.例8.(2022·河北·唐山九年级阶段练习)如图所示,在四边形ABCD 中,AB =AC =AD ,∠BAC =26°,∠CAD =74°,则∠BCD =°,∠DBC °.【答案】 130 37【分析】根据题意可得点B,C,D在以A为圆心的圆上,根据圆周角定理求得∠BDC,∠DBC,根据三角形内角和定理求得∠BCD.【详解】∵AB=AC=AD,∴点B,C,D在以A为圆心的圆上,∵∠BAC=26°∴∠BDC=12∠BAC=13°,∵∠CAD=74°,∴∠DBC=12∠CAD=37°.∴∠BCD=180-∠DBC-∠BDC=180°-13°-37°=130°故答案为:130,37【点睛】此题考查了圆周角定理,三角形内角和定理,综合运用以上知识是解题的关键.例9.(2022·安徽蚌埠·一模)如图,Rt△ABC中,AB⊥BC,AB=8,BC=6,P是△ABC内部的一个动点,满足∠PAB=∠PBC,则线段CP长的最小值为()A.325B.2C.213-6D.213-4【答案】D【分析】结合题意推导得∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP;根据直角三角形斜边中线的性质,得OP=OA=OB=12AB=4;根据圆的对称性,得点P在以AB为直径的⊙O上,根据两点之间直线段最短的性质,得当点O、点P、点C三点共线时,PC最小;根据勾股定理的性质计算得OC,通过线段和差计算即可得到答案.【详解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP,∴OP=OA=OB=12AB=4∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,当点O、点P、点C三点共线时,PC最小在Rt△BCO中,∵∠OBC=90°,BC=6,OB=4,∴OC=BO2+BC2=42+62=213,∴PC=OC-OP=213-4∴PC最小值为213-4故选:D.【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解.例10.(2022·成都市·九年级专题练习)如图,在Rt ΔABC 中,∠ACB =Rt ∠,AC =8cm ,BC =3cm .D 是BC 边上的一个动点,连接AD ,过点C 作CE ⊥AD 于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是()A.1B.3C.2D.5【答案】A 【分析】由∠AEC =90°知,点E 在以AC 为直径的⊙M 的CN 上(不含点C 、可含点N ),从而得BE最短时,即为连接BM 与⊙M 的交点(图中点E ′点),BE 长度的最小值BE ′=BM -ME ′.【详解】如图,由题意知,∠AEC =90°,∴E 在以AC 为直径的⊙M 的CN上(不含点C 、可含点N ),∴BE 最短时,即为连接BM 与⊙M 的交点(图中点E ′点),在Rt ΔBCM 中,BC =3cm ,CM =12AC =4cm ,则BM =BC 2+CM 2=5cm .∵ME ′=MC =4cm ,∴BE 长度的最小值BE ′=BM -ME ′=1cm ,故选:A .【点睛】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.例11.(2022·广东·九年级课时练习)如图,△ACB 中,CA =CB =4,∠ACB =90°,点P 为CA 上的动点,连BP ,过点A 作AM ⊥BP 于M .当点P 从点C 运动到点A 时,线段BM 的中点N 运动的路径长为()A.22πB.2πC.3πD.2π【答案】A【详解】解:设AB 的中点为Q ,连接NQ ,如图所示:∵N 为BM 的中点,Q 为AB 的中点,∴NQ 为△BAM 的中位线,∵AM ⊥BP ,∴QN ⊥BN ,∴∠QNB =90°,∴点N 的路径是以QB 的中点O 为圆心,14AB 长为半径的圆交CB 于D 的QD,∵CA =CB =4,∠ACB =90°,∴AB =2CA =42,∠QBD =45°,∴∠DOQ =90°,∴QD 为⊙O 的14周长,∴线段BM 的中点N 运动的路径长为:90π×14×42180=22π,故选:A .例12.(2022·全国·九年级专题练习)如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =4cm ,CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C 时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为()A.2B.πC.2πD.22π【答案】D【详解】解:如图,∵CA =CB ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,∴∠ADE =∠CDF =90°,CD =AD =DB ,在△ADE 和△CDF 中AD =CD∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF (SAS ),∴∠DAE =∠DCF ,∵∠AED =∠CEG ,∴∠ADE =∠CGE =90°,∴A 、C 、G 、D 四点共圆,∴点G 的运动轨迹为弧CD ,∵AB =4,AB =2AC ,∴AC =22,∴OA =OC =2,∵DA =DC ,OA =OC ,∴DO ⊥AC ,∴∠DOC =90°,∴点G 的运动轨迹的长为90π×2180=22π.故选:D .例13.(2022·山西·九年级课时练习)如图,在等腰Rt ∆ABC 中,AC =BC =42,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是()A.22π+4B.2πC.42+2D.4π【答案】B 【详解】分析:取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,利用等腰直角三角形的性质得到AB =2BC =8,则OC =12AB =4,OP =12AB =4,再根据等腰三角形的性质得OM ⊥PC ,则∠CMO =90°,于是根据圆周角定理得到点M 在以OC 为直径的圆上,由于点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,则利用四边形CEOF 为正方得到EF =OC =4,所以M 点的路径为以EF 为直径的半圆,然后根据圆的周长公式计算点M 运动的路径长.详解:取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,∵在等腰Rt △ABC 中,AC =BC =42,∴AB =2BC =8,∴OC =12AB =4,OP =12AB =4. ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO =90°,∴点M 在以OC为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF =OC =4,∴M 点运动的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•4π=2π. 故选B .点睛:本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M 点的轨迹为以EF 为直径的半圆.例14.(2022·山东·烟台九年级期中)如图,平面直角坐标系中,点A 、B 坐标分别为(3,0)、(0,4),点C 是x 轴正半轴上一点,连接BC .过点A 垂直于AB 的直线与过点C 垂直于BC 的直线交于点D ,连接BD ,则sin ∠BDC 的值是.【答案】45【分析】根据图形的特点证明∠BDC =∠BAO ,故可出sin ∠BDC 的值.【详解】∵BA ⊥AD ,BC ⊥CD ∴∠BAD =∠BCD =90°∴A 、B 、C 、D 四点共圆∴∠BDA =∠BCA∵∠BDA +∠DBA =∠BCA +∠CBO =90°∴∠DBA =∠CBO∴∠DBA -∠CBA =∠CBO -∠CBA 即∠DBC =∠ABO又∠DBC +∠BDC =∠ABO +∠BAO =90°∴∠BDC =∠BAO∵点A 、B 坐标分别为(3,0)、(0,4),∴BO =4,OA =3,AB =42+32=5∴sin ∠BAO =BO AB=45∴sin ∠BDC =45故答案为:45.【点睛】此题主要考查三角函数的求解,解题的关键是熟知四点共圆的性质、勾股定理及三角函数的求解方法.例15.(2022·湖北·九年级期中)如图,△ABC 中,AC =BC =6,∠ACB =90°,若D 是与点C 在直线AB 异侧的一个动点,且∠ADB =45°,则CD 的最大值为.【答案】62+6##6+62【分析】以AB 为底边,在AB 的下方作等腰三角形AOB ,则OA =AC =6,根据∠ADB =45°,点与圆的位置关系可知,点D 在以O 为圆心,6为半径的圆上运动,当CD 过圆心时,CD 最大,根据OA =AC =6,∠CAO =90°,利用勾股定理可求出CO 的长,即可得.【详解】解:如图所示,以AB 为底边,在AB 的下方作等腰三角形AOB ,则OA =AC =6,∵∠ADB =45°,∴点D 在以O 为圆心,6为半径的圆上运动,当CD 过圆心时,CD 最大,∵OA =AC =6,∠CAO =90°,∴CO =62+62=62,∴CD 的最大值为:62+6,故答案为:62+6.【点睛】本题考查了等腰直角三角形的性质,圆周角定理,勾股定理,解题的关键是理解题意,掌握这些知识点.例16.(2022·浙江·九年级专题练习)如图,AB 是Rt △ABC 和Rt △ABD 的公共斜边,AC =BC ,∠BAD =32°,E 是AB 的中点,联结DE 、CE 、CD ,那么∠ECD =°.【答案】13【分析】先证明A 、C 、B 、D 四点共圆,得到∠DCB 与∠BAD 的是同弧所对的圆周角的关系,得到∠DCB 的度数,再证∠ECB =45°,得出结论.【详解】解:∵AB 是Rt △ABC 和Rt △ABD 的公共斜边,E 是AB 中点,∴AE =EB =EC =ED ,∴A 、C 、B 、D 在以E 为圆心的圆上,∵∠BAD =32°,∴∠DCB =∠BAD =32°,又∵AC =BC ,E 是Rt △ABC 的中点,∴∠ECB =45°,∴∠ECD =∠ECB -∠DCB =13°.故答案为:13.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.例17.(2022·黑龙江·九年级阶段练习)如图,等边△ABC 中,D 在BC 上,E 在AC 上,BD =CE ,连BE 、AD 交于F ,T 在EF 上,且DT =CE ,AF =50,TE =16,则FT =.【答案】17【分析】用“SAS ”可判定△ABD ≌△BCE ,得到∠AFE =60°,延长FE 至点G ,使得FG =FA ,连AG ,AT ,得到△AFG 是等边三角形,证明A 、B 、D 、T 四点共圆,设法证明△FAT ≌△GAE (ASA ),即可求得答案.【详解】∵△ABC 为等边三角形,∴AB =AC =BC ,∠ABD =∠BCE =60°,在△ABD 和△BCE 中,AB =BC∠ABD =∠BCE =60°BD =CE,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∵∠ADC =∠CBE +∠BFD =∠BAD +∠B ,∴∠BFD =∠B =∠AFE =60°;延长FE 至点G ,使得FG =FA ,连AG ,AT ,∵∠AFE =60°,∴△AFG 是等边三角形,∴AG =AF =FG =50,∠AGF =∠FAG =60°,∵∠BAF +∠EAF =∠CAG +∠EAF =60°,∴∠BAF =∠CAG ,∵DT =CE ,∴∠DBT =∠BTD ,∵∠BAD =∠CBE ,∴∠BAD =∠BTD ,∴A 、B 、D 、T 四点共圆,∴∠BAD =∠DAT ,∴∠FAT =∠GAE ,在△FAT 和△GAE 中,∠FAT =∠GAEAF =AG ∠AFG =∠AGF =60°,∴△FAT ≌△GAE (ASA ),∴FT =GE ,∵FG =50,TE =16,∴FT =12(FG -TE )=17.故答案为:17.【点睛】本题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,圆周角定理等,作出辅助线,判断出△FAT ≌△GAE 是解本题的关键.例18.(2020·四川成都·二模)如图,在矩形ABCD 中,AB =9,AD =6,点O 为对角线AC 的中点,点E 在DC 的延长线上且CE =1.5,连接OE ,过点O 作OF ⊥OE 交CB 延长线于点F ,连接FE 并延长交AC 的延长线于点G ,则FG OG=.【答案】455【分析】作OM ⊥CD 于M ,ON ⊥BC 于N ,根据三角形中位线定理分别求出OM 、ON ,根据勾股定理求出OE ,根据相似三角形的性质求出FN ,得到FC 的长,证明△GFC ∽△GOE ,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:作OM ⊥CD 于M ,ON ⊥BC 于N ,∵四边形ABCD 为矩形,∴∠D =90°,∠ABC =90°,∴OM ∥AD ,ON ∥AB ,∵点O 为AC 的中点∴OM =12AD =3,ON =12AB =4.5,CM =4.5,CN =3,∵CE =1.5,∴ME =CM +CE =6在Rt △OME 中,OE =OM 2+ME 2=32+62=35,∵∠MON =90°,∠EOF =90°,∴∠MOE +∠NOE =∠NOF +∠NOE =90°,∴∠MOE =∠NOF ,又∠OME =∠ONF =90°,∴△OME ∽△ONF ,∴OM ON=ME FN ,即34.5=6FN ,解得,FN =9,∴FC =FN +NC =12,∵∠FOE =∠FCE =90°,∴F 、O 、C 、E 四点共圆,∴∠GFC =∠GOE ,又∠G =∠G ,∴△GFC ∽△GOE ,∴FG OG =FC OE =1235=455,故答案为:455.【点睛】本题考查了矩形的性质、相似三角形的判定和性质、圆周角定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.例19.(2022·成都市锦江区嘉祥外国语学校九年级阶段练习)如图,在△ABC 中,AC =6,BC =83,∠ACB =60°,过点A 作BC 的平行线l ,P 为直线l 上一动点,⊙O 为△APC 的外接圆,直线BP 交⊙O 于E 点,则AE 的最小值为.【答案】2【分析】如图,连接CE .首先证明∠BEC =120°,根据定弦定角,可得点E 在以M 为圆心,MB 为半径的BC 上运动,连接MA 交BC 于E ′,此时AE ′的值最小.【详解】解:如图,连接CE .∵AP ∥BC ,∴∠PAC =∠ACB =60°,∴∠CEP =∠CAP=60°,∴∠BEC =120°,∵BC =83,为定值,则点E 的运动轨迹为一段圆弧如图,点E 在以M 为圆心,MB 为半径的BC 上运动,过点M 作MN ⊥BC∴⊙M 中优弧BC 度数为2∠BEC =240°,则劣弧BC 度数为120°∴△BMC 是等腰三角形,∠BMC =120°,∵∠BCM =30°,BC =83,MB =MC∴BN =BM 2-MN 2==3MN =12BC =43∴MB =MC =8,∴连接MA 交BC 于E ′,此时AE ′的值。
“胡不归”“阿氏圆”及旋转相似一、胡不归型【背景知识】有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。
然而,当他气喘吁吁地来到父亲的面前时,老人刚刚咽气了。
人们告诉他,在弥留之际,老人在不断喃喃地叨念:“胡不归?胡不归?”早期的科学家曾为这则古老的传说中的小伙子设想了一条路线。
(如下图)A是出发地,B是目的地;A C是一条驿道,而驿道靠目的地的一侧是沙地。
为了急切回家,小伙子选择了直线路程A B 。
但是,他忽略了在驿道上行走要比在砂土地带行走快的这一因素。
如果他能选择一条合适的路线(尽管这条路线长一些,但是速度可以加快),是可以提前抵达家门的。
那么,这应该是那条路线呢?显然,根据两种路面的状况和在其上行走的速度值,可以在A C上选定一点D ,小伙子从A走到D ,然后从D折往B ,可望最早到达B 。
用现代的科学语言表达,就是:若在驿道上行走的速度为,在沙地上行走的速度为,即求的最小值.例题1、如图,P 为正方形A B C D对角线B D上一动点,若A B =2,则A P +B P +C P 的最小值为_______解析:∵正方形A B C D为轴对称图形∴A P =P CAB CD P∴A P+B P+C P=2A P+B P=∴即求的最小值接下去就是套路我们要构造一个出来连接A E,作∠D B E=30°,交A C于E,过A作A F⊥B E,垂足为F 在R t△P B F中,∵∠P B F=30°∴由此我们把构造出来了∴的最小值即为A F线段的长∵∠B A E=45°,∠A E B=60°∴解直角△A B E,得A O=B O=,O E=,O B=根据面积法,·=·求出A F=(此外本题费马点亦可)例题2图1图2总结步骤:第一步:将所求线段和改写为的形式(<1)第二步:在P B的一侧,P A的异侧,构造一个角度,使得s i n=第三步:过A作第二步所构造的角的一边垂线,该垂线段即为所求最小值第四步:计算即可模型具体归纳如下:练习1如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是13千米.一天,居民点B着火,消防员受命欲前往救火,若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经______小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)练习2练习4如图,△A B C在直角坐标系中,A B=A C,A(0,2),C(1,0),D为射线A O上一点,一动点P从A出发,运动路径为A→D→C,点P在A D上的运动速度是在C D上的3倍,要使整个运动时间最少,则点D的坐标应为_______练习5如图,菱形A B C D的对角线A C上有一动点P,B C=6,∠A B C=150°,则线段A P+B P+P D的最小值为.练习6如图,在平面直角坐标系中,二次函数y=a x2+b x+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接P D,则P B+P D的最小值为;练习7如图,在△A C E中,C A=C E,∠C A E=30°,⊙O经过点C,且圆的直径A B在线段A E上.(1)试说明C E是⊙O的切线;(2)若△A C E中A E边上的高为h,试用含h的代数式表示⊙O的直径A B;(3)设点D是线段A C上任意一点(不含端点),连接O D,当C D+O D的最小值为6时,求⊙O的直径A B的长.二、阿氏圆型阿氏圆也是形如的形式(<1)最终还是化分为整。
专题十九 圆与动态几何问题知识聚焦以圆为载体,通过点的运动、直线的运动,探讨点与圆的位置关系、直线与圆的位置关系,这是圆与动态几何的基本表现形式.解这类问题需运用到分类讨论、数形结合、方程与函数等思想方法,关键是动中觅静、以静制动、以动制动. 例题导航【例1】 如图①,直线333+=x y 与x 轴、y 轴分别相交于A 、B 两点,圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O.若将⊙P 沿x 轴向左移动,则当⊙P 与该直线相交时,横坐标为整数的点P 的个数是( )A .2B .3C .4D .5点拨:根据直线与坐标轴的交点,得出A 、B 两点的坐标,再利用三角形相似得出圆与直线相切时的坐标,进而得出相交时的坐标.解答:Θ直线333+=x y 与x 轴、y 轴分别相交于A 、B 两点,圆心P的坐标为∴),0,1(点A 的坐标为(-3,0),点B 的坐标为),3,0(⊙O 的半径为.32.1=∴AB如图②,将()P 沿x 轴向左移动,当⊙P 与该直线相切于点1C 时,,111=C P 根据~11C AP ∆,ABO ∆得.2313211111=∴⋅=∴⋅=AP AP BO C P AB AP ∴点1P 的坐标为(-1,0).将⊙P 沿x 轴继续向左移动,当⊙P 与该直线相切于点2C 时,,122=C P 根据,~22ABO C AP ∆∆得=∴=32.2222AP BO C P AB AP .2312=∴⋅AP 点2p 的坐标为(-5,0).从-1到-5,整数点有-2、-3、-4,故当⊙P 与该直线相交时,横坐标为整数的点P 的个数是3.故选B .点评:此题主要考查了直线与坐标轴交点的求法以及相似三角形的判定,题目综合性较强,注意特殊点的求法是解决问题的关键.【例2】 (2012.聊城)如图①,⊙O 是△ABC 的外接圆,P BC AC AB ,12,10===是上的一个动点,过点P 作BC 的平行线交AB 的延长线于点D.(1)当点P 在什么位置时,DP 是⊙O 的切线?请说明理由; (2)当DP 为⊙O 的切线时,求线段DP 的长.点拨:(1)根据当点P 是的中点时,得出得出PA 是⊙O 的直径,再利用//DP BC ,得出,PA DP ⊥问题得证;(2)利用切线的性质,由勾股定理得出半径长,进而得出~ABE ∆△ADP,即可得出DP 的长. 解答:(1)如图②,当点P 是的中点时,DP 是⊙O 的切线,理由:是⊙O 的直径,又,AC AB =Θ.BC PA ⊥∴又DP PA DP BC DP ∴⊥∴.,//Θ是⊙0的切线.(2)如图②,连接OB ,设PA 交BC 于点E .由垂径定理,得,621==BC BE 在Rt△ABE 中,由勾股定理,得.86102222=-=-=BE AB AE 设⊙O 的半径为,r 则.8r OE -=在Rt△OB E '中,由勾股定理,得,)8(6222r r -+=解得//425DP r Θ⋅=.,D ABE BC ∠=∠∴又~,11ABE ∆∴∠=∠Θ,.AP EDP BE ADP =∴∆即⋅⨯=425286DP解得⋅=875DP点评:此题主要考查了切线的判定与性质以及勾股定理和相似三角形的判定与性质,根据已知得出ADP ABE ∆∆~是解题关键,【例3】某课题小组进行了如下探索,请逐步思考并解答:(1)如图①,两个大小一样的传送轮连接着一条传送带,两个传送轮中心的距离是,10m 求这条传送带的长;(2)改变图形的数量,如图②,将传动轮增加到3个,每个传动轮的直径是,3m 每两个传动轮中心的距离是,10m 求这条传送带的长;(3)将静态问题升华为动态问题:如图③,一个半径为cm 1的⊙P 沿边长为cm π2的等边三角形ABC 的外沿无滑动地滚动一周,求圆心P 经过的路径长;⊙P 自转了多少周?(4)拓展与应用:如图④,一个半径为cm 1的⊙P 沿半径为cm 3的⊙O 外沿无滑动地滚动一周,则⊙P 自转了多少周?点拨:(1)利用传送带的长等于两个传送轮中心的距离×2+圆的周长即可求出;(2)可仿照(1)进行解答;(3)利用圆心P 经过的路径长为“三角形的周长加一个半径为1 cm 的圆的周长”即可求出;(4)利用⊙P 的圆心P 沿半径为cm 3的⊙O 外沿作无滑动滚动一周的路径长为π2)13(⨯+即可求出,解答:(1)这条传送带的长为=⨯+⨯3102πm )320(π+.)330(323180120310)2(m ππ+=⨯⨯+⨯(3)圆心P 经过的路径长为“三角形的周长加一个半径为cm 1的圆的周长”,∴圆心P 经过的路径长为).(826cm πππ=+⊙p 自转的周数一圆心P 经过的路径长÷⊙p 的周长,∴⊙p 自转的周数为.428=÷ππP )4(的圆心P 沿半径为cm 3的⊙O 外沿无滑动地滚动一周的路径长为=⨯+π2)13(∴),(8cm π⊙P 自转的周数为.428=÷ππ点评:此题主要考查了扇形的弧长公式以及等边三角形的性质等,根据已知条件得出点P 经过的路径是解题的关键.【例4】 (2013.宜昌)半径为cm 2的⊙O 与边长为cm 2的正方形ABCD 在水平直线l 的同侧,⊙O 与l 相切于点-F ,DC 在l 上.(1)过点B 作00的一条切线BE ,E 为切点.①填空:如图①,当点A 在⊙0上时,EBA ∠的度数是 ; ②如图②,当E 、A 、D 三点在同一直线上时,求线段OA 的长;(2)以正方形ABCD 的边AD 与OF 重合的位置为初始位置,向左移动正方形(如图③),当边BC 与OF 重合时结束移动,M 、N 分别是边BC 、AD 与⊙0的公共点,求扇形MON 的面积的范围.点拨:(1)①根据切线的性质以及直角三角形的性质得出EBA ∠的度数;②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出=OE OA ,OBOF进而求出OA 的长;(2)设,︒=∠n MON 得出),(90236022cm n n S MON ππ=⨯=扇形进而利用函数增减性分析:当点N 、1VI 、A 分别与点D 、B 、0重合时,MN 最大;当cm DC MN 2== 时,MN 最小,分别求出即可.解答:(1)①Θ半径为cm 2的⊙O 与边长为2 cm 的正方形ABCD 在水平直线l 的同侧,当点A 在⊙O 上时,,90,2,4o OEB cm FO cm OB =∠=-=EBA ∠∴的度数.30o Θ②直线l 与⊙O 相切于点=∠∴OFD F ,Θο.90在正方形ADCB 中,//,90OF ADC o ∴=∠∴==,2.cm AD OF AD Θ四边形OFDA 为平行四边形,∴=∠,90o OFD Θ平行四边形OFDA 为矩形.Θ.AO DA ⊥∴在正方形ABCD 中,⊥DA ∴,AB 点O 、A 、B 三点在同一条直线上.⊥∴EA =∠=∠OAE OEB OB Θ.,,90BOE EOA o ∠=∠..~2OA OE OBOEOE OA BOE EOA =∴⋅=∴∆∆∴.4)2(.2cm OA cm OA OB =+∴解得±-=1(OA .)15(,0.)5cm OA A O cm -=∴>-Θ (2)如图④,设=⨯=︒=∠2,2360πn S n MON MON 扇形οS cm n ),(902π随n 的增大而增大,MON ∠取最大值时,MON S 扇形最大,当MON ∠取最小值时,OMN S 扇形最小.过点0作MN OK ⊥于点K ,=∠∴MON .2,2NK MN NOK =∠在Rt△ONK 中,=∠NOK sin NOK nNKON NK ∠∴=,2α随NK 的增大而增大.MON ∠∴随MN 的增大而增大,∴当MN 最大时MON ∠最大.当MN 最小时MON ∠最小.①当点N 、M 、A 分别与点D、B、重合时,MN最大,==∠=∠=最大扇形MON S BAD MON BD MN ,90,οcm DC MN cm 2②;2==≡π时,MN 最小,=∴ON .32,60.2cm S NOM OM MN MON π==∠∴=最小扇形ο.32ππ≤≤∴MON S 扇形点评:此题主要考查了圆的综合应用以及相似三角形的判定与性质和函数增减性等知识,得出扇形MON 的面积的最大值与最小值是解题关键, 培优训练能力达标1.如图,⊙1O 的半径为1,正方形ABCD 的边长为6,点2O 为正方形ABCD 的中心,AB O O ⊥21于占.8,21=O O P 若将⊙1O 绕点P 按顺时针方向旋转,360O 在旋转过程中,⊙1O 与正方形ABCD 的边只有一个公共点的情况一共出现( ) A. 3次 B .5次 C .6次 D .7次2.(2012.遵义)如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O上一个动点(不与A 、B 重合),过点0作AP OC ⊥于点C ,PB OD ⊥于点D ,则CD 的长为 .3.(2012.宁波)如图,在△,AI3C 中,,60ο=∠BAC D AB ABC o ,22,45==∠是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于点E 、F , 连接EF ,则线段EF 的最小值为 .4.(2012.镇江)如图,在平面直角坐标系xOy 中,直线AB 过点A (-4,0)、B(O ,4),⊙O 的半径为1(0为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为 . 5.如图,⊙O 的直径MN=1,点A 在⊙O 上,且B AMN O ,30=∠是的中点,点P 在直径MN 上运动,求AP BP +的最小值.6.(2012.湘潭)如图,在⊙O 上位于直径AB 的异侧有定点C 和动点,21,AB AC P =点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作直线PB 的垂线CD 交PB 于点D .(1)如图①,求证:;~ABC PCD ∆∆(2)当点P 运动到什么位置时,≅∆PCD ?ABC ∆请在图②中画出△PCD 并说明理由;(3)如图③,当点P 运动到AB CP ⊥时,求BCD ∠的度数.7.(2012.张家界)如图,⊙O 的直径C AB ,4=为圆周上一点,,2=AC 过点C 作的切线DC ,⊙O 点P 为优弧CBA 上一动点(不与A 、C 重合). (1)求与APC ∠的度数;ACD ∠(2)当点P 移动到的中点时,求证:四边形OBPC 是菱形;(3)点P 移动到什么位置时,△APC 与△ABC 全等?请说明理由.8.(2012.无锡)如图,菱形ABCD 的边长为点P 从点A 出发,以,2cm .60o DAB =∠的速s cm /3度,沿AC 向点C 匀速运动;与此同时,点Q 也从点A 出发,以的速度,沿射线AB 匀速运s cm /1动.当点P 运动到点C 时,P 、Q 都停止运动.设点P 运动的时间为 (1)当点P 异于A 、C 时,请说明.ts(2)以点P 为圆心、PQ 长为半径作圆,请问:在;//BC PQ 整个运动过程中,为怎样的值时,t 与边BC ⊙P 分别有1个公共点和2个公共点?拓展提升9.(2012.兰州)如图,AB 是⊙O 的直径,弦=BC F cm ,2是弦BC 的中点,.60o EC =∠若动点E 以s cm /2的速度从点A 出发沿着A B A →→方向运动,设运动时间为),30(<≤t ts 连接EF ,当△BEF 是直角三角形时,t 的值为 ( )47.A1.B47.C 或147.D 或1或4910.(2012.无锡)如图,以M(-5,0)为圆心、4为半径的圆与x 轴交于A 、B 两点,P 是⊙M 上异于A 、B 的一动点,直线PA 、PB 分别交y 轴于点C 、D ,以CD 为直径的⊙N 与x 轴交于E 、F ,则EF 的长( )A .等于24B .等于34C .等于6D.随点P 位置的变化而变化11.(2013.广州)已知AB 是⊙O 的直径,,4=AB 点C 在线段AB 的延长线上运动,点D 在⊙O 上运动(不与点B 重合),连接CD ,且.OA CD = (1)当22=OC 时(如图),求证:CD 是⊙O 的切线;(2)当22>OC 时,CD 所在直线与⊙O 相交,设另一交点为E ,连接AE . ①当D 为CE 中点时,求△ACE 的周长; ②连接OD ,是否存在四边形AODE 为梯形?若存在,请说明梯形个数并求此时AE .ED 的值;若不存在,请说明理由.12.(2013.上海改编)在矩形ABCD 中,P 是AD 边上的动点,连接BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,连接QP(如图).已知,5,13==AB AD 设⋅==y BQ x AP ,(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果,4==EC EF 求x 的值.【例】 如图,在边长为8的正方形ABCD 中,点O 为AD 上一动点),84(<<OA 以0为圆心,OA 的长为半径的圆交边CD 于点M ,连接OM ,过点M 作⊙O 的切线交边BD 于点N .(1)求证:;~MCN ODM ∆∆(2)设,x DM =求OA 的长(用含x 的代数式表示);(3)在点O 的运动过程中,设△CMN 的周长为P ,试用含x 的代数式表示P ,你能发现怎样的结论?点拨:(1)依题意可得,MNC OMD ∠=∠然后可证得)2(;~(/)MCN DM ∆∆设==OA x DM ,,8,R OA AD OD R OM -=-=-=根据勾股定理求出OA 的长;(3)由(1)知,~MCN ODM ∆∆利用线段比求出MN CN 、的长.然后代入可求出△CMN 的周长.也可利用相似三角形的周长比等于相似比来进行求解.解答:(1)MN Θ切⊙O 于点M ,=∠∴OMN =∠+∠=∠+∠MNC CMN CMN OMD οοΘ90.90οΘ90,.90=∠=∠∠=∠⋅C D MNC OMD O 又.~MON ODM ∆∆∴(2)在Rt△ODM 中,,x DM =设==OM OA .8,R OA AD OD R -=-=∴由勾股定理得-8(=∴=---∴=+OA R R R R x R .x 1664,)222222)80(16642<<+=x x R (3)解法一:,8x DM CD CM -=-=Θ又,166416648822x x R OD -=+-=-=Θ且~ODM ∆.,DM CN OD MC MCN =∴∆代人得到⋅+=816x x CN 同理,OMMN OD MC =代人得到CMN x x MN ∆∴⋅++=8642.的周长为+++-=++=816)8(x x x MN CN CM P .16)8()8(8642=++-=++x x x x 发现:在点0的运动过程中,△CMN 的周长P 始终为16,是一个定值.解法二:在Rt△ODM 中,-=-=88R OD ⋅-=+1664166422x x 设△ODM 的周长++='DM OD P .81646166422+=⋅+++-=x x x x OM 而~MCN ∆,ODM ∆且相似比=-⋅-==2x6416)8(x OD CM k MCN x P ODM P MCN x ∆∴+='∆∆+,816,816的周长的周长Θ的周长为.16816).8(=++=x x P 发现:在点O 的运动过程中,△CMN 的周长P 始终为16,是一个定值.点评:本题考查的是相似三角形的性质和判定、正方形的性质、勾股定理、切线性质等有关知识,思考题如图①,在⊙O 中,点P 在直径AB 上运动,但与A 、B 两点不重合,过点P 作弦,AB CE ⊥在上任取一点D ,直线CD 与直线AB 交于点F ,弦DE 交直线AB 于点M ,连接CM .(1)如图①,当点P 运动到与点0重合时,求FDM ∠的度数;(2)如图②、③,当点P 运动到与点0不重合时,求证:.MC DF OB FM ⋅=⋅。
一模型界定本模型主要是指带电粒子在磁场中做匀速圆周运动时,由于粒子的速度不同、入射位置不同等因素而引起粒子在磁场中运动轨迹的差异,从而在有界磁场中形成不同的临界状态与极值问题的一类物理情景.二模型破解1. 处理“带电粒子在匀强磁场中的圆周运动”的基本知识点(i)圆心位置的确定①利用速度的垂线;②利用弦的中垂线;③利用两速度方向夹角的角平分线;④利用运动轨迹的半径大小.具体来说,如图1所示:①已知两位置的速度,分别过两位置作速度的垂线,交点处为运动轨迹的圆心②已知一点的速度与另一点的位置,过已知速度的点作该点速度的垂线,再作两点连线的中垂线,交点处为运动轨迹的圆心③已知一点的速度与另一不知位置的点的速度方向,过已知速度的点作该点速度的垂线,再作两速度夹角的平分线,交点处为运动轨迹的圆心④已知一点的速度与粒子运动的轨迹半径,过该点作速度的垂线,再在垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑤已知不知位置的两点的速度方向与粒子运动的轨迹半径,作两速度的夹角平分线,再在平分线上取一点,使其到两已知两已知速度所在直线间的距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑥已知一不知位置的点的速度方向与粒子运动的轨迹半径,可确定粒子运动的轨迹圆心位置在与该速度所在直线相平行且距离等于轨迹半径的直线上⑦已知运动轨迹上三点的位置,连接其中两点所得任两条弦,作此两条弦的中垂线,交点处为运动轨迹的圆心⑧已知运动轨迹上两点的位置与粒子运动的轨迹半径,作连接两已知点所得弦的中垂线,再在中垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心(ii)两个重要几何关系①粒子速度的偏向角ϕ等于回旋角θ,并等于AB 弦与切线的夹角(弦切角α)的2倍,即:ϕ=θ=2α=ωt.②相对的弦切角θ相等,与相邻的弦切角'θ互补,即πθθ=+'(iii)两个重要的对称性①如图2所示,带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;②如图3所示,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出;不沿半径射入的粒子必不沿半径射出,但速度方向与入射点、出射点所在半径之间的夹角相等,入射速度与出射速度的交点、轨迹圆的圆心、磁场区域圆的圆心都在弧弦的中垂线上.(iV)两类重要的临界状态与极值条件①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②当粒子运动的速率一定(即在磁场中运动的轨迹半径一定)时,通过的弧长越长,转过的圆心角越大,粒子在有界匀强磁场中运动的时间越长.由图1可以看到,Rl 22sin =θ,粒子在磁场中转过一个劣弧时,对应的弦长越长,转过的圆心角越大,运动时间越长;粒子在磁场中转过一个优弧时则相反.2.动态圆的问题处理方法(i)旋转"半圆"法处理速率相同的动态圆问题如图4所示,对于大量的同种粒子,从空间同一位置以相同的速率υ沿不同的方向垂直..进入某匀强磁场时,由于速度方向的差异,引起粒子在空间运动轨迹的不同,它们在空间运动的基本特征是:①所有粒子运动的轨迹半径qBmv R =相同 ②所有粒子运动轨迹平面都在垂直于磁场的同一平面内③所有粒子运动轨迹的圆心都在以入射点为圆心、R 为半径的圆周上④所有粒子的运动轨迹所覆盖的空间区域是以入射点为圆心、2R 圆形区域○5同一时刻射入的粒子在经过相同时间t ∆后,每个粒子速度方向改变的角度(偏向角)ϕ、转过的圆心角度α相同,t m qB ∆⋅==ϕα;到入射点的距离l 相同,即位于以射点为圆心、以l 为半径的同一圆周上,其中2sin 2αR l =。
利用几何画板动态点值绘制圆上的随动点
几何画板最大的特色之一就是可以展示图形的动态几何变化,动态图形的展示过程可以使图形更形象生动具体。
本节向大家介绍如何利用几何画板点的值绘制圆上的随动点。
具体操作步骤如下:
1.构造线段和点并度量点的值。
构造线段AB,在线段上构造点C;选定点C,选择“度量”——“点的值”,得到C点度量值。
构造线段AB及点C并度量C点的值
2.构造圆上的点。
构造圆DE,右键圆——“在圆上绘制点”,点入C点的度量值,得到点F。
构造圆并利用C点的度量值构造圆上的点F
3.拖动点C,点F随动,此两点同时出发,同时停止。
F点随着C点变化而变化
温馨提示:如果两个点的速度不同,选择“数据”——“计算”,然后点击C点的度量值,使用计算值在圆上绘制点即可。
圆还可以是其他路径。
以上内容介绍了利用几何画板点值构造随动点的方法,操作简单,其中运用了几何画板度量的功能。
是大家入门学习动点的基础。
第42卷第4期2021年Vol.42No.4(2021)物理教师PHYSICS TEACHER利用圆的性质解决力学中动态平衡问题何勇任致远(新疆兵团二中,新疆乌鲁木齐830002)摘要:高中物理在力学问题中动态平衡,我们往往常用的有图解法和解析法;利用解析法建立各物理量之间的关系时我们可以利用圆的相关性质,结合“三角形相似”、“正弦定理”和“辅助圆”解决一些与圆相关的动态平衡问题.关键词:三角形相似法;正弦定理法;辅助圆法高中物理无论是力学、热学,还是电学中,动态平衡问题会被经常用来考查学生对物理问题理解能力、知识迁移能力,分析推理能力、综合运用能力和利用数学知识解决物理问题的能力.在力学问题中动态平衡,我们往往常用的有图解法和解析法.这里我们将利用圆的相关性质,结合“三角形相似”、“正弦定理”和“辅助圆”解决一些与圆相关的动态平衡问题.1利用三角形相似处理动态平衡例1.如图1所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移•在移动过程中手对线的拉力F和轨道对小球的弹力N的大小变化情况是(A)F不变,N增大.(B)F减小,N不变.(C)F不变,N减小.(D)F增大,N减小.在本题中,小球沿圆环缓慢上移,对小球进行受力分析时,我们发现它始终受到竖直方向重力G、沿细绳方向拉力F和沿圆半径方向弹力F n,这3个力满足受力平衡.作出受力分析图(图2),可在重力G,圆的半径R不变时;小球缓慢上移过程中,/逐渐变小,所以F逐渐减小.2利用正弦定理处理动态平衡例2.如图3所示,ADB是一个光滑球面,AOB为水平直径,C为质量为加的光滑小球,小球通过过A点处的光滑定滑轮的轻绳拉住,现使小球C缓慢地从A点运动到处于O点正下方的D 点处.重力加速度大小为g,关于小球C从A点运动D点的过程,下列说法正确的是(A)绳对小球的拉力先增大后减小.(B)绳对小球的拉力逐渐减小.(C)光滑球面对小球的支持力先减小后增大.(D)光滑球面对小球的支持力逐渐减小.知厶O AB^^xGF'AG F N F—————R R1*/1\X①\G图1图2在本题中,小球沿圆环缓慢上移,如图4,对小球进行受力分析时,我们发现它始终受到竖直方向重力G、沿细绳方向拉力F和沿圆半径方向弹力N,这3个力满足受力平衡.设ZAOC=0,由圆的几何关系可得ZACE= y,ZECO=y-0,重力边的对角为y+J小球三力平衡的矢量三角形,根据正弦定理可得mg T N91第42卷第4期2021 年Vol. 42 No. 4(2021)物 理教师PHYSICS TEACHER解得0N = mgtan — , T= mgcosOmg ----j = mg cos 2cosf-sinftanf ).当0减小时,N 减小,T 增大.3利用辅助圆通过图解法处理动态平衡例3.如图5所示,柔软轻绳ON 的一端O 固 定,其中间某点M 拴一重物,用手拉住绳的另一端N.初始时,0M 竖直且MN 被拉直,OM 与MN之间的夹角a(a>号)•现将重物向右上方缓慢拉起,并保持夹角a 不变,在OM 由竖直被拉到水平 的过程中O 图5(A) MN 上的张力逐渐增大.(B) MN 上的张力先增大后减小.(C) 0M 上的张力逐渐增大.(D) 0M 上的张力先增大后减小.对M 处的重物进行受力分析,并将力平移至 一个力的三角形中,如图6所示,重力大小方向不变,其所对的角为x — a 也始终不变,作出这个三 角形的外接圆,三力平衡构成封闭三角形,画其外接圆,利用圆周角不变解题.P 在外接圆上移动, 初始位置从重力末端直至图中Q 点,利用图解法 确定力F nm 及F ⑹的变化情况.下面我们就3种方法来解决一个力学中动态 平衡的问题.应用:如图7所示为一种儿童玩具,在以O 点为圆 心的四分之一竖直圆弧轨 道上,有一个光滑的小球(不能视为质点),0'为小球 的圆心.挡板OM 沿着圆弧轨道的半径,以O 点为转 轴,从竖直位置开始推着小球缓慢顺时针转动(水平向里看),到小球触到水平线的过程中:圆弧轨道对小球的支持力N|的变 化?挡板对小球的支持力N?的变化?设ZAOM=©,ZC/OM = a.在解决本问题时,我们首先应该注意到QW 板的变化范围为从竖直方向到小球触及水平线;由此解法1:利用三角 形相似(此法关键在于找到与受力三角形相 似的三角形)延长M作用力力线,交竖直线 ON 于A 点,OM 于 B 点,根据图8受力的 三角形与厶OO'A 相 似,可得以下关系G Ni N 2其中OA =OBCOS ①,OO 7 =tana ),豹,"=更(tane +则M叫。
“动态圆”模型的应用带电粒子在磁场中的运动经常涉及动态圆。
常见的动态圆模型有两种,往往都还涉及边界(极值)问题。
模型1如图1,一束带负电的粒子以初速度垂直进入匀强磁场,若初速度方向相同,大小不同,所有粒子运动轨迹的圆心都在垂直于初速度的直线上,速度增大时,轨道半径随着增大,所有粒子的轨迹组成一组动态的内切圆。
模型2如图2,一束带负电的粒子以初速度垂直进入匀强磁场,若初速度大小相同,方向不同,则所有粒子运动的轨道半径相同,但不同粒子的圆心位置不同,其共同规律是:所有粒子的圆心都在以入射点为圆心,以轨道半径为半径的圆上,从而可以找出动态圆的圆心轨迹。
使用时应注意各圆的绕向。
例1.如图所示,在圆形区域内存在一垂直于纸面向里的匀强磁场,一束速率各不相同的质子从A点沿圆形磁场的半径方向射入磁场。
关于质子在该磁场内的运动情况,下列说法正确的是()A.运动时间越长的,其轨迹越长B.运动时间越长的,其射出磁场时的速率越大C.运动时间越长的,其轨迹对应的圆心角越大D.运动时间越长的,其速度方向的偏转角越大解析:该题考查动态圆的模型1.质子沿半径方向射入,沿另一半径方向射出,轨迹半径r=,偏转角等于圆心角θ=2arctan =2arctan ,偏转时间t==·arctan .由此可得偏转时间越长,圆心角越大,运动速率越小,选项C.D正确.答案:CD例2.如图甲所示,宽h=2 cm的有界匀强磁场的纵向范围足够大,磁感应强度的方向垂直纸面向里。
现有一群带正电的粒子从O点以相同的速率,从平面内的各个方向射入磁场。
若粒子在磁场中做匀速圆周运动的轨迹半径r均为5 cm,不计粒子的重力,则()A.右边界:-4 cm<y<4 cm内有粒子射出B.右边界:y>4 cm和y<-4 cm内有粒子射出C.左边界:y>8 cm内有粒子射出D.左边界:0<y<8 cm内有粒子射出解析:该题考查动态圆的模型2。
作出如图乙所示的示意图,由几何关系可得:临界点距x轴的间距y==4 cm。
矢量圆解动态平衡问题
“动态平衡”是指随着制动外力的变化,系统动态响应的动态平衡变
化的过程,对于学习者、科学家、工程师和技术专家来说,动态平衡
是至关重要的。
矢量圆是一种有效的动态平衡解决方法,这种解决方
法可以有效地解决复杂的动态平衡问题,是一种考虑系统变化的响应,以致能够有效地处理系统变化的有效解。
矢量圆的实施需要考虑两个重要的方面。
首先,对于解时控制系统的
变化进行建模,这可以通过建立一个计算矢量圆的公式来实现。
其次,以及由此建立的更加一般的模型,以及事故发生之前情况的分析。
此外,还需要考虑矢量圆的几何及动态特性。
通常,动态平衡受到动
态外力的影响,例如分辨率、位置或动态特性,因此必须考虑矢量圆
的几何及动态特性。
此外,动态外力的变化可能是矢量圆周围环境变
化的一部分,这也是需要考虑。
矢量圆可以用于解决复杂的动态平衡问题,非常有效。
但是,有效的
实施对于正确控制系统变化非常重要,只有模型正确的才能保证实际
变化的正确表述。
模型的分析以及矢量圆的本质特性都是动态平衡的
关键,因此把握好矢量圆及其相关特性才能有效的解决动态平衡的问题。
磁场中的动态圆问题一、粒子特点:入射粒子速度的方向相同,速度的大小不同,或者是B 的大小变化,从而造成轨迹圆的半径不同。
如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大.或者磁感应强B 越小,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线CO 上.解决方法:放缩圆法。
粒子的轨迹圆的的圆心轨迹为一条线段,利用圆规作图,不断改变圆心位置找到符合要求的轨迹圆。
例:(多选)如图2所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点,一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°角的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是( )图2A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是23t 0C.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是t 0D.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是53t 0解析 带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t0.作出粒子从O 点沿纸面以与Od 成30°角的方向射入恰好从各边射出的轨迹,如图所示发现粒子不可能经过正方形的某顶点,故A 正确;作出粒子恰好从ab 边射出的临界轨迹③④,(从ab 边射出意思是不从ad 边出,就是和ad 边相切,与ab 边相切)由几何关系知圆心角不大于150°,在磁场中经历的时间不大于512个周期,即56t 0;圆心角不小于60°,在磁场中经历的时间不小于16个周期,即13t 0,故B 正确;作出粒子恰好从bc 边射出的临界轨迹②③,由几何关系知圆心角不大于240°,在磁场中经历的时间不大于23个周期,即43t 0;圆心角不小于150°,在磁场中经历的时间不小于512个周期,即56t 0,故C 正确;若该带电粒子在磁场中经历的时间是56个周期,即53t 0.粒子轨迹的圆心角为θ=53π,速度的偏向角也为53π,根据几何知识得知,粒子射出磁场时与磁场边界的夹角为30°,必定从cd 边射出磁场,故D 错误.答案 ABC例2、如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q (q >0)的带电粒子(重力不计)从AB 边的中心O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场磁感应强度的大小B 需满足( )A.B >3mv3aqB.B <3mv 3aqC.B >3mv aqD.B <3mvaq答案 B解析 若粒子刚好达到C 点时,其运动轨迹与AC 相切,如图所示,则粒子运动的半径为r 0=atan 30°=3a .由qvB =mv 2r 得r =mvqB,粒子要能从AC 边射出,粒子运行的半径应满足r >r 0,解得B <3mv3aq,选项B 正确.3、(多选)(2018·湖北省十堰市调研)如图12所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B ,其边界为一边长为L 的正三角形(边界上有磁场),A 、B 、C 为三角形的三个顶点.今有一质量为m 、电荷量为+q 的粒子(不计重力),以速度v =3qBL4m从AB 边上的某点P 既垂直于AB 边又垂直于磁场的方向射入磁场,然后从BC 边上某点Q 射出.若从P 点射入的该粒子能从Q 点射出,则( )A .PB <1+34L B .PB <2+34L C .QB ≤34L D .QB ≤12L答案 BD解析 粒子在磁场中运动的轨迹如图所示:粒子在磁场中的运动轨迹半径为r =mv Bq ,因此可得r =34L ,当入射点为P 1,圆心为O 1,且此刻轨迹正好与BC 相切时,PB 取得最大值,若粒子从BC 边射出,根据几何关系有PB <P 1B =2+34L ,A错误,B 正确;当运动轨迹为弧P 2Q 时,即O 2Q 与AB 垂直时,此刻QB 取得最大值,根据几何关系有QB =rsin 60°=12L ,所以有QB ≤12L ,C 错误,D 正确.二、粒子特点:入射粒子速度的方向不相同,速度的大小相同。
初中几何动点最值问题难题集锦初中几何动点最值问题是初中数学中的一道难题类型。
动点最值问题考察动点在几何形状内运动时,某一量的最大值或最小值的求解方法。
下面是一些初中几何动点最值问题的难题集锦。
1.【问题描述】在一个矩形ABCD中,点P动态地沿着矩形的边移动,求线段AP的最长长度。
【解答】假设矩形ABCD的边长为a和b(a<b),点P动态地沿着矩形的边移动。
我们可以观察到,当点P处于矩形的顶点A或D时,线段AP的长度为a;当点P处于矩形的顶点B或C时,线段AP的长度为b。
因此,线段AP的最长长度为b。
2.【问题描述】在一个圆形O内,点P动态地沿着圆的周长移动,求线段OP的最长长度。
【解答】设圆的半径为r,点P动态地沿着圆的周长移动。
根据三角形的性质,可以知道线段OP的长度最长时,点P应该位于圆的周长上的与点O相对的点,即直径上的点。
因此,线段OP的最长长度为2r。
3.【问题描述】在一个正方形ABCD内,点P动态地沿着正方形的边移动,求线段BP的最长长度。
【解答】设正方形ABCD的边长为a,点P动态地沿着正方形的边移动。
由于线段BP的长度等于点P距离B点的距离,所以线段BP的最长长度为正方形的对角线长度,即√2a。
4.【问题描述】在一个等腰直角三角形ABC中,点P动态地沿着三角形的边移动,求线段AP的最长长度。
【解答】设等腰直角三角形ABC的等腰边长为a,点P动态地沿着三角形的边移动。
可以观察到,当点P处于顶点B或C 时,线段AP的长度为a;当点P处于顶点A时,线段AP的长度为0。
因此,线段AP的最长长度为a。
5.【问题描述】在一个梯形ABCD中,点P动态地沿着梯形的边移动,求线段CP的最长长度。
【解答】设梯形ABCD的上底长为a,下底长为b(a>b),点P动态地沿着梯形的边移动。
可以观察到,当点P处于梯形的底端点C或顶端点D时,线段CP的长度为0;当点P处于梯形的上底端点A时,线段CP的长度为ab。
页眉内容全日制课程初三教案模块几何图形中的函数问题第三讲圆与几何函数问题教学内容概要:本讲是本模块中的第三部分,主要讲解以圆为背景的动态几何问题,通过研究圆中各线段、角度等几何量之间的关系,找到如何建立两个变量的函数关系式的一般思路和方法。
本讲主要围绕此类题目的解题知识来源进行分析与讲解,通过运用勾股定理、比例线段以及其它等知识点告诉学生如何发现解题关键,并进行有效地解题。
教学目标:1、掌握如何构造直角三角形,运用勾股定理解题。
2、掌握如何构造直角三角形,运用三角比解题。
3、掌握如何构造直角三角形,运用勾股定理和三角比综合性知识解题。
4、掌握如何构造相似三角形,运用相似比解题。
5、掌握在解以圆为背景的几何题目中,如何运用分类讨论思想。
重难点:1、如何构造直角三角形,运用相关知识解题。
2、如何运用分类讨论思想。
1、圆的确定(1)圆是平面上到一个定点的距离等于定长的所有点所组成的图形,这个定点是圆心,联结圆心和圆上任意一点的线段是圆的半径,这个定长是圆的半径长。
以点O为圆心的圆称为圆O,记作⊙O。
(2)一个点确定无数个圆,两个点也确定无数个圆,圆心在两点连线段的垂直平分线上;三个点确定1个或零个圆;(3)圆既是轴对称图形又是中心对称图形,对称轴是直径所在的直线。
2、点与圆的位置关系:点与圆的位置关系有三种:点在圆外,即这个点到圆心的距离大于半径;点在圆上,即这个点到圆心的距离等于半径;点在圆内,即这个点到圆心的距离小于半径。
3、外接圆与内接多边形(1)三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。
(2)三角形外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。
(3)锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边中点上。
(4)如果一个三角形的三个顶点在同一个圆上,这个三角形叫做这个圆的内接三角形。
4、圆心角、弧、弦、弦心距(1)联结圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
直线和圆动态问题在动态几何学中,直线和圆是经常出现的两种几何图形。
它们的动态问题是指在平面上随着时间变化而变化的直线和圆的特性。
这些问题通常涉及到直线和圆的位置、相交、切线、交点等方面的性质。
1.直线与圆的相交问题:假设已知一个直线和一个圆,我们想要知道它们是否相交,并求出相交的点。
解决方法:通过求解直线和圆的方程来判断是否相交。
对于直线的方程,可以使用直线的一般方程或者点斜式方程,对于圆的方程,可以使用圆的标准方程。
将直线方程代入圆的方程,得到一个关于变量的方程,求解该方程可以得到相交的点的坐标。
2.直线与圆的切线问题:假设已知一个圆和一条直线相切,我们想要求出切点和切线的方程。
解决方法:通过求解直线和圆的方程来确定切点的坐标,然后利用切点坐标和圆的半径可以确定唯一的切线。
对于圆的方程,可以使用圆的标准方程,对于直线的方程,可以使用直线的一般方程或者点斜式方程。
3.直线与圆的交点问题:假设已知一个圆和一条直线相交于两个点,我们想要求出这两个交点的坐标。
解决方法:同样地,通过求解直线和圆的方程来求得交点的坐标。
需要注意的是,由于直线与圆可能相交于两个点,所以在解方程时可能会得到两组解,应验证这些解是否在给定的直线和圆的范围内。
4.直线与圆的位置关系问题:假设已知一个圆和一条直线,我们想要确定它们的相对位置关系,例如直线是否在圆内部、外部还是与圆相切。
解决方法:通过判断直线与圆的方程是否有实数解,可以确定直线和圆的位置关系。
具体地,当圆与直线的方程无实数解时,说明直线与圆相离;当圆与直线的方程有一个实数解时,说明直线与圆相切;当圆与直线的方程有两个实数解时,说明直线与圆相交于两个点。
以上是直线和圆的动态问题的一些常见解决方法。
在实际应用中,我们经常需要使用这些方法来解决各种涉及直线和圆的动态几何问题。
希望对你有所帮助!。
几何最值问题之辅助圆(轨迹)最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P 就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P 点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最最值的问题就会变得简单了,比如:如下图,A 为圆外一点,在圆上找一点P 使得P A 最小.当然,也存在耿直的题目直接告诉动点轨迹是个圆的 确定共圆的方法有几种,①到定点的距离等于定长②共斜边的直角三角形,定角对定弦③对角互补的四边形 ④同侧内角相等的八字形1.如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,∠APB =90°,l 不经过点C ,则AB 的最小值为________.【分析】连接OP ,根据△APB 为直角三角形且O 是斜边AB 中点,可得OP 是AB 的一半,若AB 最小,则OP 最小即可.连接OC ,与圆C 交点即为所求点P ,此时OP 最小,AB 也取到最小值.Alll一、从圆的定义构造圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.2.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ’MN ,连接A ’C ,则A ’C 长度的最小值是__________.【分析】考虑△AMN 沿MN 所在直线翻折得到△A ’MN ,可得MA ’=MA =1,所以A ’轨迹是以M 点为圆心,MA 为半径的圆弧.连接CM ,与圆的交点即为所求的A ’,此时A ’C 的值最小.构造直角△MHC ,勾股定理求CM ,再减去A ’M 即可.A'NMABCDA'NMABCDDCBA MN A'H A'N MA BCD3.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是__________.【分析】考虑到将△FCE 沿EF 翻折得到△FPE ,可得P 点轨迹是以F 点为圆心,FC 为半径的圆弧.过F 点作FH ⊥AB ,与圆的交点即为所求P 点,此时点P 到AB 的距离最小.由相似先求FH ,再减去FP ,即可得到PH .ABCEFPABCEFPB4.如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【分析】考虑l是经过点P的直线,且△ABC沿直线l折叠,所以B’轨迹是以点P为圆心,PB为半径的圆弧.考虑△ACB’面积最大,因为AC是定值,只需B’到AC距离最大即可.过P作作PH⊥AC交AC于H点,与圆的交点即为所求B’点,先求HB’,再求面积.5.如图,矩形ABCD 中,AB =4,BC =8,P 、Q 分别是直线BC 、AB 上的两个动点,AE =2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF 、PD ,则PF +PD 的最小值是_________.【分析】F 点轨迹是以E 点为圆心,EA 为半径的圆,作点D 关于BC 对称点D ’,连接PD ’,PF +PD 化为PF +PD ’.连接ED ’,与圆的交点为所求F 点,与BC 交点为所求P 点,勾股定理先求ED ‘,再减去EF 即可.Q ABC DEFPD'PFE DCBAQ二、定边对直角知识回顾:直径所对的圆周角是直角.构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧. 图形释义:若AB 是一条定线段,且∠APB =90°,则P 点轨迹是以AB 为直径的圆.6.已知正方形ABCD 边长为2,E 、F 分别是BC 、CD 上的动点,且满足BE =CF ,连接AE 、BF ,交点为P 点,则PD 的最小值为_________.【分析】由于E 、F 是动点,故P 点也是动点,因而存在PD 最小值这样的问题,那P 点轨迹如何确定?考虑BE =CF ,易证AE ⊥BF ,即在运动过程中,∠APB =90°,故P 点轨迹是以AB 为直径的圆.连接OC ,与圆的交点即为P 点,再通过勾股定理即可求出PC 长度.思路概述:分析动点形成原理,通常“非直即圆”(不是直线就是圆),接下来可以寻找与动点相关有无定直线与定角.ABEFABCDPF7.如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形边长为2,则线段DH 长度的最小值是________.【分析】根据条件可知:∠DAG =∠DCG =∠ABE ,易证AG ⊥BE ,即∠AHB =90°,所以H 点轨迹是以AB 为直径的圆弧当D 、H 、O 共线时,DH 取到最小值,勾股定理可求.HGAB CDEFαααHGABCDE F8.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值是_________.【分析】∵∠PBC +∠PBA =90°,∠PBC =∠P AB , ∴∠P AB +∠PBA =90°, ∴∠APB =90°,∴P 点轨迹是以AB 为直径的圆弧.当O 、P 、C 共线时,CP 取到最小值,勾股定理先求OC ,再减去OP 即可.9.如图, AB 是半圆O 的直径,点C 在半圆O 上,AB =5,AC =4.D 是弧BC 上的一个动点,连接AD ,过点C 作CE ⊥AD 于E ,连接BE .在点D 移动的过程中,BE 的最小值为 .【分析】E 是动点,E 点由点C 向AD 作垂线得来,∠AEC =90°,且AC 是一条定线段,所以E 点轨迹是以AC 为直径的圆弧.PABCCCB当B 、E 、M 共线时,BE 取到最小值.连接BC ,勾股定理求BM ,再减去EM 即可.10.如图,在Rt △ABC 中,∠ACB =90°,BC =4,AC =10,点D 是AC 上的一个动点,以CD 为直径作圆O ,连接BD 交圆O 于点E ,则AE 的最小值为_________.【分析】连接CE ,由于CD 为直径,故∠CED =90°,考虑到CD 是动线段,故可以将此题看成定线段CB 对直角∠CEB .BB取CB 中点M ,所以E 点轨迹是以M 为圆心、CB 为直径的圆弧.连接AM ,与圆弧交点即为所求E 点,此时AE值最小,22AE AM EM =−==.11.如图,正方形ABCD 的边长为4,动点E 、F 分别从点A 、C 同时出发,以相同的速度分别沿AB 、CD 向终点B 、D 移动,当点E 到达点B 时,运动停止,过点B 作直线EF 的垂线BG ,垂足为点G ,连接AG ,则AG 长的最小值为 .【分析】首先考虑整个问题中的不变量,仅有AE =CF ,BG ⊥EF ,但∠BGE 所对的BE 边是不确定的.GF EDCB A重点放在AE =CF ,可得EF 必过正方形中心O 点,连接BD ,与EF 交点即为O 点.∠BGO 为直角且BO 边为定直线,故G 点轨迹是以BO 为直径的圆.记BO 中点为M 点,当A 、G 、M 共线时,AG 取到最小值,利用Rt △AOM 勾股定理先求AM ,再减去GM 即可.12.如图,正方形ABCD 的边长是4,点E 是AD 边上一动点,连接BE ,过点A 作AF ⊥BE 于点F ,点P 是AD 边上另一动点,则PC +PF 的最小值为________.【分析】∠AFB =90°且AB 是定线段,故F 点轨迹是以AB 中点O 为圆心、AB 为直径的圆.AB C DE F GABCDE FP考虑PC +PF 是折线段,作点C 关于AD 的对称点C ’,化PC +PF 为PC ’+PF ,当C ’、P 、F 、O 共线时,取到最小值.13.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,D 是BC 上一动点,CE ⊥AD 于E ,EF ⊥AB 交BC 于点F ,则CF 的最大值是_________.【分析】∠AEC =90°且AC 为定值,故E 点轨迹是以AC 为直径的圆弧.考虑EF ⊥AB ,且E 点在圆上,故当EF 与圆相切的时候,CF 取到最大值.F EDCBAB连接OF ,易证△OCF ≌△OEF ,∠COF =30°,故CF 可求.三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A 点轨迹是一个圆.当然,∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆. 若∠P =30°,以AB 为边,同侧构造等边三角形AOB ,O 即为圆心.若∠P =45°,以AB 为斜边,同侧构造等腰直角三角形AOB ,O 即为圆心.BB若∠P =60°,以AB 为底,同侧构造顶角为120°的等腰三角形AOB ,O 即为圆心.若∠P =120°,以AB 为底,异侧为边构造顶角为120°的等腰三角形AOB ,O 即为圆心.14.如图,等边△ABC 边长为2,E 、F 分别是BC 、CA 上两个动点,且BE =CF ,连接AE 、BF ,交点为P 点,则CP 的最小值为________.【分析】由BE =CF 可推得△ABE ≌△BCF ,所以∠APF =60°,但∠APF 所对的边AF 是变化的.EFCBAP60°EF CBAP所以考虑∠APB =120°,其对边AB 是定值.所以如图所示,P 点轨迹是以点O 为圆心的圆弧.(构造OA =OB 且∠AOB =120°)当O 、P 、C 共线时,可得CP 的最小值,利用Rt △OBC 勾股定理求得OC ,再减去OP 即可.15.如图,△ABC 为等边三角形,AB =2,若P 为△ABC 内一动点,且满足∠P AB =∠ACP ,则线段PB 长度的最小值为_________.120°EF CBAP 120°MOP ABCF E120°ABCP【分析】由∠P AB =∠ACP ,可得∠APC =120°,后同上例题.16.在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是________. 【分析】先作图,如下条件不多,但已经很明显,AB 是定值,∠C =60°,即定边对定角.故点C 的轨迹是以点O 为圆心的圆弧.(作AO =BO 且∠AOB =120°)题意要求∠A >∠B ,即BC >AC ,故点C 的轨迹如下图.当BC 为直径时,BC 取到最大值,考虑∠A 为△ABC 中最大角,故BC 为最长边,BC >AB =4.无最小值.4ABC 60°17.如图,AB 是圆O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交圆O 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是_______.【分析】分别考虑C 、E 两点的轨迹,C 点轨迹上是弧MCN ,其对应圆心角为∠MON ,半径为OM (或ON ).再考虑E 点轨迹,考虑到CE 、AE 都是角平分线,所以连接BE ,BE 平分∠ABC ,可得:∠AEB =135°.考虑到∠AEB 是定角,其对边AB 是定线段,根据定边对定角,所以E 点轨迹是个圆,考虑到∠ADB =90°,所以D 点即为圆心,DA 为半径.E 点轨迹所对的圆心角为∠MDN ,是∠MON 的一半,所以C 、E 两点轨迹圆半径之比为1:根号2,圆心角之比为2:1,所以弧长比值为根号2.ABAA。
初三数学动圆中的几何动点与动圆问题解题技巧:1.找到动态过程中不变的量,利用或探索(比如相似)已知条件列等式求值; 2.画出临界情况或符合题目情形的草图(非常重要),根据图像找等量关系。
动圆与几何图形结合问题例1.如图,在AOB 中,90,8,6O AO cm BO cm ===∠,点C 从A 点出发,在边AO 上以2/cm s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5/cm s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了 s 时,以C 点为圆心,1.5cm 为半径的圆与直线EF 相切.例2.如图,在Rt ACB 中,90,2,4ACB AC cm AB cm ===∠,动点P 从点C 出发,在BC 边上以3cm 每秒的速度向点B 匀速运动,同时动点Q 也从点C 出发,沿C A B →→以每秒4cm 的速度匀速运动,运动时间为t 秒3(0)2t <<,连接PQ ,以PQ为直径作O .(1)当12t =时,求PCQ 的面积; (2)设O 的面积为S ,求S 与t 的函数关系式;(3)当点Q 在AB 上运动时,O 与Rt ACB 的一边相切,求t 的值.学员姓名 年 级 初三 上课时间辅导科目 数学学科教师课 题 与圆有关的动点问题巩固练习:1.如图,已知12l l ⊥,⊙O 与12,l l 都相切,⊙O 的半径为2cm ,矩形ABCD 的边,AD AB 分别与12,l l 重合,43,4AB cm AD cm ==,若⊙O 与矩形ABCD 沿1l 同时向右移动,⊙O 的移动速度为3/cm s ,矩形ABCD 的移动速度为4/cm s ,设移动时间为()t s (1)如图①,连接,OA AC ,则∠OAC 的度数为 ;(2)如图②,两个图形移动一段时间后,⊙O 到达⊙O 1的位置,矩形ABCD 到达1111A B C D 的位置,此时点111,,O A C 恰好在同一直线上,求圆心O 移动的距离(即1OO 的长); (3)在移动过程中,圆心O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为()d cm ,当2d <时,求t 的取值范围(解答时可以利用备用图画出相关示意图).动态一次函数与圆例3.如图,平面直角坐标系xOy中,一次函数34y x b=-+(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与CD有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.巩固练习:如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点(4,0),(0,3)A B ,动点P 从点O 出发,沿x 轴负方向以每秒1个单位的速度运动,同时动点Q 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动,过点P 作PC ⊥AB 于点C ,连接PQ ,CQ ,以PQ ,CQ 为邻边构造平行四边形PQCD ,设点P 运动的时间为t 秒.(1)当点Q 在线段OB 上时,用含t 的代数式表示PC ,AC 的长; (2)在运动过程中.①当点D 落在x 轴上时,求出满足条件的t 的值;②若点D 落在△ABO 内部(不包括边界)时,直接写出t 的取值范围;(3)作点Q 关于x 轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A ,P ,C 三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t 的值;若不存在,请说明理由.课后作业1.如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1cm/s 的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;(2)当t为何值时,线段EN与⊙M相切?(3)若⊙M与线段EN只有一个公共点,求t的取值范围.2.如图,已知Rt△ABC的直角边AC与Rt△DEF的直角边DF在同一条直线上,且AC=60c,BC=45cm,DF=6cm,EF=8cm.现将点C与点F重合,再以4cm/s的速度沿CA方向移动△DEF;同时,点P从点A出发,以5cm/s的速度沿AB方向移动.设移动时间为t(s),以点P为圆心,3t(cm)长为半径的⊙P与AB相交于点M,N,当点F与点A重合时,△DEF与点P 同时停止移动,在移动过程中,(1)连接ME,当ME∥AC时,t= s;(2)连接NF,当NF平分DE时,求t的值;(3)是否存在⊙P与Rt△DEF的两条直角边所在的直线同时相切的时刻?若存在,求出t 的值;若不存在,说明理由.3.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.参考答案例1.3 2例2.(1)32;(2)2194tSπ=;(3)3561105或或巩固练习:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.例3.解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣34x+b,∴OM所在的直线函数式为:y=43x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=12 FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=43x,又∵AB所在的直线为:y=﹣34x+5,∴P(,).巩固练习:(1)34(4),(4)55PC t AC t=-=-;(2)2738t=27123811t<<;(3)927816或课后作业:1.(1)8(08)5BF t t=<≤;(2)329;(3)32400899t t<≤<<或2.(1)203;(2)307;(3)601211或3.解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=×12×3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,S△BCD=12BC•CD=12BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴34×()2≤S矩形ABCD≤34×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴34=.∴DG″=.∴点G移动路线的长为.。
与圆相关的动态几何问题
以下是几个与圆相关的动态几何问题:
1. 两个圆的交点:当两个圆相交时,它们会产生两个交点。
这
些交点可以在动态几何软件中随着圆的移动而变化。
2. 圆的切线:给定一个圆和一点,可以确定从该点到圆的切线。
这些切线可以通过移动点和圆来进行动态演示。
3. 圆的切线长度:给定一个圆和一点,可以计算从该点到圆的
切线的长度。
这个问题可以用来演示一些几何学中的定理,如切线
长定理。
4. 圆内接多边形:将一个多边形放置在内切圆内部,并使多边
形的每个顶点都在圆上。
这个问题涉及到内切圆的中心和半径,可
以通过动态几何演示进行展示。
5. 圆内接三角形:在内切圆上选择三个点,这些点构成一个内
接三角形。
可以展示内接圆如何与三角形有关,并给出内接圆的半
径和面积。