高中数学 1.4.1正弦、余弦函数的图象教案 新人教A版必修4
- 格式:doc
- 大小:90.00 KB
- 文档页数:7
1.4.1 正弦函数、余弦函数的图象1.4.2 正弦函数、余弦函数的性质考试标准知识导图学法指导1.本节内容以三角函数的图象及其性质为主,因此在学习过程中应先学会作图,然后利用图象研究函数的性质.2.深刻理解五点的取法,特别是非正常周期的五点.3.注意所有的变换是图象上的点在移动,是x 或y 在变化而非ωx .4.运用整体代换的思想,令ωx +φ=t ,借助y =sin t ,y =cos t 的图象和性质研究函数y =sin(ωx +φ),y =cos(ωx +φ)的图象和性质.第1课时 正弦函数、余弦函数的图象正弦曲线与余弦曲线及其画法状元随笔 1.关于正弦函数y =sin x 的图象(1)正弦函数y =sin x ,x∈[2k π,2(k +1)π],k∈Z 的图象与x ∈[0,2π]上的图形一致,因为终边相同角的同名三角函数值相等.(2)正弦函数的图象向左、右无限延伸,可以由y =sin x ,x ∈[0,2π]图象向左右平移得到(每次平移2π个单位).2.“几何法”和“五点法”画正、余弦函数的比较(1)“几何法”就是利用单位圆中正弦线和余弦线作出正、余弦函数图象的方法. 该方法作图较精确,但较为烦琐.(2)“五点法”是画三角函数图象的基本方法,在要求精度不高的情况下常用此法. 提醒:作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)“五点法”作正、余弦函数的图象时的“五点”是指图象上的任意五点.( )(2)正弦函数在⎣⎢⎡⎦⎥⎤-3π2,π2和⎣⎢⎡⎦⎥⎤π2,5π2上的图象相同.( )(3)正弦函数、余弦函数的图象分别向左、右无限延伸.( ) 答案:(1)× (2)√ (3)√2.以下对正弦函数y =sin x 的图象描述不正确的是( )A .在x ∈[2k π,2(k +1)π](k ∈Z )上的图象形状相同,只是位置不同B .介于直线y =1与直线y =-1之间C .关于x 轴对称D .与y 轴仅有一个交点解析:画出y =sin x 的图象,根据图象可知A ,B ,D 三项都正确. 答案:C3.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )解析:函数y =-sin x 的图象与函数y =sin x 的图象关于x 轴对称,故选D. 答案:D4.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是________________.解析:令2x =0,π2,π,3π2和2π,得x =0,π4,π2,34π,π.答案:0,π4,π2,34π,π类型一 用“五点法”作三角函数的图象例1 用“五点法”作出下列函数的简图: (1)y =sin x +12,x ∈[0,2π];(2)y =1-cos x ,x ∈[0,2π]. 【解析】 (1)按五个关键点列表:(2)列表:作函数图象需要先列表再描点,最后用平滑曲线连线. 方法归纳作形如y =a sin x +b (或y =a cos x +b ),x ∈[0,2π]的图象的三个步骤跟踪训练1 画出函数y =3+2cos x 的简图. 解析:(1)列表,如下表所示(2)利用五点作图法画简图.类型二 正、余弦函数曲线的简单应用 例2 根据正弦曲线求满足sin x ≥-32在[0,2π]上的x 的取值范围. 【解析】 在同一坐标系内作出函数y =sin x 与y =-32的图象,如图所示.观察在一个闭区间[0,2π]内的情形,满足sin x ≥-32的x ∈⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π,所以满足sin x ≥-32在[0,2π]上的x 的范围是{x 0≤x ≤43π或5π3≤x ≤2π}.或⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π在同一坐标系内作y =sin x 与y =-32的图象,利用图象求x 的范围. 方法归纳利用三角函数图象解sin x >a (或cos x >a )的三个步骤 (1)作出直线y =a ,y =sin x (或y =cos x )的图象. (2)确定sin x =a (或cos x =a )的x 值. (3)确定sin x >a (或cos x >a )的解集.[注意] 解三角不等式sin x >a ,如果不限定范围时,一般先利用图象求出x ∈[0,2π]范围内x 的取值范围,然后根据终边相同角的同名三角函数值相等,写出原不等式的解集.跟踪训练2 根据余弦曲线求满足cos x ≤12的x 的取值范围.解析:作出余弦函数y =cos x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为[π3+2k π,5π3+2k π],k ∈Z .在同一坐标内作y =cos x 与y =12的图象,利用图象求x 的范围.1.4.1-2.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列对函数y =cos x 的图象描述错误的是( ) A .在[0,2π]和[4π,6π]上的图象形状相同,只是位置不同 B .介于直线y =1与直线y =-1之间 C .关于x 轴对称 D .与y 轴只有一个交点解析:观察余弦函数的图象知:y =cos x 关于y 轴对称,故C 错误. 答案:C2.下列各点中,不在y =sin x 图象上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫π2,1C.⎝⎛⎭⎪⎫3π2,-1 D .(π,1) 解析:y =sin x 图象上的点是(π,0),而不是(π,1). 答案:D3.不等式sin x >0,x ∈[0,2π]的解集为( ) A .[0,π] B .(0,π)C.⎣⎢⎡⎦⎥⎤π2,3π2D.⎝ ⎛⎭⎪⎫π2,3π2解析:由y =sin x 在[0,2π]的图象可得. 答案:B 4.点M ⎝⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( )A .0B .1C .-1D .2解析:点M 在y =sin x 的图象上,代入得-m =sin π2=1,∴m =-1.答案:C5.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( )A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同解析:根据正弦曲线的作法过程,可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象位置不同,但形状相同.答案:B二、填空题(每小题5分,共15分) 6.下列叙述正确的有________.(1)y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; (2)y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称; (3)正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围.解析:分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象观察可知(1)(2)(3)均正确.答案:(1)(2)(3)7.关于三角函数的图象,有下列说法: (1)y =sin|x |与y =sin x 的图象关于y 轴对称; (2)y =cos(-x )与y =cos|x |的图象相同;(3)y =|sin x |与y =sin(-x )的图象关于x 轴对称; (4)y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的序号是________.解析:对(2),y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同; 对(4),y =cos(-x )=cos x ,故其图象关于y 轴对称,由作图可知(1)(3)均不正确. 答案:(2)(4)8.直线y =12与函数y =sin x ,x ∈[0,2π]的交点坐标是________.解析:令sin x =12,则x =2k π+π6或x =2k π+56π,又∵x ∈[0,2π],故x =π6或56π.答案:⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫56π,12三、解答题(每小题10分,共20分)9.利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解析:(1)取值列表:(2)10.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解析:函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3. [能力提升](20分钟,40分)11.已知函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积为( )A .4B .8C .2πD .4π解析:依题意,由余弦函数图象关于点⎝ ⎛⎭⎪⎫π2,0和点⎝ ⎛⎭⎪⎫3π2,0成中心对称,可得y =2cosx (0≤x ≤2π)的图象和直线y =2围成的封闭图形的面积为2π×2=4π.答案:D12.函数y =2cos x -2的定义域是________. 解析:要使函数有意义,只需2cos x -2≥0,即cos x ≥22.由余弦函数图象知(如图),所求定义域为⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z .答案:⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z 13.利用“五点法”作出y =sin ⎝⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤π2,52π的图象.解析:列表如下:14.利用图象变换作出下列函数的简图:(1)y=1-cos x,x∈[0,2π];(2)y=|sin x|,x∈[0,4π].解析:(1)首先用“五点法”作出函数y=cos x,x∈[0,2π]的简图,再作出y=cos x,x∈[0,2π]的简图关于x轴对称的简图,即y=-cos x,x∈[0,2π]的简图,将y=-cos x,x∈[0,2π]的简图向上平移1个单位即可得到y=1-cos x,x∈[0,2π]的简图,如图所示.(2)首先用“五点法”作出函数y=sin x,x∈[0,4π]的简图,再将该简图在x轴下方的部分翻折到x轴的上方,即得到y=|sin x|,x∈[0,4π]的简图,如图所示.。
1.4.1正弦函数,余弦函数的图像教学目标:(一)知识与技能1.正弦函数的图象;2.余弦函数的图象.(二)过程与方法1.会用单位圆中的线段画出正弦函数的图象;2.用诱导公式画出余弦函数的图象;3.会用“五点法”画正、余弦函数的图象.(三)情感态度价值观1.培养学生的数形结合思想;2.渗透由抽象到具体思想;3.使学生理解动与静的辩证关系,注意与其他学科之间的联系,体现数学在其他学科及社会中的应用;4.培养学生主动探索的精神,独立解决问题的能力.教学重点:用“五点法”画正弦曲线、余弦曲线教学难点:利用单位圆画正弦曲线及用诱导公式画出余弦曲线教具准备:多媒体课件,尺子。
,教学过程[师]1、考虑作函数图象的基本方法是什么呢?描点法:(步骤如下)例如、作出y=sin x在[0,2 ]上的图象;(1)列表x 06π 3π 2π23π 56π π 76π 43π 32π 53π 116π 2πy=sinx 012 32 1 32 12 0 -12 -32-1 -32 -12 0 (2)描点 (3)连线让同学们自己发现此方法的弊端:标函数值时得计算器等工具求三角函数值,所以得到的都是近似值,从而不能准确的找准位置.那么有没有更准确的呢?(此时同学们带着急于想得到更准确的方法的心理去想问题),[表扬]看来同学.思考:如果不取近似值能不能把 表示出来?正弦函数除了可以用数字表示,有没有其他表示方法?三角函数线(有向线段)几何画法: 在直角坐标系的x 轴上任意取一点O1,以O1为圆心作单位圆,从⊙O1与x 轴的交点A 起把⊙O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确).过⊙O1上的各分点作x 轴的垂线,可以得到对应于0、 、 、 、…、2等角的正弦线,相应地,再把x 轴上从0到2这一段(2≈6.28)分成12等份(例如,从原点起向右的第四个点,就是对应于角的点).把角x 的正弦线向右平移 ,使它的起点与x 轴上的点x 重合(例如,把正弦线O1B 向右平移,使点O1与x 轴上的 点重合).再用光滑曲线把这些正弦线的终点连结起来,就得到了函数y =sin x 在[0,2 ]上的图象.---2π32πxy2ππ11---3sin 32π=2π2π6π3π2π2ππ想要得到R 上的正弦图象怎么办呢?利用周期性sin(2k π+α)=sin α得到R 上的正弦图象分析图象的变化:cos y x == cos()x -= sin [ -(- x )]= sin ( x + )分析图象的变化:直接由正弦函数y =sin x 在R 的图象向左平移 个单位得到所以同学们就得再发挥你们的小宇宙寻求更简单的方法;同学们开始讨论,再次仔细观察函数y =sin x , x ∈[0,2π]上的图象,同时想到画一次函数的图象不用描出过多的点,只需描出两个代表性的点(可谓是“关键点”)即可.五点如下:(0,0)、( ,1)、(π,0)、(32π,-1)、(2π,0) 2π2π2π2π而且只要是这五个点确定了,正弦函数的形状也就基本上确定了.因此在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就得到函数的简图.今后我们将经常使用这种近似的"五点(画图)法"几何意义:①在直角坐标系中五点的横坐标都是轴线角;②在图象上分别是:( ,1)是最高点、(32π,-1)是最低点、(0,0)、(π,0)、(2π,0)是和X 轴的交点)像画正弦曲线一样,余弦曲线x ∈[0,2π]也可以用五点法画出: 五点如下:(0,1)、( ,0)、(π,-1)、(32π,0)、(2π,1),描点.例1、 画出下列函数的简图 (1)y =1+sin x ,x ∈[0,2π] (2)y =-cos x ,x ∈[0,2π] (1)解法:按五个关键点列表 x 0 2ππ32π 2π sin x 0 1 0 -1 0 1+sin x1211利用光滑曲线描点画图(其中用虚线画出y =sin x ,x ∈[0,2π]的图象)(2)解法:按五个关键点列表:x2ππ32π 2π2π2πcos x 1 0 -10 1-cos x-1 0 1 0 -11.12sin[02]21cos[02]y x xy x xππ=∈=+∈练习用五点法画出下列函数的图像(),(),课后总结(1)出利用单位圆中的三角函数线作sin,Ry x x=∈的图象,明确图象的形状(2)利用诱导公式得到y=cosx,(xεR)的图像(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题课后作业:书上的练习。
1.4.1正弦、余弦函数的图象教学目标:知识目标:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状;(2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神;教学重点:用单位圆中的正弦线作正弦函数的图象; 教学难点:作余弦函数的图象。
教学过程:一、复习引入:1.弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离r (02222>+=+=y x yx r )则比值r y叫做α的正弦 记作: ry =αsin比值r x叫做α的余弦 记作: rx =αcos3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).ry)(x,αP第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.把角x()x R∈的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函数的图象?根据诱导公式cos sin()2x xπ=+,可以把正弦函数y=sinx的图象向左平移2π单位即得余弦函数y=cosx的图象.(课件第三页“平移曲线”)正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.思考:在作正弦函数的图象时,应抓住哪些关键点?2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1)(2π,0)y=cosxy=sinxπ2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11yx-11o xy余弦函数y=cosx x ∈[0,2π]的五个点关键是哪几个?(0,1) (2π,0) (π,-1) (23π,0)(2π,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握. 优点是方便,缺点是精确度不高,熟练后尚可以3、讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2)y=-COSx●探究2. 如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y =1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
§1.4.1《正弦函数、余弦函数的图象》教学设计【教学目标】 1.知识与技能:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状; (2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图及解简单的三角不等式 2.过程与方法进一步培养合作探究、分析概括,以及抽象思维能力。
3.情感态度价值观通过作正弦函数和余弦函数图象,培养认真负责,一丝不苟的学习精神。
【教学重点难点】教学重点:“五点法”画长度为一个周期的闭区间上的正弦函数图象 教学难点:正、余弦函数图象的简单运用. 【教学过程】(一)实例引入:视频演示:“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”思考: 有什么办法画出该曲线的图象? (二)自主探究1.创设情境:问题1:三角函数线的作法?问题2:如何在直角坐标系中画出点⎪⎫⎛sin ,ππ?问题3:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象? 作图过程中有什么困难? 2.探究新知:问题1:如何作出sin y x =[0,2]x π∈的图象呢?几何画板演示:正弦函数图象的几何作图法教师引导:在直角坐标系的x 轴上任意取一点O 1,以O 1为圆心作单位圆,从圆O 1与x 轴 的交点A 起把圆O 1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O1上的各分点作x轴的垂线,可以得到对应于0、6π、3π、2π、……、π2等角的正弦线,相应地,再把x轴上从0到π2这一段分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数xy sin=,[]π2,0∈x的图象.问题2:如何得到xy sin=,Rx∈的图象因为终边相同的角有相同的三角函数值,所以函数xy sin=在[]0,,)1(2,2≠∈+∈kZkkkxππ的图象与函数xy sin=,[]π2,0∈x的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每次π2个单位长度),就可以得到正弦函数xy sin=,Rx∈的图象,即正弦曲线。
2019-2020年高中数学1.4.1正弦函数、余弦函数的图象教案新人教A版必修4一.教材的地位与作用《正弦函数、余弦函数的图象》是高中数学(人民教育出版社A版)必修四第一章《三角函数》第1.4.1节《三角函数的图像与性质》的内容。
本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。
作为函数,它是已学过的指数函数与对数函数的后继内容,也是后面学习三角函数的性质的重要基础依据,为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。
因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。
二.学情分析高一学生对函数概念的理解本身就是难点,再加上与三角有关的知识,就要求学生有较高的理解和综合的能力。
在作图方面,学生在初中已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。
基于上述情况,预测学生对于本节课的内容,会有以下的一些困难:1.概念的引出,把三角与函数两个概念结合起来,正确理解正弦函数和余弦函数。
2.利用单位圆的正弦线作出正弦函数在上的图象。
3.正确掌握五点法的作图步骤与要求。
4.按照正弦函数的作图方法,学生自己解决画正、余弦函数图像的一些方法。
在教学活动中,通过教师提出疑问,引导学生主动观察、主动思考、主动探究、讨论交流;在积极的双边活动中解决疑难,获得知识;整个过程贯穿“疑问”——“思索”——“发现”——“解惑”四个坏节,注重学生思维的持续性和发展性,促进学生数学思维的形成,提高学生的综合素质。
三.方法分析根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:1. 讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数图象的特征,归纳作函数图象的步骤方法以及图象之间的变化与联系。
1.4.1 正弦函数、余弦函数的图象1.知识与技能(1)利用单位圆中的三角函数线作出y=sin x,x∈R的图象,明确图象的形状.(2)根据关系cos x=sin,作出y=cos x,x∈R的图象.(3)用“五点法〞作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题.2.过程与方法(1)通过利用单位圆中的三角函数线作出正弦函数、余弦函数的图象的过程,让学生体验、理解数形结合这一重要思想方法.(2)通过“五点法〞作正弦函数、余弦函数的图象,使学生理解并掌握作函数简图的基本方法.(3)引导学生利用正弦函数与余弦函数的联系,由正弦曲线,通过图象变换作出余弦曲线,使学生学会用联系的观点思考问题.3.情感、态度与价值观通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神.重点:正弦、余弦函数图象的作法.难点:正弦函数、余弦函数图象间的关系、图象变换及其应用.1.函数y=cos x+|cos x|,x∈[0,2π]的大致图象为()解析:∵y=cos x+|cos x|=∴选D.答案:D2.用“五点法〞作出函数y=1-2sin x,x∈[-π,π]的简图,并回答以下问题:(1)观察函数图象,写出满足以下条件的x 的区间.①y>1;②y<1.(2)假设直线y=a 与y=1-2sin x ,x ∈[-π,π]的图象有两个交点,求a 的取值X 围.解:列表如下:x -π -0 π sin x 0 -10 1 0 1-2sin x1 3 1 -1 1描点、连线得:(1)由图象可知图象在直线y=1上方部分时y>1,在直线y=1下方部分时y<1,所以当x ∈(-π,0)时,y>1;当x ∈(0,π)时,y<1.(2)如下图,当直线y=a 与y=1-2sin x 有两个交点时,1<a<3或-1<a<1,所以a 的取值X 围是{a|1<a<3或-1<a<1}.。
浙江省金华市高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图像与性质教案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省金华市高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图像与性质教案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省金华市高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图像与性质教案新人教A版必修4的全部内容。
1、4、1正弦函数、余弦函数的图像我们知道,实数集与角的集合之间可以建立一一对应的关系,而一个确定的角又对应着唯一确定的正弦(或余弦)值。
这样,任意给定一个实数x,有唯一确定的值sinx(或cosx)与之对应.由这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R.遇到一个新的函数,非常自然的是画出它的图像,观察图像的形状,看看有什么特殊点,并借助图像研究它的性质,如:值域、单调性、奇偶性、最值、对称性、周期性等等。
特别地,从前面的学习中我们可以看到,三角函数具有“周而复始”的变化规律。
下面我们就来研究正弦函数、余弦函数的图像和性质。
首先,我们来看一下本章章头图表示的“简谐振动”的实验.将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标轴的横轴。
把漏斗灌上细沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可以在纸板上得到一条曲线,它就是简谐运动的图像.物理中把简谐运动的图像叫做“正弦曲线”或“余弦曲线".它表示了漏斗对平衡位置的位移s (纵坐标)随时间t(横坐标)的变化的情况。
《正弦函数、余弦函数的图象》教学设计一.教材的地位与作用《正弦函数、余弦函数的图象》是高中数学(人民教育A版)必修四第一章《三角函数》第.1节《三角函数的图像与性质》的内容。
本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。
作为函数,它是已学过的指数函数与对数函数的后继内容,也是后面学习三角函数的性质的重要基础依据,为今后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。
因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。
二.学情分析高一学生对函数概念的理解本身就是难点,再加上与三角有关的知识,就要求学生有较高的理解和综合的能力。
在作图方面,学生在初中已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。
基于上述情况,预测学生对于本节课的内容,会有以下的一些困难:1.概念的引出,把三角与函数两个概念结合起来,正确理解正弦函数和余弦函数。
2.利用单位圆的正弦线作出正弦函数在上的图象。
3.正确掌握五点法的作图步骤与要求。
4.按照正弦函数的作图方法,学生自己解决画正、余弦函数图像的一些方法。
在教学活动中,通过教师提出疑问,引导学生主动观察、主动思考、主动探究、讨论交流;在积极的双边活动中解决疑难,获得知识;整个过程贯穿“疑问”——“思索”——“发现”——“解惑”四个坏节,注重学生思维的持续性和发展性,促进学生数学思维的形成,提高学生的综合素质。
三.方法分析根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:1. 讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数图象的特征,归纳作函数图象的步骤方法以及图象之间的变化与联系。
2018版高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图象导学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图象导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图象导学案新人教A版必修4的全部内容。
1.4。
1 正弦函数、余弦函数的图象学习目标1。
了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线。
3。
理解正弦曲线与余弦曲线之间的联系.知识点一正弦函数、余弦函数的概念思考从对应的角度如何理解正弦函数、余弦函数的概念?答案实数集与角的集合之间可以建立一一对应关系,而一个确定的角又对应着唯一确定的正弦(或余弦)值。
这样,任意给定一个实数x,有唯一确定的值sin x(或cos x)与之对应.由这个对应法则所确定的函数y=sin x(或y=cos x)叫做正弦函数(或余弦函数),其定义域是R.知识点二几何法作正弦函数、余弦函数的图象思考1 课本上是利用什么来比较精确的画出正弦函数的图象的?其基本步骤是什么?答案利用正弦线,这种作图方法称为“几何法”,其基本步骤如下:①作出单位圆:作直角坐标系,并在直角坐标系中y轴左侧的x轴上取一点O1,作出以O1为圆心的单位圆;②等分单位圆,作正弦线:从⊙O1与x轴的交点A起,把⊙O1分成12等份.过⊙O1上各分点作x轴的垂线,得到对应于0,错误!,错误!,错误!,…,2π等角的正弦线;③找横坐标:把x轴上从0到2π这一段分成12等份;④找纵坐标:把角x的正弦线向右平移,使它的起点与x轴上对应的点x重合,从而得到12条正弦线的12个终点;⑤连线:用光滑的曲线将12个终点依次从左至右连接起来,即得到函数y=sin x,x∈[0,2π]的图象,如图。
河北省邯郸市馆陶县第一中学高中数学 1.4.1正弦,余弦函数的图像教案新人教A版必修4【教学目标】1、通过本节学习,理解正弦函数、余弦函数图象的画法.2、通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.【教学重点】正弦函数、余弦函数的图象.【教学难点】将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.【教学过程】一、预习提案(阅读教材第30—33页内容,完成以下问题:)1、借助单位圆中的正弦线在下图中画出正弦函数y=sinx, x [0,2]的图象。
说明:使用三角函数线作图象时,将单位圆分的份数越多,图象越准确。
在作函数图象时,自变量要采用弧度制,确保图象规范。
2、由上面画出的x [0,2]的正弦函数图象向两侧无限延伸得到正弦函数的图象(正弦曲线),请画出:3、观察图象(正弦曲线),说明正弦函数图象的特点:①由于正弦函数y=sinx中的x可以取一切实数,所以正弦函数图象向两侧。
②正弦函数y=sinx图象总在直线和之间运动。
4、观察正弦函数y=sinx, x [0,2]的图象,找到起关键作用的五个点:,,,,5、用“五点作图法”画出y=sinx, x [-,]的图象。
6、①函数ƒ(x+1)的图象相对于函数ƒ(x)的图象是如何变化的?②函数y=sin(x+)的图象相对于正弦函数y=sinx的图象是如何变化的?③由诱导公式知:sin(x+)= ,所以函数y=sin(x+)=④请画出y=cosx的图象(余弦曲线)7、观察余弦函数y=cosx, x [0,2]的图象,找到起关键作用的五个点:,,,,8、用“五点作图法”画出y=cosx, x [-,]的图象。
二、新课讲解例1、用“五点作图法”作出y=, x [0,2]的图象;并通过猜想画出y=在整个定义域内的图象。
练习:用“五点作图法”作出y=, x [0,2]的图象;并通过猜想画出y=在整个定义域内的图象。
"福建省福州市平潭县城东中学高中数学 1.4.1正弦、余弦函数
的图象教案 新人教A 版必修4 "
教学目的:
知识目标:
(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状(2)根据关系)2sin(cos π
+=x x ,作出R x x y ∈=,cos 的图象;
(3)用“五点法”作出正弦、余弦函数的简图,并利用图象解决一些有关问题; 能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;
(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;
德育目标:通过作正余弦函数图象,培养学生认真一丝不苟的学习和工作精神; 教学重点:用单位圆中的正弦线作正弦函数的图象;
教学难点:作余弦函数的图象。
教学过程:
一、复习引入:
1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )
P 与原点的距离r(02222>+=+=
y x y x r ) 则比值r y 叫做α的正弦 记作: r
y =αsin 比值r x 叫做α的余弦 记作: r
x =αcos 3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有
MP r y ==αsin ,OM r
x ==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.
二、讲解新课:
1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.
(1)函数y=sinx 的图象
第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应). 第二步:在单位圆中画出对应于角6,0π,3π,2
π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).
第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.
根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.
把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.
(2)余弦函数y=cosx 的图象
探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函
数的图象? 根据诱导公式cos sin()2x x π
=+,可以把正弦函数y=sinx 的图象向左平移2
π单位即得余弦函数y=cosx 的图象. (课件第三页“平移曲线” )
正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线.
思考:在作正弦函数的图象时,应抓住哪些关键点?
2.用五点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (
2
π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是哪几个?(0,1) (
2
π,0) (π,-1) (23π,0) (2π,1)
只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.
优点是方便,缺点是精确度不高,熟练后尚可以
3、讲解范例:
例1 作下列函数的简图
(1)y=1+sinx,x∈[0,2π],(2)y=-COSx
●探究2.如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到
(1)y=1+sinx ,x∈〔0,2π〕的图象;
(2)y=sin(x- π3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
●探究3.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx ,
x∈〔0,2π〕的图象?
小结:这两个图像关于X轴对称。
●探究4.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx ,x∈〔0,2π〕的图象?
小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。
●探究5.
不用作图,你能判断函数y=sin( x - 3π2 )和y=cosx的图象有何关系吗?请在同一坐标
系中画出它们的简图,以验证你的猜想。
小结:sin( x - 3π2 )= sin[( x - 3π2 ) +2 π] =sin(x+π2)=cosx 这两个函数相等,图象重合。
例2 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:
1(1)sin ;2x ≥ 15(2)cos ,(0).22
x x π≤<< 三、巩固与练习
四、小 结:本节课学习了以下内容:
1.正弦、余弦曲线 几何画法和五点法
2.注意与诱导公式,三角函数线的知识的联系
五、课后作业:《习案》作业:八。