桥梁计算通用表格
- 格式:xlsx
- 大小:15.19 KB
- 文档页数:1
截面半径r (mm):
980截面换算高度h (mm):1960截面纵向配筋半径r s (mm):
890g=r s /r=
0.9082截面有效高度h 0(mm):
1870
构件计算长度l 0(mm):
20000荷载偏心率对截面曲率影响系数ξ1: 1.000ξ1计算值是否大于1YES 荷载偏心率对截面曲率影响系数ξ2:
1.000ξ2计算值是否大于1
YES 偏心距增大系数η:
1.144偏心距增大后数值ηe 0(mm):
1103
构件混凝土强度等级f cu,k (Mpa):30混凝土轴心抗压设计强度f cd (Mpa):
13.8混凝土材料极限压应变εcu :0.0033普通钢筋弹性模量E S (MPa): 2.00E+05受拉钢筋设计强度f s d (MPa):280受压钢筋设计强度f's d (MPa):
280结构重要性系数γ0
1.00承载极限状态设计轴向压力N d (kN):8739γ0N d (kN):8739承载极限状态设计偏心弯矩M d (kN.m):8427γ0M d (kN.m):
8427
轴向力对截面重心轴的偏心距e 0(mm):
964
圆形截面偏心受压钢筋混凝土构件配筋计算(JTG D62-2004)(5.3.9条)
几何信息
材料信息
设计荷载
2071.00
2258.68不同钢筋直径对应配筋根数
2545.44
2836.23
3227.74。
15.0mm 15.8mm4547600mm 228814.841mm 315.6429mm 5d 30d 3650d 48MPa 8.96E-018.44E-027.15E-01ε(f cm )=3.70E-043.32E-042.80E-052.37E-04收缩开始时的龄期(d),t s =计算考虑时刻的混凝土龄期(d),t =计算考虑终止的龄期t ∞=构件的理论厚度h=2A/u=构件与大气接触的周边长度u=2、混凝土收缩引起的梁体缩短量温度下降引桥的梁体伸长量△l t -t βs2(t ∞-t s )=△l t +=a c l(T max -T set,l )△l t -=a c l(T set,u -T min )梁结构截面面积A=εcs (t,t s )=εcso βs1(t-t s )=εcso =ε(f cm )βRH =εcs (t ∞,t s )=εcso βs2(t ∞-t s )=立方体强度f cm =βRH =1.55(1-(RH/RH 0)3)=βs1(t-t s )=2.09E-04= 1.00E+002.09E-049.4074mm 预应力引起的截面重心处的法向压应力6Mpa 30d 3650d 梁体的弹性模量E c 按照规范3.1.5采用34500Mpa 1.37052.41910.4821794.5288≤15000.94221.59831.50591.00001.505911.7854mm= 1.9518mm 分配给支座的汽车制动力标准值F k =21.013KN 支座橡胶层的总厚度t e =49mm 支座橡胶层剪变模量G e= 1.2Mpacs ∞ 混凝土收缩引起的梁体缩短量-b -或闭口量△l b -ε)=加载时砼龄期t 0=计算考虑时刻的砼龄期t=l )t ,t (l cs s ∞-=ε∆-b。
截面半径r (mm):
600截面换算高度h (mm):1200截面纵向配筋半径r s (mm):
500g=r s /r=
0.8333截面有效高度h 0(mm):
1100
构件计算长度l 0(mm):
2000荷载偏心率对截面曲率影响系数ξ1:0.649ξ1计算值是否大于1NO 荷载偏心率对截面曲率影响系数ξ2:
1.000ξ2计算值是否大于1
YES 偏心距增大系数η:
1.008偏心距增大后数值ηe 0(mm):
184
构件混凝土强度等级f cu,k (Mpa):30混凝土轴心抗压设计强度f cd (Mpa):
13.8混凝土材料极限压应变εcu :0.0033普通钢筋弹性模量E S (MPa): 2.00E+05受拉钢筋设计强度f s d (MPa):330受压钢筋设计强度f's d (MPa):
330结构重要性系数γ0
1.10承载极限状态设计轴向压力N d (kN):1641γ0N d (kN):1805承载极限状态设计偏心弯矩M d (kN.m):300γ0M d (kN.m):
330
轴向力对截面重心轴的偏心距e 0(mm):
183
圆形截面偏心受压钢筋混凝土构件配筋计算
几何信息
材料信息
设计荷载
20-11.70
22-9.67不同钢筋直径对应配筋根数
25-7.49
28-5.97
32-4.57。
5.2 Análisis de la Capacidad de Carga de Pilotes de pila 15.2.1 Características de los materiales y la geometriala fuerza de reaccion de la fundicion horizontal y las pruebas de resorte de la base horizontal se calculan de la siguiente manera:25.2.2 Parámetros del suelo5.2.2.1 La capacidad de carga última de un pilote3.4.1.2KN/m 25.4.1y el esfuerzo máximo de trabajo o admisible La capacidad de carga última de un piloteFactor De Seguridad Tradicional Cuadro 5.13 for Estática Cuadro 3.2for Estática +Dinámica es la suma de la fricion generada entre el fuste y el suelo que le rodea y la carga resistida en la base o punta5.2.2.2 Capacidad de carga en suelos granulares(a) El componente de fricción puede ser expresado bajo la forma de5.4.1.1K Coeficiente de empuje lateral que actrúa sobre el fusteEsfuerzo vertical efectivo promedio en el tramo ,kPa Angulo de fricción entre el material del pilote y el suelo [°] Perímetro [m]Longitud del tramo analizado [m] Fricción entre el suelo y el pilote [kPa]Cuadro 5.3(b) el componente de la resistencia en la base se puede expresar como:5.4.1.1Capacidad admisible por punta del pilote (ton)puntafricion ult Q Q Q +=fricionQ punta Q FSQ q ult adm /=adm q FSult Q iLi I i s fricion l p K l p f Q ∆⋅⋅⋅=∆⋅⋅=∑∑=*tan *0'0δσ'0σi l ∆δ*p l ∆s f φδ0.1=()b b q b b punta A q A N A q Q lim '≤=⋅=σ=punta Q 3=FS 2=FSCapacidad de soporte del suelo a nivel de la punta [kpa]Esfuerzo vertical efectivo al nivel de la base del pilote (Tramo empotrado)Factor de capacidad de carga para una fundación profunda.Figura 5.1Área seccional del pilote en la base (m 2)Capacidad límite admisible por punta del pilote 5.2.2.3 Capacidad de carga en suelos cohesivos(condición no drenada)5.4.1.2Aherencia suelo-pilote que se deberá establecer con base en la resistencia al corte no drenada ( ) Resistencia al corte no drenada promedio del sueloÁrea del del fuste en contacto con el suelo(m 2)Área de la base pilote (m 2) Factor de capacidad dc carga para pilotes en arcilla (usualmente se toma como 9.0)En el caso de pilotes prcexcavados y colaclos en sitio, la adherencia se deberá calcular a partir de la siguiente expresión: (pilote redondo)donde L es la longitud del pilote en mfor Excavación sostenida con lodos 5.2.2.4 Capacidad de carga por fricción entre concreto y rocaEn el caso de que la carsa se transmita lateralmente a lo largo de la longitud empotrada en roca, la capacidad de carga última estará dada por la expresión: 5.6.1Capacidad de carga última [kN]Diámetro del pilote [m]Profundidad de empotramiento en la roca sana [rn]Resistenciá por fricción entre concreto y roca [kpa]5.2.3 Módulo de Reacción de la Fundación ks (ver "Análisis y Diseño de Ingeniería Fundamental", Bowles, Quinta Edición, CH4, 9, 16)5.2.3.1 Coeficiente ks del suelo:el resorte de tierra se asigna a la fundación de la pila. El resorte de tierra se calcula de la siguiente manera: Utilice la correlación de Yoshinda y Yoshinaka Módulo1 de reacción de la fundacion:Bowles páginas 442 Ecuación 9-10Para componentes horizontales o verticales, As es una constante Bs es el factor de profundidadZ es el punto de cálculo de la profundidad n es el índice más adecuado para ks través del estudio inverso de ksJE Bowles páginas 442 Ecuación 16-26aa ) Para pilotes cuadrados o pilotes HP, Fw1, Fw2 = 1,0b ) Para pilotes redondos, Fw1 = 1,5c ) Para pilotes redondos, Fw2 = 3.3C m =1.25,D>1200mmC=40n=0.5Método de reacción de la fundación Módulo 2JE Bowles páginas 441 Ecuación 9-6ab es la anchura del plano de proyección de la pila v es la relación de Poisson Módulo elástico del suelo JE Bowles páginas 823 Ecuación 16-29KN/m 2=b q =)*('L γσ=q N =b A φtan 50lim q N q =b c u b b punta A N c A q Q ⋅⋅=⋅=*fA fricion A C Q ⋅==A C uc =u c =f A =b A =*c N uA c C ⋅=αψαααα321=65.01=α)/75.01(,32L -=αα6.0=ψaS ult H D Q τπ⋅⋅⋅==ult Q =D =S H =a τns s s Z B A k +=)()5.0(21n q m w n s p c m w s Z N C C F N Z BS Z B N B cN C C F AS A γγγ=⨯=+==∧)1(2v b E k S S -=70650N E S =En el rango de altura de la unidad, el módulo del suelo es constanteJE Bowels páginas 819or Área elástica de apoyo para la unidad5..3.2 ks de Arena :Módulo elástico del sueloJE Bowels páginas 823 Ecuación 16-29KN/m 2Módulo de reacción de la fundaciónJE Bowels páginas 824 Formula 16-30cb es la anchura del plano de proyección de la pila 5.2.3.3 Ks de la Arcilla:Módulo de reacción de la fundaciónJE Bowels páginas 822C m =1.255.2.3.4 k s de las Rocas :k s =40C m (SF)qa=40C m quC m =1.25,D>1200mm)2)(6/(1,,-+∆=i s i s S k k L b k )2)(6/(1,,++∆=i s i s S k k L b k 70650N E S =bE k S S =cC k m s 360=L b ∆5.2.4 Diseño de la carga internamite de intensidad, ER: acción sísmica Caso A:carga de Todos los carriles5.2.5 Capacidad de carga de pilotesLos parámetros de diseño de ingeniería geotécnica y datos de perforación dados en la tabla a continuación se basan en el informe de prospección geológica。
文章题目:深度解析桥梁计算中的恒载和活载组合表格在桥梁设计和计算中,恒载和活载是两个重要的概念。
恒载是桥梁在使用过程中始终存在的荷载,例如桥梁自重、路面和人行道的重量等;活载则是桥梁在特定情况下才会出现的荷载,例如车辆、行人等运载物体的重量。
恒载和活载的组合对桥梁的安全性和稳定性有着重要影响。
本文将深入探讨桥梁计算中的恒载和活载组合表格,为读者全面解析这一重要概念。
##1. 恒载和活载的概念恒载和活载是桥梁设计和计算中常用的荷载概念。
恒载是桥梁在使用过程中始终存在的荷载,它是一个恒定不变的荷载。
恒载包括桥梁本身的重量、路面、人行道、护栏等构件的重量,以及其他常驻在桥梁上的荷载。
活载则是桥梁在特定情况下才会出现的荷载,例如车辆、行人等运载物体的重量。
恒载和活载的组合对桥梁的安全性和稳定性至关重要。
##2. 恒载和活载组合表格的作用恒载和活载组合表格是用来确定恒载和活载的组合情况,以便进行桥梁的设计和计算。
在设计桥梁时,需要考虑到桥梁在不同使用条件下受到的荷载情况,包括恒载和不同类型的活载。
恒载和活载组合表格可以帮助工程师确定桥梁在各种组合荷载下的受力情况,从而进行合理的结构设计。
##3. 如何使用恒载和活载组合表格在使用恒载和活载组合表格时,首先需要对桥梁所处的使用环境和可能受到的荷载情况有一个清晰的了解。
然后根据恒载和活载的具体数值和性质,结合设计参数,使用恒载和活载组合表格确定桥梁在不同组合荷载下的安全性和稳定性。
工程师可以根据实际情况选择合适的荷载组合,以确保桥梁在设计寿命内的安全可靠。
##4. 个人观点和理解在桥梁设计和计算中,恒载和活载组合表格是非常重要的工具。
合理确定恒载和活载的组合是桥梁设计和计算的关键步骤,也是确保桥梁安全性和稳定性的重要措施之一。
通过对恒载和活载组合表格的合理使用,可以准确评估桥梁在不同荷载组合下的受力情况,保证桥梁的设计符合安全标准,并且能够满足实际使用要求。
##5. 总结恒载和活载组合表格在桥梁设计和计算中有着重要的作用,它能够帮助工程师确定桥梁在不同组合荷载下的受力情况,从而进行合理的结构设计。