2017-2018学年贵州省贵阳市七年级(下)期末数学试卷
- 格式:doc
- 大小:173.50 KB
- 文档页数:6
2017-2018学年度下学期期末考试七年级数学试题一、选择题:(本大题共10个小题,每小题3分,共30分) ( )1. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )2. 下列计算正确的是:A.24±=B.3)3(2-=- C.5)5(2=-D.3)3(2-=-( )3. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标 相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3C. 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )4. 下列各式是二元一次方程的是:A. y x 21+B.342=+-y yx C. 95-=yx D.02=-y x( )5. 若n m >,则下列各式一定成立的是:A. 33+<+n mB. 33-<-n mC.33n m > D. n m 33->-( )6. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个 ( )7. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A. ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )8. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A. 4±B. 2±C. 4D. 2( )9. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种 ( )10. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A. 65≤≤mB. 65<<mC. 65<≤mD. 65≤<m二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上. 11. 已知无理数b a <+<51,并且b a ,是两个连续的整数,则ab 的值为___________. 12. 如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13. 课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用 )1,2(表示,那么邓祖男的位置可以表示成________.14. 把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm.15. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有 36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________. 16. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 三、解答题:(本大题共8个小题,共72分) 17.(本小题满分10分) 解下列方程组:(1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x18.(本小题满分10分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2) ⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x20.(本小题满分6分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱 的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 21.(本小题满分8分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示. 求图中阴影部分的面积.22.(本小题满分8分)先阅读理解下面的例题,再按要求解答:例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球 25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元. (1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球 按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一 次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分12分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________.(2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得 △ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段 OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC, ∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).七年级数学试题参考答案一.选择题题号 12345678910 答案A C ABC CD B BD二.填空题11. 12 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. ⎩⎨⎧⨯==+xy y x 2524036 16.23<a(第12题只填一种且正确的给2分,填了两种但有一种错误的不给分;第15题第二个方程用比例式的也对)三.解答题17.(1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③ ②2⨯,得 661210=-y x ④ ③+④,得 11419=x6=x把6=x 代入①,得 16463=+⨯y 24-=y 21-=y 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分)18.(1)解:去分母,得 6)13(3)12(2≥---x x 去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:① ② (2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x 52=-y x ④ 把④代入①,得 1528=+y x ⑤ ④+⑤,得 1517=x ④-⑤,得 1511=y 所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x①②所以不等式组的解集:32≤<x …….......................................……6分 19.解:(1)300;....................................………………………2分 (2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分20.证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC…………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 21.解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分 ∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分22.解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分 有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分 解不等式组②,得不等式组②无解………………………..............……………4分 故原不等式组的解集为:5132<<-x ……………………........………………5分23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分 ⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分 (2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24. (1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP 3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点M (﹣2,1)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】∵点P 的横坐标为负,纵坐标为正, ∴该点在第二象限. 故选B .2.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3 B .-3C .±3D .+6【答案】C【解析】利用完全平方式的结构特征即可求出m 的值.【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键. 3.奥运会的年份与届数如下表,表中n 的值为( )A .28B .29C .30D .31【答案】D【解析】第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年; 第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年; 第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年; …第n 届相应的举办年份=1896+4×(n-1)=1892+4n 年, 根据规律代入相应的年数即可算出届数.【详解】观察表格可知每届举办年份比上一届举办年份多4, 则第n 届相应的举办年份=1896+4×(n−1)=1892+4n 年, 1892+4n=2016,解得:n=31, 故选D. 【点睛】本题考查数字变化的规律,解题的关键是由题意得出第n 届相应的举办年份=1896+4×(n−1)=1892+4n 年. 4.七年级学生在会议室开会,每排坐12人,则有12人没有座位;每排坐14人,则余2人独坐最后一排,则这间会议室的座位排数是( ) A .15 B .14C .13D .12【答案】D【解析】分析后可得出两个等量关系:12×排数+12=学生人数;14×(排数-1)+2=学生人数.根据题意列出二元一次方程组求解即可。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,若△DEF 是由ABC △平移后得到的,已知点A D 、之间的距离为1,2,CE =则BC =( )A .1B .2C .3D .不确定【答案】C 【解析】根据平移的性质,结合图形可直接求解.【详解】解:观察图形可知:△DEF 是由△ABC 沿BC 向右移动BE 的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=1.∴BC=BE+CE=1+2=3.故选择:C.【点睛】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.若关于x 的分式方程1233m x x x -=---有增根,则实数m 的值是( ) A .2B .2-C .1D .0 【答案】A【解析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=2,故选:A .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.不等式2(x-1)≥4的解集在数轴上表示为( )A .B .C .D .【答案】C 【解析】首先求出不等式的解集,再根据解集画数轴即可.【详解】去括号得:2x ﹣2≥4,移项得:2x≥4+2,合并同类项得:2x≥6,系数化为1,得:x≥1. 故选C .【点睛】本题考查了解一元一次不等式和在数轴上表示解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含等于解集为实心点,不含等于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”. 4.如图,将ABC 绕点C 按逆时针方向旋转75后得到''A B C ,若25ACB ∠=︒,则'BCA ∠的度数为( )A .50B .40C .25D .60【答案】A 【解析】根据旋转的性质即可得到结论.【详解】解:∵将ABC 绕点C 按逆时针方向旋转75后得到''A B C ,∴'75ACA ∠=︒,∴''752550BCA ACA ACB ∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD 的度数是解此题的关键.5.如图,直线//AB CD ,直线EF 与AB CD ,分別相交于点E ,点F ,若35∠=︒EFD ,則∠=AEF ( )A .35°B .45°C .55°D .65°【答案】A 【解析】先根据平行线的性质即可得到AEF ∠的度数.【详解】∵AB ∥CD ,∴EFD ∠=AEF ∠=35°,故选A.【点睛】本题考查平行线的性质,解题的关键是掌握平行线的性质.6.若2a >,则下列各式错误的是( )A .20a ->B .57a +>C .2a ->-D .42a ->-【答案】C【解析】根据不等式的性质,对选项进行判断即可【详解】解:A 、2a >,20a ∴->,正确; B 、2a >,57a ∴+>,正确;C 、2a >,2a ∴-<-,错误;D 、2a >,42a ∴->-,正确;故选:C .【点睛】本题考查不等式,熟练掌握不等式的性质即运算法则是解题关键.7.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有( )A .1个B .2个C .3个D .4个【答案】B【解析】根据有关性质与定理,正确的命题叫真命题,错误的命题叫做假命题,分别对每一项进行判断即可.【详解】①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题.其中属于真命题的有2个.故选B.【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.8.计算(a2)3,正确结果是()A.a5B.a6C.a8D.a9【答案】B【解析】由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a1.故选B.9.如图,直线与直线相交于点,与直线相交于点,,,若要使直线,则将直线绕点按如图所示的方向至少旋转()A.B.C.D.【答案】A【解析】根据平行线的判定可得,当c与a的夹角为60°时,存在,由此得到直线a绕点A顺时针旋转60°−50°=10°.【详解】解:∵∠2=60°,∴若要使直线a∥b,则∠3应该为60°,又∵∠1=130°,∴∠3=50°,∴直线a绕点A按顺时针方向至少旋转:60°−50°=10°,故选:A.【点睛】本题主要考查了旋转的性质以及平行线的判定,解题时注意:同位角相等,两直线平行.10.用尺规作图,已知三边作三角形,用到的基本作图是( )A .作一个角等于已知角B .作一条线段等于已知线段C .作已知直线的垂线D .作角的平分线【答案】B【解析】根据作一条线段等于已知线段即可解决问题.【详解】已知三边作三角形,用到的基本作图是作一条线段等于已知线段,故选B .【点睛】本题考查基本作图,解题的关键是熟练掌握五种基本作图.二、填空题题11.如图,要得到AB∥CD,只需要添加一个条件, 这个条件可以是__________.【答案】∠2=∠4 (答案不唯一)【解析】由图可知:直线AB 、CD 同时被直线AC 所截,∠2与∠4是一对内错角,利用内错角相等,判断两直线平行.解:∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行).“点睛”本题考查了“内错角相等,两直线平行”这一判定定理.12.已知一个钝角的度数为()535x -︒ ,则x 的取值范围是______【答案】2543x <<【解析】试题分析:根据钝角的范围即可得到关于x 的不等式组,解出即可求得结果.由题意得53590535180x x ->⎧⎨-<⎩,解得2543x <<. 故答案为2543x <<【点睛】考点:不等式组的应用点评:本题属于基础应用题,只需学生熟练掌握钝角的范围和一元一次不等式组的解法,即可完成. 13.如图,AB CD ∥,78B ∠=︒,32D ∠=︒,求F ∠=________.【答案】46°【解析】根据平行线的性质可得∠B=∠1,再根据三角形外角的性质可得∠F=∠1-∠D,进而可得答案.【详解】∵AB∥CD,∴∠B=∠1=78°,∵∠D=32°,∴∠F=∠1-∠D=78°-32°=46°.【点睛】此题主要考查了平行线的性质,以及三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.14.如图所示,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上下是∠+∠=__________.平行的,转动刀片时会形成∠1、∠2,则12【答案】90︒【解析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【详解】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵刀柄外形是一个直角梯形,∴∠AOP+∠POC=90°,∴∠1+∠2=90°.【点睛】本题考查了平行线的性质和判定.平行线性质定理:两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等.15.如果3a 3x b y 与﹣a 2y b x+1是同类项,则2x+y =_____.【答案】1【解析】根据相同字母的指数相同列方程组求出x 和y 的值,然后代入2x+y 计算.【详解】∵3a 3x b y 与-a 2y b x+1是同类项,∴321x y y x =⎧⎨=+⎩, 解得23x y =⎧⎨=⎩, ∴2x+y=2×2+3=1.故答案为:1【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:①所含字母相同;②相同字母的指数相同.16.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =.给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ∆≅∆;④CD DN =.其中正确结论的序号是__________.【答案】①②③【解析】根据三角形的内角和定理求出∠EAB=∠FAC ,即可判断①;根据AAS 证△EAB ≌△FAC ,即可判断②;推出AC=AB ,根据ASA 即可证出③;不能推出CD 和DN 所在的三角形全等,也不能用其它方法证出CD=DN .【详解】∵∠E=∠F=90∘,∠B=∠C ,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC ,∴∠EAB−CAB=∠FAC−∠CAB ,即∠1=∠2,∴①正确;在△EAB 和△FAC 中AF AE B C E F =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△EAB ≌△FAC ,∴BE=CF ,AC=AB ,∴②正确;在△ACN 和△ABM 中C B CAN BAM AC AB =⎧⎪=⎨⎪=⎩∠∠∠∠∴△ACN ≌△ABM ,∴③正确;∵根据已知不能推出CD=DN ,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.17.如图,直线AB ,CD 被直线AC 所截, E 为线段CD 上一点.(1)若AB ∥CD ,则1∠=∠_____.依据是______________________.(2)若____________,则AE ∥BD .依据是内错角相等,两直线平行.【答案】2∠ 两直线平行,同位角相等 ∠6 =∠9 .【解析】根据平行线的性质与判定进行解答即可.【详解】(1)若AB ∥CD ,则∠1=∠1.依据是两直线平行,同位角相等.(1)若∠6=∠9,则AE ∥BD .依据是内错角相等,两直线平行.【点睛】此题考查了两条直线平行的性质与判定,熟记平行线的性质和判定是解决本题的关键.三、解答题18.(1)()10312753π-⎛⎫-- ⎪⎝⎭; (2)计算:()()()252x x x x -+--;【答案】(1)1;(2)510x -.【解析】(1)根据负指数幂的性质以及立方根的定义、零指数幂的运算分别化简求出即可; (2)根据多项式乘法法则计算即可.【详解】解:(1)原式()3311=+-+=(2)原式2225102510x x x x x x =-+--+=-【点睛】此题考查负整数指数幂,零指数幂,整式的混合运算,解题关键在于掌握运算法则.19.如图,已知AD 、AE 分别是Rt △ABC 的高和中线,AB =9cm ,AC =12cm ,BC =15cm ,试求: (1)AD 的长度;(2)△ACE 和△ABE 的周长的差.【答案】(1)AD 的长度为365cm ;(2)△ACE 和△ABE 的周长的差是3cm . 【解析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB 即可.【详解】解:(1)∵∠BAC =90°,AD 是边BC 上的高,∴S △ACB =12AB •AC =12BC •AD , ∵AB =9cm ,AC =12cm ,BC =15cm ,∴AD =AB AC CB ⋅=91215⨯=365(cm ), 即AD 的长度为365cm ; (2)∵AE 为BC 边上的中线,∴BE =CE ,∴△ACE 的周长﹣△ABE 的周长=AC +AE +CE ﹣(AB +BE +AE )=AC ﹣AB =12﹣9=3(cm ),即△ACE 和△ABE 的周长的差是3cm .【点睛】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.20.如图,先将三角形ABC 向左平移3个单位长度,再向下平移4个单位长度,得到三角形111A B C .(1)画出经过两次平移后的图形,并写出1A ,1B ,1C 的坐标;(2)已知三角形ABC 内部一点P 的坐标为(),a b ,若点P 随三角形ABC 一起平移,平移后点P 的对应点1P 的坐标为()2,2--,请求出a ,b 的值;(3)求三角形ABC 的面积.【答案】(1)点1A ,1B ,1C 的坐标分别为()4,3--,()2,2-,()1,1-;(2)12a b =⎧⎨=⎩;(3)10.5. 【解析】(1)分别作出A ,B ,C 的对应点111A B C ,,,即可解决问题.(2)利用平移规律,构建方程组即可解决问题.(3)利用分割法求出三角形的面积即可. 【详解】解:(1)如图,111A B C ∆为所作,点1A ,1B ,1C 的坐标分别为()4,3--,()2,2-,()1,1-;(2) 平移后点P 的对应点1P 的坐标为()3,4a b --;1P 的坐标为()2,2--∴3242a b -=-⎧⎨-=-⎩解得:12a b =⎧⎨=⎩ (3)ABC ∆的面积1146613322=⨯-⨯⨯-⨯⨯14310.52-⨯⨯= 【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会用分割法求三角形的面积,属于中考常考题型.21.甲、乙二人解关于x ,y 的方程组278ax by cx y +=⎧⎨-=⎩, 甲正确地解出32x y =⎧⎨=-⎩, 而乙因把c 抄错了,结果解得22x y =-⎧⎨=⎩,求出a ,b ,c 的值,并求乙将c 抄成了何值? 【答案】乙把c 抄成了-11,a 的值是4,b 的值是5,c 的值是−2.【解析】把32x y ,,=⎧⎨=-⎩代入方程组278ax by cx y +=⎧⎨-=⎩,,,由方程组中第二个式子可得:c=-2,然后把解代入2ax by +=中,可得:222a b -+=中即可得到答案.【详解】把32x y ,,=⎧⎨=-⎩代入方程组278ax by cx y +=⎧⎨-=⎩,,, 可得:3223148a b c -=⎧⎨+=⎩,,, 解得:c=−2,把22x y =-⎧⎨=⎩,,代入2ax by +=中, 可得:222a b -+=,可得新的方程组:322222a b a b ,,-=⎧⎨-+=⎩, 解得:45a b =⎧⎨=⎩,, 把22x y =-⎧⎨=⎩,,代入cx−7y=8中,可得:c=-11. 答:乙把c 抄成了-11,a 的值是4,b 的值是5,c 的值是−2.【点睛】本题考查二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.22.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E.①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________.(2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.【答案】(1)①见解析;②50,︒30︒;(2)见解析【解析】(1)①根据已知条件画出图形;②根据三角形的内角和计算∠C 的度数,由垂直的定义计算即可;(2)根据已知角相等可得内错角相等,根据平行线的判定证明.【详解】(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,9030CDE C ︒︒∴∠=-∠=.故答案为50,︒30︒.(2)CDA CAB ∠=∠,且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠,CDF ADF CAD BAD ∴∠+∠=∠+∠.,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.【点睛】本题考查的是三角形的内角和定理、平行线的判定,掌握三角形内角和定理和平行线的判定是解题的关键. 23.某中学要在一块如图的三角形花圃里种植花草,同时学校还打算修建一条从A 点到BC 边的小路.(1)若要使修建的小路所用的材料最少..,请在图1画出小路AD ; (2)若要使小路两侧所种的花草面积相等....,请在图2画出小路AE ,其中E 点满足的条件是______. 【答案】(1)见解析;(2)点E 是BC 边的中点,图见解析【解析】(1)根据垂线段的性质,可得答案;(2)根据三角形中线的性质,可得答案.【详解】(1)过A 点作BC 边上的高.(2)过A 点作BC 边上的中线,点E 是BC 边的中点.【点睛】此题考查作图—应用与设计作图,解题关键在于掌握作图法则.24.如图,在平面直角坐标系中,已知(),0A a ,()0,B b 两点,且a 、b 满足()225340a b a b ++++=,点(),0C m 是射线AO 上的动点(不与A ,O 重合),将线段AC 平移到BD ,使点A 与点B 对应,点C 与点D 对应,连接CD ,OD .(1)求出点A 和点B 的坐标;(2)设三角形ODB 面积为s ,若312s <≤,求m 的取值范围;(3)设BAO θ∠=,COD α∠=,ODC β∠=,请给出θ,α,β满足的数量关系式,并说明理由.【答案】(1)A (−4,0),B (0,3);(2)412m -<≤且m ≠0;(3)θ=α+β,理由见解析【解析】(1)由算术平方根和绝对值的非负性质得出250340a b a b ++=⎧⎨+=⎩,即可求出a,b 的值 ,即可得出答案;(2)根据三角形ODB 面积为s =1122BD BO AC BO ⨯=⨯=1(4)32m +⨯,再根据312s <≤即可得到不等式组,即可求解; (3)先根据平行的性质得到BAO DCE ∠=∠,再根据三角形的外角定理即可求解.【详解】(1)∵m ,n ()2340a b += ∴250340a b a b ++=⎧⎨+=⎩解得:43a b =-⎧⎨=⎩∴A (−4,0),B (0,3);(2)∵点(),0C m 是射线AO 上的动点(不与A ,O 重合),将线段AC 平移到BD ,使点A 与点B 对应,点C 与点D 对应,连接CD ,OD .∴四边形ACDB 为平行四边形,∴s =1122BD BO AC BO ⨯=⨯=1(4)32m +⨯=162m + ∵312s <≤ ∴136122m <+≤ 解得-612m <≤∵,点(),0C m 是射线AO 上的动点(不与A ,O 重合),∴412m -<≤且m ≠0;(3)θ=α+β,理由如下:如图,∵AB ∥CD ,∴BAO DCE ∠=∠=θ,∵COD ∠+ODC ∠=DCE ∠∴α+β=DCE ∠=θ即θ=α+β.【点睛】本题是三角形综合题目,考查了坐标与图形性质、算术平方根和绝对值的非负性质、二元一次方程组的解法、平移的性质、平行线的性质、三角形面积;本题综合性强,熟练掌握平移的性质和平行四边形的判定与性质是解题的关键.25.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC∥BD,∠A=∠B,试猜想AE与BF 的位置关系,并说明理由.【答案】AE∥BF,理由见解析.【解析】根据两直线平行同位角相等,可判断∠B=∠DOE,再根据∠A=∠B,即可得到∠DOE=∠A,进而得出AC∥BD.【详解】AC∥BD,理由:∵AE∥BF,∴∠B=∠DOE.∵∠A=∠B,∴∠DOE=∠A,∴AC∥BD.【点睛】本题考查了平行线的判定与性质,解答本题的关键是掌握:两直线平行同位角相等;同位角相等两直线平行.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150175x << 范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表;根据统计图表提供的信息,下列说法中①抽取男生的样本中,身高155165x << 之间的学生有18人;②初一学生中女生的身高的中位数在B 组;③抽取的样本中抽取女生的样本容量是38;④初一学生身高在160170x << 之间的学生约有800人.其中合理的是( )A .①②B .①④C .②④D .③④ 【答案】B【解析】根据频数分布直方图和中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;用男女生身高的样本中160cm 至170cm 所占比例乘以男女生总人数可判断④.【详解】解:由直方图可知,抽取男生的样本中,身高在155≤x <165之间的学生有8+10=18人,故①正确;由A 与B 的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C 组,故②错误; ∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵女生身高在160cm 至170cm (不含170cm )的学生有40×(30%+15%)=18人,∴身高在160cm 至170cm (不含170cm )的学生有(840+800)×22184240++=800(人),故④正确; 故选B .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.已知关于x 的不等式组0,23 5.x m x -≤⎧⎨+≥⎩的整数解共有3个,则m 的取值范围是( ) A .34m <<B .34m ≤<C .34m ≤≤D .34m <≤ 【答案】B 【解析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解:0235x m x -≤⎧⎨+≥⎩①②, 由①解得:x≤m ,由②解得:x≥1,故不等式组的解集为1≤x≤m ,由不等式组的整数解有3个,得到整数解为1,2,3,则m 的范围为3≤m <1.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键. 3.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE=36°,那么∠BED 的度数为()A .108°B .120°C .126°D .144°【答案】C 【解析】解:∵AE 平分∠BAC36BAE CAE ∴∠=∠=ED AC180CAE DEA ∴∠+∠=18036144DEA ∴∠=-=360AED AEB BED ∠+∠+∠=36014490126BED ∴∠=--=故选C .4.如图,在ABC ∆中,90B =∠,//MN AC ,155∠=,则C ∠的度数是( )A .25B .35C .45D .55【答案】B 【解析】由//MN AC 可得∠A=155∠=,再根据直角三角形两内角互余求解即可.【详解】∵//MN AC ,∠A=155∠=,∴∠C=90°-55°=35°.故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了直角三角形中两个锐角互余.5.在ABC ∆和DEF ∆中,①A E ∠=∠,AB EF =,C D ∠=∠;②A D ∠=∠,AB EF =,B E ∠=∠;③A F ∠=∠,AB DF =,B D ∠=∠;④A F ∠=∠,AB EF =,CB ED =;⑤A D ∠=∠,B E ∠=∠,BC EF =能判断这两个三角形全等的条件有( )A .①②④B .①③⑤C .④⑤D .①③【答案】B【解析】依据全等三角形的判定定理进行判断即可.【详解】解:第①组满足AAS ,能证明△ABC ≌△EFD .第②组不是两角及一边对应相等,不能证明△ABC 和△DEF 全等.第③组满足ASA ,能证明△ABC ≌△FDE .第④组只是SSA ,不能证明△ABC ≌△FED .第⑤组满足AAS ,能证明△ABC ≌△DEF .故选:B .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.若点(a +2,2-a )在第一象限,则实数 a 的取值范围是A .a >-2B .a <2C .-2<a <2D .a <-2 或 a >2【答案】C 【解析】根据点在第一象限时,横坐标>0,纵坐标>0,可得不等式组,进而求解可得答案.【详解】∵点(a+2,2-a )在第一象限,∴a+2>0,2-a >0;解可得-2<a <2,故选:C .【点睛】考核知识点:平面直角坐标系中点的坐标.理解点的位置和坐标关系是关键.7.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )A .300名学生是总体B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是50【答案】D【解析】A 、300名学生的视力情况是总体,故此选项错误;B 、每个学生的视力情况是个体,故此选项错误;C 、50名学生的视力情况是抽取的一个样本,故此选项错误;D 、这组数据的样本容量是50,故此选项正确.故选D .8.下列调查中,最适合采用全面调查(普查)方式的是 ( )A .对重庆市居民日平均用水量的调查B .对一批LED 节能灯使用寿命的调查C .对重庆新闻频道“天天630”栏目收视率的调查D .对某校九年级(1)班同学的身高情况的调查【答案】D【解析】试题分析:普查适用于范围较小,事件较短的一些事件,或者是精确度要求非常高的事件.本题中A 、B 、C 三个选项都不适合普查,只适合做抽样调查.考点:调查的方式9.如图,在ABC ∆中,10AB =,6AC =,8BC =,将ABC ∆折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则BDE ∆的周长为( )A.6 B.8 C.12 D.14【答案】C【解析】根据折叠的性质得AE=AC=6,CD=DE,代入数值即可得到△BDE的周长.【详解】解:∵AC=6,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,∴AE=AC=6,CD=DE,∵AB=10,∴BE=10-6=4,∴△BDE的周长为CD+DE+BE=BC+BE=8+4=12.故选C.【点睛】本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().A.50°B.30°C.20°D.60°【答案】C【解析】解:∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°-∠CEF=30°,∴∠BCE=∠BCD-∠ECD=20°.故选:C.二、填空题题11.有六个数:0.123,(﹣1.5)3,3.1416,117,﹣2π,0.1020020002,若其中无理数的个数为x,正数的个数为y,则x+y=_____.【答案】5【解析】根据无理数与正数的概念进行解答即可.【详解】∵无理数有2π-一个,∴x=1,∵正数有0.123、3.1416、117、0.1020020002共4个∴y=4,∴x+y=5,故答案为:5【点睛】本题主要考查实数的分类.无理数和有理数统称实数,熟练掌握实数的分类是解题关键.12.下列调查:①了解你所在班级的每个学生穿几号鞋;②了解节能灯的使用寿命;③了解我市八年级学生的视力情况;④了解实验田里水稻的穗长,其中适合做全面调查的有______,适合做抽样调查的有______。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,某公园里一处长方形风景欣赏区ABCD,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,若AB=50米,BC=25米,小明沿着小路的中间从入口E处走到出口F处,则他所走的路线(图中虚线)长为()A.75米B.96米C.98米D.100米【答案】C【解析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD-1)×2,求出即可.【详解】利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD-1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25-1)×2=98(米),故选C.【点睛】考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.2.已知a<b,则下列不等式中不成立的是().A.a+4<b+4 B.2a<2b C.—5a<—5b D.a b -1-1 33<【答案】C【解析】根据不等式的性质逐项进行分析判断【详解】A.由不等式a<b的两边同时加4,不等号的方向不变,等式成立,故本项错误.B.由不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b;故本选项错误;C. 由不等式a<b的两边同时乘以−5,不等号的方向不变,即−5a<−5不成立,故本选项正确;D.由不等式a<b的两边同时除以3再-1,不等式的方向不变,即a b-1-133<成立,故本选项正确.【点睛】本题考查不等式的性质,解题关键在于分析判断不等式是否成立.3.下列实数是负数的是()A2B.3 C.0 D.﹣1 【答案】D【解析】根据小于零的数是负数,可得答案.【详解】解:由于-1<0,所以-1为负数.故选:D.【点睛】本题考查了实数,小于零的数是负数.4.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,如果∠1=40°,∠2=30°,那么∠A=()A.40°B.30°C.70°D.35°【答案】D【解析】根据折叠的性质得到∠AED=∠A´ED,∠ADE=∠A´DE,一,再根据平角的性质和三角形内角和定理得出答案.【详解】因为折叠使∠AED=∠A´ED,∠ADE=∠A´DE,所以∠1+∠AEA´=180°,因为∠1=40°,所以∠AEA´=140°,即∠AED=∠A´ED=70°,同理求出∠ADE=∠A´DE=75°,因为ΔA´DE的内角和180°,所以∠A´=180°-70°-75°=35°,即∠A=35°.【点睛】本题考查折叠的性质、平角的性质、三角形内角和定理来解,熟练掌握折叠会出现相等的角和线段. 5.下列四个实数中是无理数的是()A.πB.1.414 C.0 D.1 3【答案】A【解析】根据无理数、有理数的定义即可判定选项.【详解】解:1.414,0,13是有理数,π是无理数,故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若在去分母解分式方程122x kx x-=++时产生增根,则k=()A.﹣3 B.﹣2 C.﹣1 D.1【答案】A【解析】先去分母化为整式方程,然后根据方程有增根可知x=-2,代入后即可求出k的值.【详解】去分母得:x﹣1=k,由分式方程有增根,得到x+2=0,即x=﹣2,把x=﹣2代入整式方程得:k=﹣3,故选:A.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x人,组数为y 组,则可列方程为()A.B.C.D.【答案】D【解析】根据关键语句“若每组7人,余3人”可得方程7y+3−x;“若每组8人,则缺5人.”可得方程8y−5=x,联立两个方程可得方程组.【详解】解:设运动员人数为x人,组数为y组,由题意得:列方程组为故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.x 时,y的值是()8.在二元一次方程2x+y=6中,当2A.1 B.2 C.-2 D.-1【答案】B【解析】把x=2代入2x+y=6,即可求出y的值.【详解】把x=2代入2x+y=6,得4+y=6,∴y=2.故选B.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 9.潜山市某村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该厂对这种产品来说()A .1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B .1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C .1月至3月每月生产总量逐月增加,4、5两月均停止生产D .1月至3月每月生产总量不变,4、5两月均停止生产【答案】B【解析】试题分析:仔细分析函数图象的特征,根据c 随t 的变化规律即可求出答案.解:由图中可以看出,函数图象在1月至3月,图象由低到高,说明随着月份的增加,产量不断提高,从3月份开始,函数图象的高度不再变化,说明产量不再变化,和3月份是持平的.故选B .考点:实际问题的函数图象点评:此类问题是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.10.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得【 】A .()x+y=5010x+y =320⎧⎪⎨⎪⎩B .x+y=506x+10y=320⎧⎨⎩C .x+y=506x+y=320⎧⎨⎩D .x+y=5010x+6y=320⎧⎨⎩ 【答案】B 。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知a>b,c为任意实数,则下列不等式总是成立的是()A.a+c<b+c B.a-c>b-c C.ac<bc D.a|c|>b|c|【答案】B【解析】根据不等式的性质,不等式两边同加同减一个实数,不等号方向不变,同乘或同除大于0的数,不等号方向不变,同乘或同除一个负数,不等号方向改变,可得答案【详解】A、两边都加c,不等号的方向不变,故A不符合题意;B、两边都减c,不等号的方向不变,故B符合题意;C、c=0时,ac=bc,故C不符合题意;D、c=0时,a|c|=b|c|,故D不符合题意;故选B.【点睛】本题考查了不等式的性质,利用不等式的性质是解题关键.2.2018年11月贵阳市教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为()A.80人B.60人C.20人D.10人【答案】A【解析】用200乘以第三组所占的比例即可得.【详解】200×42341+++=80,即第三组的频数为80,故选A.【点睛】本题考查了频数分布直方图,频数等知识点,熟练掌握频数分布直方图中每个小长方形的宽是相同的,各组的频数之比就是每个小长方形的长度之比是解题的关键.3.每周一,同学们都要进行庄严的升旗仪式,你可以用哪幅图来近似的刻画国旗的高度与时间的关系A.B.C.D.【答案】B【解析】国旗升起的高度随时间的增大而增大,且高度在某个时间点之后应该保持不变.【详解】解:∵国旗升起的高度随时间的增大而增大,且高度在某个时间点之后应该保持不变,应该选B.故选:B.【点睛】本题考查函数的图象,根据题意得出国旗升起的高度与时间的函数关系是解题的关键.4.若a<b,则下列不等式一定成立的是()A.﹣a<﹣b B.a﹣3>b﹣3 C.1﹣a>1﹣b D.a+3<b+2【答案】C【解析】根据不等式的3个性质找到变形正确的选项即可.【详解】解:A、由a<b,可得:-a>-b,错误;B、由a<b,可得:a-3<b-3,错误;C、由a<b,可得:1-a>1-b,正确;D、由a<b,可得:a+3<b+3,错误;故选C.【点睛】考查不等式性质的应用;用到的知识点为:不等式的两边加上或减去同一个数或式子,不等号的方向不变;乘以或除以同一个不为0的正数,不等号的方向不变;乘以或除以同一个不为0的负数,不等号的方向改变.5.下列图形中不是轴对称图形的是A.B.C.D.【答案】D【解析】根据轴对称图形的定义即可求解.【详解】ABC均为轴对称图形,D不是轴对称图形故选D.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.6.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°【答案】A 【解析】∵AD 平分∠BAC ,∴∠BAD=∠CAD .∵AB ∥CD ,∴∠BAD=∠D .∴∠CAD=∠D .∵在△ACD 中,∠C+∠D+∠CAD=180°,即80°+∠D+∠D=180°,解得∠D=50°,故选A .7.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.8.下面列出的不等式中,正确的是( )A .“m 不是正数”表示为m <0B .“m 不大于3”表示为m <3C .“n 与4的差是负数”表示为n ﹣4<0D .“n 不等于6”表示为n >6【答案】C【解析】根据各个选项的表示列出不等式,与选项中所表示的不等式对比即可.【详解】A. “m 不是正数”表示为0,m ≤ 故错误.B. “m 不大于3”表示为3,m ≤故错误.C. “n 与4的差是负数”表示为n ﹣4<0,正确.D. “n 不等于6”表示为6n ≠,故错误.故选:C.【点睛】考查列不等式,解决本题的关键是理解负数是小于0的数,非负数是大于或等于0的数,不大于用数学符号表示是“≤”.9.如图,a∥b,点B在直线a上,且AB⊥BC,若∠1=56°,则∠2的度数是()A.54°B.44°C.40°D.34°【答案】D【解析】根据平行线的性质求得∠3的度数,即可求得∠2的度数.【详解】如图,∵a∥b,∴∠3=∠1=56°,∴∠2=180°﹣90°﹣56°=34°.故选D.【点睛】本题考查了平行线的性质,理解性质定理是关键.10.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.100°C.45°D.30°【答案】D【解析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE 的度数为:180°−50°−100°=30°.故选:D .【点睛】此题主要考查了平移的性质、平行线的性质以及平角的定义,得出∠CAB =∠EBD =50°是解决问题的关键.二、填空题题11.对某班组织的一次考试成绩进行统计,已知 80.5~90.5 分这一组的频数是 7,频率是 0.2,那么该班级的人数是_____人.【答案】1【解析】试题分析:根据题意直接利用频数÷频率=总数进而得出答案.解:∵80.5~90.5分这一组的频数是7,频率是0.2,∴该班级的人数是:7÷0.2=1.故答案为1.考点:频数与频率.12.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,将一副学生用三角板按如图所示的方式放置.若//AE BC ,则AFD ∠的度数是__.【答案】75︒【解析】首先根据三角形内角和为180°,求得∠C 的度数,又由AE ∥BC ,即可求得∠CAE 的值,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得∠AFD 的度数.【详解】解://AE BC ,45E EDC ∴∠=∠=︒,30C ∠=︒75AFD C EDC ∴∠=∠+∠=︒,故答案为75︒【点睛】本题考查三角形内角和定理,熟练掌握计算法则是解题关键.13.如果正多边形的一个外角为40°,那么它是正_____边形.【答案】九【解析】利用任意多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【详解】360÷40=1.故它是正九边形.故答案为:九.【点睛】此题主要考查了多边形的外角和,利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.14.已知方程组23325x y m x y m-=+⎧⎨+=-⎩①无论m 和y 取何值,x 的值一定等于2;②当3m =时,x 与y 互为相反数;③当方程组的解满足25x y +=时,1m =;④方程组的解不可能为24x y =-⎧⎨=⎩,以上四个结论正确的是_________(填序号).【答案】①②④【解析】把m 看做已知数求出x 的值,进而表示出y ,进而逐一判断即可.【详解】解:23325x y m x y m -=+⎧⎨+=-⎩①②, ①+②得48x =,2x ∴=,∴①正确;当2x =时,12m y --=. ②当3m =时,3122y --==-.x ,y 互为相反数.∴②正确; ③25x y +=时,即12252m --⨯+=,解得3m =-,∴③错误; ④2x =是确定值,24x y =-⎧∴⎨=⎩不可能是方程的解∴④正确. 综上所述,正确的有①②④,故答案为:①②④.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.15.在平面直角坐标系中,若点()1,3M 与点(),3N x 之间的距离是4,则x 的值是_____.【答案】3-或1【解析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】解:∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,点N 在点M 的左边时,x=1-4=-3,点N 在点M 的右边时,x=1+4=1,综上所述,x的值是-3或1.故答案为:-3或1.【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论.16.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.【答案】1【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=1°;故应填1.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.1730.027.【答案】0.3【解析】根据立方根的定义求解.【详解】∵(0.3)3=0.027,30.027=0.3.故答案是:0.3.【点睛】本题考查了立方根的知识,解答本题的关键是掌握开立方的运算.三、解答题18.(1)解方程组:1 237x yx y+=⎧⎨-=⎩;(2)解不等式组:()211113x xxx⎧--≤⎪⎨+-⎪⎩<,并将不等式组的解集在数轴上表示出来.【答案】(1)21xy=⎧⎨=-⎩;(2)x2>【解析】(1)①×2-②得出-5y=5,求出y,把y=-1代入①求出x即可;(2)先求出每个不等式的解集,再求出不等式组的解即可.【详解】(1)1 237x yx y+=⎧⎨-=⎩①②②-①×2得:-5y=5,解得:y=-1,把y=-1,代入①得;x-1=1, 解得:x=2,∴原方程组的解集为:21 xy=⎧⎨=-⎩(2)() 211113x xxx⎧--≤⎪⎨+-⎪⎩①<②解①得x≥1,解②得x>2,∴不等式组的解集为x>2,用数轴表示:【点睛】此题考查解二元一次方程组,在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则19.(1)计算:231(23)869-(2)解方程组231x yx y-=⎧⎨-=⎩;(3)解不等式组:2(1)1112x xxx--⎧⎪⎨+>-⎪⎩【答案】(1)8;(2)21xy=⎧⎨=⎩;(3)1x【解析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)原式11226122282=--⨯=--=;(2)2x y3x y1-=⎧⎨-=⎩①②,①-②,得:x 2=,将x 2=代入②,得:2y 1-=,解得y 1=,则方程组的解为21x y =⎧⎨=⎩; (3)解不等式()x 2x 11--,得:x 1,解不等式1x x 12+>-,得:x 3<, 则不等式组的解集为x 1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.如图,在ABC 和DEF 中,点B 、E 、C 、F 在同一直线上,请你从以下4个等式中选出3个作为已知条件,余下的1个作为结论,并说明结论正确的理由(写出各种可能的情况,并选择其中一种说理).①AB DE =;②AC DF =;③ABC DEF ∠=∠;④BE CF =.【答案】已知条件是①,②,④.结论是③.或:已知条件是①,③,④.结论是②.说理过程见解析.【解析】此题答案不唯一,可选择已知条件是①,②,④,结论是③.由④可得BC=EF ,根据SSS 可得出△ABC ≌△DEF ,从而证出结论③.【详解】解:已知条件是①,②,④.结论是③.说理过程:因为BE CF =(已知),所以BE EC CF EC +=+(等式性质).即BC EF =.在ABC 和DEF 中,()()(),,,AB DE BC EF AC DF ⎧=⎪=⎨⎪=⎩已证已证已证 所以()..ABC DEF S S S △≌△所以ABC DEF ∠=∠(全等三角形的对应角相等).【点睛】本题是一道开放性的题目,考查了全等三角形的判定和性质,此题还可以已知①③④,再证明②,利用SAS即可.21.如图1,在平面直角坐标系中,第一象限内长方形ABCD ,AB ∥y 轴,点A 是(1,1),点C (a ,b ),满足530a b -+-=.(1)求长方形ABCD 的面积;(2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发,沿x 轴以每秒2个单位长度的速度向右运动,设运动时间为t 秒.①当t=5时,求三角形OMC 的面积;②若AC ∥ED ,求t 的值.【答案】(1)8;(1)①4;②2【解析】(1)由已知得出a=5,b=2,求得C 点坐标,结合图象,能找出其它几点的坐标,从而能得出长方形ABCD 的面积;(1)①拆分三角形,求出各个图形的面积即可求得;②过点A 作AF ∥CD ,交x 轴于点M ,交DE 的延长线于点F ,根据平行四边形的性质可得出AF 的长度,结合AM 的长度可得出ME 为△FAD 的中位线,根据点M 、A 的运动速度可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:(1530a b --=.∴a-5=0,b-2=0,即a=5,b=2,∵四边形ABCD 为长方形,∴点B (1,2),点C (5,2),点D (5,1),∴AB=2-1=1,BC=5-1=4,长方形ABCD 的面积为:AB×BC=1×4=8;(1)①将t=5时,线段AC 拿出来,放在图2中,各字母如图,∵点A′(6,1),点C′(10,2),∴OM=6,ON=10,A′M=1,C′N=2,MN=ON-OM=4,∴三角形OA′C′的面积=12ON•C′N -12OM•A′M -12(A′M+C′N )•MN=15-2-8=4; 即三角形OMC 的面积为4;②过点A 作AF ∥CD ,交x 轴于点M ,交DE 的延长线于点F ,如图4所示,∵AF ∥CD ,AC ∥DF ,∴四边形AFDC 为平行四边形,∴AF=CD=1.∵AM=1,∴ME 为△FAD 的中位线,∴ME=12AD=1, 即1t-(t+1)=1,解得:t=2.故若AC ∥ED ,t 的值为2秒.【点睛】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、平移的性质、平行四边形的判定与性质、三角形中位线定理等知识;本题综合性强,熟练掌握矩形的性质和平移的性质是解题的关键. 22.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,已知该小区用水量不超过5t 的家庭占被调查家庭总数的百分比为12%,请根据以上信息解答下列问题: 级别A B C D E F 月均用水量()x t05x <≤ 510x <≤ 1015x <≤ 1520x <≤ 2025x <≤ 2530x <≤ 频数(户) 6 12 m 10 42 (1)本次调查采用的方式是 (填“普查”或“抽样调查”),样本容量是 ; (2)补全频率分布直方图;(3)若将调查数据绘制成扇形统计图,则月均用水量“1520x <≤”的圆心角度数是 .【答案】(1)抽样,50;(2)详见解析;(3)72°【解析】(1)由抽样调查的定义及第1组的频数与频率可得答案;(2)根据频数=数据总数×频率可得m 的值,据此即可补全直方图;(3)先求得月均用水量“1520x <≤”的频率值,再用360°乘以可得答案;【详解】解:(1)本次调查采用的方式是抽样调查,样本容量为612%50÷=;故答案为:抽样调查,50;(2)50612104216m =-----=,补全频数分布直方图如图;(3)∵10500.2÷=,∴月均用水量“1520x <≤”的圆心角度数是3600.272⨯=.【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.23.在平面直角坐标系xOy 中,点A 在x 轴的正半轴上运动,点B 在y 轴的正半轴上运动,AOB ∆的外角平分线相交于点C ,如1图所示,连接CO .(1)求证:CO 平分AOB ∠(2)延长CB 交BAO ∠的平分线于点D ,如图所示,求证:D COA ∠=∠【答案】(1)见解析;(2)见解析.【解析】(1)过C 分别向x 轴、y 轴、AB 作垂线,垂足为213H H H 、、,根据角平分线的性质即可得到结论;(2)延长AB 到E ,根据角平分线的定义得到∠1=∠ABC ,∠OAD =∠BAD ,根据外角的性质即可得到结论.【详解】(1)证明:过点C 分别向x 轴、y 轴、AB 作垂线,垂足分别为213H H H 、、 BC 为角平分线,1CH y ⊥轴,3CH AB ⊥13CH CH ∴= AC 为角平分线,2CH x ⊥轴,3CH AB ⊥23CH CH ∴=12CH CH ∴=OC ∴平分AOB ∠(2)如图,延长AB 至EBC 为角平分线1ABC ∴∠=∠EBD ABC ∠=∠,1OBD ∠=∠EBD ABD ∴∠=∠∵AD 平分BAO ∠OAD BAD ∴∠=∠OBE AOB BAO ∠=∠+∠,DBE BAD D ∠=∠+∠又2OBE DBE ∠=∠,2BAO BAD ∠=∠ 1452D AOB ∴∠=∠=︒ ∵1452COA AOB ∠=∠=︒ D COA ∴∠=∠【点睛】本题考查了角平分线的性质,三角形的内角和,正确的作出辅助线是解题的关键.24.如图,在正方形网格上有一个△ABC ,三个顶点都在格点上,网格上的最小正方形的边长为1.(1)作△ABC 关于直线MN 的对称图形△A′B′C′(不写作法);(2)求BC 的长;(3)求△ABC 的面积.【答案】(1)详见解析;(2)2;(3)2.2.【解析】分析:(1)先利用网格确定△ABC关于直线MN对称的点,再顺次连接各点即可得到△ABC关于直线MN的对称图形;(2)根据勾股定理可求得BC的长;(3)用割补法即可得到△ABC的面积.详解:(1)如图所示;(2)在网格中构建Rt△BCD.∵在Rt△BCD中,BD=4,CD=3,∴BD2+CD2=BC2,∴42+32=BC2,BC=2;(3)△ABC的面积=111 35121534222⨯-⨯⨯-⨯⨯-⨯⨯=2.2.点睛:本题主要考查了利用轴对称变换进行作图,画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始的.25.如图所示,已知:在菱形ABCD中,E、F分别是BC,CD上的点,且CE=CF.(1)求证:△ABE ≌△ADF ;(2)过点C 作CG ∥EA 交AF 于点H ,交AD 于点G ,若∠BAE=25°,∠BCD=130°,求∠AHC 的度数.【答案】(1)见解析;(2)100°【解析】(1)首先利用菱形的性质和CE=CF 得出BE=DF ,进而得出△ABE ≌△ADF ;(2)利用全等三角形的性质得出∠BAE=∠DAF=25°,进而得出∠EAF 的度数,进而得出∠AHC 的度数.【详解】(1)证明:在菱形ABCD 中,BC=CD=AB=AD,∠B=∠D(菱形的性质),∵CE=CF ,∴BC−CE=CD−CF ,∴BE=DF ,在△ABE 与△ADF 中AB AD B D BE DF ⎧=∠=∠=⎪⎨⎪⎩, ∴△ABE ≌△ADF(SAS);(2)∵△ABE ≌△ADF(已证),∠BAE=25°,∴∠BAE=∠DAF=25°,在菱形ABCD 中∠BAD=∠BCD=130°(菱形对角相等),∴∠EAF=∠BAD−∠BAE−∠DAF=130°−25°−25°=80°,∵AE ∥CG ,∴∠EAF+∠AHC=180°,∴∠AHC=180°−∠EAF=180°−80°=100°.【点睛】此题考查菱形的性质,全等三角形的判定与性质,解题关键在于掌握全等三角形的判定定理.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A .15°B .30°C .45°D .60°【答案】D 【解析】因为△ABC 是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.因为BD =CE ,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE ,所以∠2=60°.故选D .2.在二元一次方程2x+y=6中,当2x =时,y 的值是( )A .1B .2C .-2D .-1 【答案】B【解析】把x=2代入2x+y=6,即可求出y 的值.【详解】把x=2代入2x+y=6,得4+y=6,∴y=2.故选B.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.计算(﹣12)2019×(﹣2)2020的结果是( ) A .12 B .-12 C .2 D .﹣2【答案】D【解析】根据有理数的乘方的运算性质即可求解.【详解】原式=()()201920191--2-22⎛⎫⨯⨯ ⎪⎝⎭=()()20191--2-22⎛⎫⨯⨯ ⎪⎝⎭=-2.故选D.【点睛】 本题主要考查有理数的乘方的运算性质,熟悉掌握是性质是解题关键.4.下列调查中,最适合采用全面调查(普查)的是( )A .对全国中学生睡眠时间的调查B .对玉兔二号月球车零部件的调查C .对重庆冷饮市场上冰淇淋质量情况的调查D .对重庆新闻频道“天天630”栏目收视率的调查【答案】B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似作答.【详解】A 、对全国中学生睡眠时间的调查用抽样调查,错误;B 、对玉兔二号月球车零部件的调查用全面调查,正确;C 、对重庆冷饮市场上冰淇淋质量情况的调查用抽样调查,错误;D 、对重庆新闻频道“天天630”栏目收视率的调查用抽样调查,错误;故选B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片12a b a ⎛⎫<< ⎪⎝⎭如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3,已知图3中的阴影部分的面积比图2中的阴影部分的面积大215ab -,则小正方形卡片的面积是( )A .10B .8C .2D .5【答案】D 【解析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【详解】图3中的阴影部分面积为:()2a b -,图2中的阴影部分面积为:()22b a -,由题意得,()()222215a b b a ab ---=-,整理得,25b =,则小正方形卡片的面积是5,故选D .【点睛】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键.6.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1的度数是( )A .30°B .25°C .20°D .15°【答案】D 【解析】解:∵AB ∥CD ,∴∠C=∠2=60°,∵∠A=45°,∴∠1=60°﹣45°=15°,故选D .7.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180° 【答案】D【解析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形, ∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 8.∆ABC 的内角分别为∠A 、∠B 、∠C ,下列能判定∆ABC 是直角三角形的条件是( ) A .∠A = 2∠B = 3∠CB .∠C = 2∠B C .∠A : ∠B : ∠C = 3 : 4 : 5D .∠A + ∠B = ∠C 【答案】D【解析】根据直角三角形的性质即可求解.【详解】若∠A + ∠B = ∠C又∠A + ∠B +∠C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.9.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案A .4B .3C .2D .1 【答案】C【解析】根据题意设5人一组的有x 个,6人一组的有y 个,利用把班级里40名学生分成若干小组,进而得出等式求出即可.【详解】设5人一组的有x 个,6人一组的有y 个,根据题意可得:5x+6y=40,x=1,则y=356(不合题意); 当x=2,则y=5;当x=3,则y=256(不合题意); 当x=4,则y=103(不合题意); 当x=5,则y=52(不合题意); 当x=6,则y=53(不合题意); 当x=7,则y=56(不合题意); 当x=8,则y=0;故有2种分组方案.选:C .【点睛】此题主要考查了二元一次方程的应用,根据题意分情况讨论是解题关键.10.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四【答案】B【解析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案.【详解】∵点P (a ,a-1)在x 轴上,∴a-1=0,即a=1,则点Q 坐标为(-1,2),∴点Q 在第二象限,故选:B .【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.二、填空题题11.当x 分别取10,1111,9,,8,,,2,10982,1,0时,计算分式2211x x -+的值,再将所得结果相加,其和等于_____【答案】﹣1【解析】先把x=n 和1x n=代入代数式,并对代数式化简,得到它们的和为0,然后把x=1、0代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】解:因为2222222211n 11n n 1n 0n 1n 1n 111n ⎛⎫- ⎪---⎝⎭+=+=+++⎛⎫+ ⎪⎝⎭, 所以当x 分别取值1n ,n (n 为正整数)时,计算所得的代数式的值之和为0, 则将所得结果相加,其和等于11010111101--+=-=-++, 故答案为:﹣1.【点睛】本题考查的是代数式的求值,本题的x 的取值较多,并且除x=0外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,这样计算起来就很方便.12.据统计,2018年上海市常住人口数量约为24183300人,用科学计数法表示上海市常住人口数是__________.(保留4个有效数字)【答案】72.41810⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:24183300将用科学记数法表示为72.41810⨯.故答案为:72.41810⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】分析:依题意,设小长方形的长为a ,宽为b ,则大长方形长为2a ,宽为2b a +,则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.故答案为:32.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,找出合适的等量关系,列出方程组.14.计算:a (a ﹣1)=_____.【答案】a 2﹣a .【解析】原式利用单项式乘以多项式法则计算即可得到结果.【详解】解:原式=a 2﹣a .故答案为:a 2﹣a .【点睛】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.15.如图,点O 为直线AB 上一点,OC ⊥OD ,如果∠1=35°,那么∠2的度数是______________;【答案】55°【解析】分析:由OC ⊥OD ,得到∠COD=90°,再根据∠1+∠2=90°,即可得出结论.详解:∵OC ⊥OD ,∴∠COD=90°,∴∠2=90°-∠1=90°-35°=55°.故答案为55°.点睛:本题主要考查角的运算,比较简单.16.如图所示:在AEC 中,AE 边上的高是______.【答案】CD .【解析】根据三角形中高线的概念即可作答.【详解】由题意可得:△AEC 中,AE 边上的高是CD,故答案为CD.【点睛】本题考查了三角形高线的概念,三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.17.若关于x 的不等式组0214x k x -≥⎧⎨+≤⎩恰有三个整数解,则k 的取值范围是________. 【答案】-2<k≤-1.【解析】分析:先解不等式组0214x k x -≥⎧⎨+≤⎩结合题意得到其解集,再根据其恰好有三个整数解,得到关于k 的不等式组,解不等式组即可求得k 的取值范围.详解:解不等式0x k -≥得:x k ; 解不等式214x +≤得:32x ≤; ∵原不等式组有整数解, ∴原不等式组的解集为:32k x ≤≤, ∵原不等式组恰好有三个整数解,∴原不等式组的三个整数解分别为:1、0、-1,∴21k -<≤-.故答案为:21k -<≤-.点睛:本题的解题要点有以下两点:(1)能由原不等式组有整数解得到其解集是:32k x ≤≤;(2)能由原不等式组恰好有三个整数解确定其整数解是1、0、-1,并由此得到21k -<≤-.三、解答题18.根据下列证明过程填空,请在括号里面填写对应的推理的理由.如图,已知:直线AB 、CD 被直线BC 所截;直线BC 、DE 被直线CD 所截,∠1+∠2 =180°,且∠1=∠D ,求证:BC ∥DE .证明:∵∠1+∠2=180°(已知)又∵∠1=∠3 .∴∠2+∠3=180°(等量代换)∴AB∥.∴∠4=∠1 .又∵∠1=∠D .∴∠D=(等量代换)∴BC∥DE().【答案】对顶角相等,CD,两直线平行同位角相等,已知,∠4,内错角相等两直线平行【解析】首先根据同旁内角互补两直线平行证明AB∥CD,得到∠4=∠1,然后结合已知利用内错角相等两直线平行即可证得结论.【详解】证明:∵∠1+∠2=180°(已知)又∵∠1=∠3(对顶角相等).∴∠2+∠3=180°(等量代换)∴AB∥CD.∴∠4=∠1(两直线平行同位角相等).又∵∠1=∠D(已知).∴∠D=∠4(等量代换)∴BC∥DE(内错角相等两直线平行).【点睛】本题考查了平行线的判定和性质,难度不大,熟练掌握相关性质定理是解题关键.19.在“国庆”黄金周期间,小明、小亮等同学随家人一同到某旅游区游玩.下图是购买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生?(2)用哪种方式买票更省钱?并说明理由;(3)一位阿姨见小明这么聪明,也想考考他.她说:“我这里有大人,也有学生,学生人数比大人人数多,我们买票共花了105元,你能说出我们一共去了几个成人?几个学生?”聪明的你,请再帮小明算一算.【答案】(1)一共去了8个成人,4个学生;(2)购买团体票更省钱;(3)一共去了1个成人,4个学生【解析】(1)共12人,设一共去了x 个成年人,则学生有12-x 人,根据大人门票每张35元,学生门票对折优惠,共需350元,即可列方程求解.(2)计算出购买团体票时的费用,与350元比较即可.(3)设有m 个成人,n 个学生,且m n <,根据题意列等式即可求解.【详解】解:(1)设一共去了x 个成人,()12x -个学生.由题意得:()35351250%350x x +-⨯=解得:8x =当8x =时,124x -=(个)答:一共去了8个成人,4个学生.(2)35160.6336⨯⨯=(元)∵336元<350元∴购买团体票更省钱.(3)设有m 个成人,n 个学生,且m n <.则35350.5105m n +⨯=化简得:26m n +=当1m =时,4n =;当2m =时,2n =因为m n <,所以一共去了1个成人,4个学生.【点睛】本题考查一元一次方程的实际应用,解题的关键是读懂题意,熟练掌握一元一次方程的实际应用. 20.(1)化简:a b b a ab a b +⎛⎫÷- ⎪⎝⎭,当a 为4的算术平方根,3b =时,求这个代数式的值; (2)计算:()3216812(4)(23)(32)x x x x x x -+÷----.【答案】(1)1b a-,1;(2)212x -+ 【解析】(1)根据算术平方根的概念求出a 的值,化简分式,然后把将a 、b 的值代入计算;。
贵州省贵阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共36分) (共12题;共36分)1. (3分)在下列图案中,是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (3分)计算(﹣2x2y)3的结果是()A . ﹣8x6y3B . 6x6y3C . ﹣8x5y3D . ﹣6x5y33. (3分) (2019八上·武威月考) 下列各式因式分解正确的是()A .B .C .D .4. (3分)下列图形中能够说明∠1>∠2的是()A .B .C .D .5. (3分) (2020七下·海勃湾期末) 如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中阴影部分),余下部分绿化,小路的宽为2m ,则两条小路的总面积是()m2A . 108B . 104C . 100D . 986. (3分)如图, 已知直线AB∥CD,∠C=115°,∠A=25°,则∠E的度数是()A . 70°B . 80°C . 90°D . 100°7. (3分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF的中点,则PM的最小值为()A . 1.2B . 1.3C . 1.4D . 2.48. (3分)平行线之间的距离是指()A . 从一条直线上一点到另一直线的垂线段B . 从一条直线上一点到另一条直线的垂线段长度C . 从一条直线上一点到另一条直线的垂线的长度D . 从一条直线上一点到另一条直线上的一点间线段的长度9. (3分)如图,△ABC由△A′B′C′绕O点旋转180°而得到,则下列结论不成立的是()A . 点A与点A′是对应点B . BO=B′OC . ∠ACB=∠C′A′B′D . AB∥A′B′10. (3分)在某校举行的“汉字听写”大赛中,七名学生听写汉字的个数分别为:35,31,32,25,31,34,36,则这组数据的中位数是()A . 33B . 32C . 31D . 2511. (3分) (2020七上·吴兴期末) 如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A,D两点之间的距离不可能是()A . 3.5B . 4.5C . 5D . 5.512. (3分)已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和b之间的距离是()A . 2cmB . 6cmC . 8cm二、填空题(共6小题,每小题2分,满分12分) (共6题;共12分)13. (2分) (2019八上·如皋期末) 计算: ________.14. (2分)分解因式:________15. (2分)已知代数式x2-mx+9是完全平方式,则常数m=________.16. (2分) (2020七下·哈尔滨期中) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CH为△ABC斜边上的中线,点F为CH上一点,连接BF并延长交AC于点D,过点A作AE⊥AC,连接CE和DE,若∠ACE=2∠ABF,CE=13,CD=8,则△CDE的面积为________.17. (2分) (2016九上·蕲春期中) 如图,有正方形ABCD,把△ADE顺时针旋转到△ABF的位置.其中AD=4,AE=5,则BF=________18. (2分)(2010·华罗庚金杯竞赛) 在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有________个。
2017-2018学年贵州省贵阳市七年级(下)期末数学试卷(考试时间:90分满分:100分)一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请将正确答案填写在括号内,每小題3分,其30分)1.(3分)计算x2•x4的结果为()A.x8B.x6C.6x D.8x2.(3分)如图,下列各角中,是对顶角的一组是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.)∠3和∠43.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.4.(3分)下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是()A.B.C.D.5.(3分)一种感冒病毒的直径约为0.0000226cm,将0.0000226这个数用科学记数法可表示为()A.0.226×10﹣5B.2.26×10﹣5C.22.6×10﹣5D.226×10﹣56.(3分)在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学()A.小明B.小亮C.小颖D.小静7.(3分)若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.2a2﹣B.4a2﹣4a+1 C.4a2+4a+1 D.4a2﹣18.(3分)将一把直尺与一块三角尺如图放置,若∠1=52°,则∠2的度数是()A.152°B.138°C.142°D.128°9.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球10.(3分)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()A.B.C.D.二、填空题(每小题4分,共20分)11.(4分)计算(﹣2018)0﹣()﹣1的结果是.12.(4分)如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是.13.(4分)小颖画了一个边长为5cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.14.(4分)如图,AB∥DE,CD=BF,若△ABC≌△DEF,还需补充的条件可以是.15.(4分)如图,点P是AOB内任意一点,OP=5cm,点P与点C关于射线OA对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F,当△PEF的周长是5cm时,∠AOB的度数是度.三、解答题(共50分)16.(10分)(1)计算:2a2(3a2﹣5b)(2)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣1.17.(6分)如图是一个由4条线段构成的“鱼”形图案,其中∠1=55°,∠2=55°,∠3=125°,找出图中的平行线,并说明理由.18.(6分)如图是由正方形组成的L形图,请你用三种方法分别在图中添加一个正方形使其成为轴对称图形,并画出对称轴.19.(7分)棱长为a的小正方体,按照如图所示的方法一直继续摆放,自上而下分别叫第1层、第2层、……第n(n>0)层,第n层的小方体的个数记为S.(1)完成下表:n 1 2 3 4 …S 1 3 …(2)上述活动中,自变量和因变量分别是什么?(3)研究上表可以发现S随n的增大而增大,且有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时S的值.20.(7分)从公式到语言表述,再到图形直观解释,可以让同学们从不同角度理解乘法公式,下图就给出了一个乘法公式的几何解释.(1)根据图形写出这个乘法公式是.(2)已知a+b=5,ab=3,求a2+b2的值.21.(6分)在一个不透明袋子中装有颜色不同的黑、白两种球共40个球,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.如图是“摸到白球”的频率折线统计图:(1)根据统计图,估算盒子里黑、白两种颜色的球各多少个?(2)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?22.(8分)如图,B是线段AD上一点,过B点直线CB⊥AD于点B,AD=BC.(1)过点A作AF⊥AB,并截取AF=BD,点C、点F在线段AD的两侧,连接CD、DF、CF,依题意补全图.(2)判断△CDF的形状,并说明理由.2017-2018学年贵州省贵阳市七年级(下)期末数学试卷参考答案与试题解析一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请将正确答案填写在括号内,每小題3分,其30分)1.(3分)计算x2•x4的结果为()A.x8B.x6C.6x D.8x【分析】根据同底数幂的乘法法则计算可得.【解答】解:x2•x4=x2+4=x6,故选:B.【点评】本题主要考查同底数幂的乘法,解题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.2.(3分)如图,下列各角中,是对顶角的一组是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.)∠3和∠4【分析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有∠2和∠4的是对顶角,其它都不是.故选:C.【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.3.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是()A.B.C.D.【分析】根据三角形的定义为:由不在同一条直线上的三条线段首尾顺次相接所成的图形解答,【解答】解:因为三角形是由不在同一条直线上的三条线段首尾顺次相接所成的图形.故选:D.【点评】此题考查了三角形的定义.解题的关键是熟练记住定义.5.(3分)一种感冒病毒的直径约为0.0000226cm,将0.0000226这个数用科学记数法可表示为()A.0.226×10﹣5B.2.26×10﹣5C.22.6×10﹣5D.226×10﹣5【分析】绝对值小于1的正数用科学记数法表示为a×10﹣n的形式,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000226=2.26×10﹣5故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定6.(3分)在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学()A.小明B.小亮C.小颖D.小静【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的小静.故选:D.【点评】考查了利用频率估计概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.7.(3分)若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.2a2﹣B.4a2﹣4a+1 C.4a2+4a+1 D.4a2﹣1【分析】利用三角形的面积等于底与高乘积的一半列示求解即可.【解答】解:三角形的面积为:(2a+1)(2a﹣1)=2a2﹣,故选:A.【点评】本题考查了平方差公式,解题的关键是根据三角形的面积公式列出算式并利用平方差公式进行正确的计算.8.(3分)将一把直尺与一块三角尺如图放置,若∠1=52°,则∠2的度数是()A.152°B.138°C.142°D.128°【分析】根据直角三角形两锐角互余求出∠3,然后根据两直线平行,同位角角相等求出∠4,再根据邻补角定义求得答案.【解答】解:∵∠1=52°,∴∠3=90°﹣∠1=90°﹣52°=38°,∵直尺的两边互相平行,∴∠3=∠4=38°∴∠2=180°﹣38°=142°,故选:C.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.9.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选:A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,10.(3分)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()A.B.C.D.【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、D;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C选项;所以B选项正确.故选:B.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(每小题4分,共20分)11.(4分)计算(﹣2018)0﹣()﹣1的结果是﹣1 .【分析】根据零指数幂的意义以及负整数指数幂的意义即可求出答案.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.12.(4分)如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是ASA .【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA这一方法.故答案为:ASA.【点评】此题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)小颖画了一个边长为5cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为y=x2+10x .【分析】增加的面积=新正方形的面积﹣边长为5cm的正方形的面积.【解答】解:由题意得:y=(x+5)2﹣52=x2+10x.故答案为:y=x2+10x.【点评】此题主要考查了函数关系式,解决本题的关键是找到相应的等量关系,易错点是得到新正方形的边长.14.(4分)如图,AB∥DE,CD=BF,若△ABC≌△DEF,还需补充的条件可以是AB=ED .【分析】根据已知及全等三角形的判定方法进行分析即可.【解答】解:AB=ED,理由如下:∵AB∥DE∴∠D=∠B∵CD=BF∴DF=BC∴AB=ED∴△ABC≌△EDF故答案为:AB=ED【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS和ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.(4分)如图,点P是AOB内任意一点,OP=5cm,点P与点C关于射线OA对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F,当△PEF的周长是5cm时,∠AOB的度数是30 度.【分析】根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂直平分线性质得出∠COA=∠AOP=COP,∠POB=∠DOB=POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【解答】解:连接OC,OD,∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,∵OP=5cm,∴∠COA=∠AOP=COP,∠POB=∠DOB=POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,∵△PEF的周长是5cm,∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,∴△OCD是等边三角形,∴∠COD=60°,∴∠AOB=∠AOP+∠BOP=∠COP+DOP=COD=30°,故答案为:30.【点评】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD是等边三角形是解此题的关键.三、解答题(共55分)16.(10分)(1)计算:2a2(3a2﹣5b)(2)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣1.【分析】(1)根据单项式乘多项式法则计算可得;(2)先根据整式混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:(1)原式=6a4﹣10a2b;(2)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab,当a=,b=﹣1时,原式=﹣2××(﹣1)=1.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.17.(6分)如图是一个由4条线段构成的“鱼”形图案,其中∠1=55°,∠2=55°,∠3=125°,找出图中的平行线,并说明理由.【分析】根据同位角相等,两直线平行证明AB∥CD,根据同旁内角互补,两直线平行证明AC∥BD.【解答】解:AB∥CD,AC∥BD.∵∠1=55°,∠2=55°,∴∠1=∠2,∴AB∥CD,∵∠1=55°,∠3=125°,∴∠1+∠3=180°,∴AC∥BD【点评】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.18.(6分)如图是由正方形组成的L形图,请你用三种方法分别在图中添加一个正方形使其成为轴对称图形,并画出对称轴.【分析】根据轴对称图形的定义、对称轴的概念设计图案.【解答】解:用三种方法分别在图中添加一个正方形使其成为轴对称图形,对称轴为直线l.【点评】本题考查的是利用轴对称设计图案,掌握轴对称图形的概念、对称轴的性质是解题的关键.19.(7分)棱长为a的小正方体,按照如图所示的方法一直继续摆放,自上而下分别叫第1层、第2层、……第n(n>0)层,第n层的小方体的个数记为S.(1)完成下表:n 1 2 3 4 …S 1 3 6 10 …(2)上述活动中,自变量和因变量分别是什么?(3)研究上表可以发现S随n的增大而增大,且有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时S的值.【分析】(1)第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2,根据相应规律可得第3层,第4层正方体的个数;(2)根据自变量与因变量的意义,可得答案(3)依据(1)得到的规律可得第n层正方体的个数,进而得到n=10时S的值.【解答】解:(1)∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2=3,第3个图有3层,第3层正方体的个数为1+2+3=6,∴n=4时,即第4层正方体的个数为:1+2+3+4=10,故答案为:6,10;(2)S随n的变化而变化,n是自变量,S是因变量(3)第n层时,s=1+2+3+…+n=n(n+1),当n=10时,S=×10×11=55.【点评】本题考查图形规律性的变化;得到第n层正方体的个数的规律是解决本题的关键.20.(7分)从公式到语言表述,再到图形直观解释,可以让同学们从不同角度理解乘法公式,下图就给出了一个乘法公式的几何解释.(1)根据图形写出这个乘法公式是(a+b)2=a2+b2+2ab .(2)已知a+b=5,ab=3,求a2+b2的值.【分析】(1)从图形可得:大正方形面积=两个小正方形面积+两个长方形面积.(2)把a+b=5,ab=3代入完全平方公式,可求a2+b2的值.【解答】解:(1)由题意可得(a+b)2=a2+b2+2ab(2)∵a2+b2=(a+b)2﹣2ab且a+b=5,ab=3∴a2+b2=25﹣6=19【点评】本题考查了完全平方公式的几何背景,关键是熟练运用完全平方公式解决问题.21.(6分)在一个不透明袋子中装有颜色不同的黑、白两种球共40个球,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.如图是“摸到白球”的频率折线统计图:(1)根据统计图,估算盒子里黑、白两种颜色的球各多少个?(2)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?【分析】(1)由折线统计图知,当摸球次数很大时,摸到白球的概率将会接近0.50,所以摸到白球的概率为0.5,据此用球的总个数乘以白球概率可得白球数量,继而可得答案;(2)设需要往盒子里再放入x个白球;根据题意得出方程,解方程即可.【解答】解:(1)由折线统计图知,当摸球次数很大时,摸到白球的概率将会接近0.50,所以摸到白球的概率为0.5,估计盒子里白球个数约为40×0.5=20个,黑球个数为40﹣20=20个;(2)设需要往盒子里再放入x个白球;根据题意得:=,解得:x=20;答:需要往盒子里再放入20个白球.【点评】本题考查了利用频率估计概率、概率公式的运用.大量反复试验下频率稳定值即概率;本题难度适中.22.(8分)如图,B是线段AD上一点,过B点直线CB⊥AD于点B,AD=BC.(1)过点A作AF⊥AB,并截取AF=BD,点C、点F在线段AD的两侧,连接CD、DF、CF,依题意补全图.(2)判断△CDF的形状,并说明理由.【分析】(1)根据要求作出图形即可;(2)只要证明△DAF≌△CBD,可得结论.【解答】解:(1)如图所示;(2)结论:△CDF是等腰直角三角形;理由:在△DAF和△CBD中,,∴△DAF≌△CBD,∴DF=DC,∠ADF=∠BCD,∵∠BCD+∠BDC=90°,∴∠FDC=∠ADF+∠BDC=90°,∴△CDF是等腰直角三角形.【点评】本题考查作图﹣复杂作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握五种基本作图,学会准确寻找全等三角形解决问题,属于中考常考题型.。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.小文同学统计了他所在小区居民每天微信阅读的时间,并绘制了直方图.有以下说法:①小文同学一共统计了60人;②每天微信阅读不足20分钟的人数有8人;③每天微信阅读30~40分钟的人数最多;④每天微信阅读0-10分钟的人数最少.根据图中信息,上述说法中正确的是( )A .①②③④B .①②③C .②③④D .③④【答案】D 【解析】①小文同学一共统计了4+8+14+20+16+12=74(人),则命题错误;②每天微信阅读不足20分钟的人数有4+8=12(人),故命题错误;③每天微信阅读30−40分钟的人数最多,正确;④每天微信阅读0−10分钟的人数最少,正确.故选D.点睛: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.将点A (2,1)向左..平移2个单位长度得到点A′,则点A′的坐标是【 】 A .(2,3)B .(2,-1)C .(4,1)D .(0,1)【答案】D 。
【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
上下平移只改变点的纵坐标,下减上加。
因此,将点A (2,1)向左..平移2个单位长度得到点A′,则点A′的坐标是(0,1)。
故选D 。
3.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2019次运动到点( )A .(2018,2)-B .(2018,0)C .(2019,1)D .(2019,2)-【答案】A 【解析】找出P 点的运动规律即可解答.【详解】解:点P 每运动四次就向右平移四个单位,2019÷4=504……3,且每四个为一组,纵坐标为1,0,-2,0重复,故2019个纵坐标为-2,且初始坐标为-1,故横坐标为2019-1=2018,即答案为A.【点睛】本题考查找规律,关键是找出P 点的移动规律.4.下列图形不是轴对称图形的是( )A .B .C .D .【答案】A 【解析】解:A 不是轴对称图形;B 是轴对称图形;C 是轴对称图形;D 是轴对称图形,故选A.5.已知点P 到,x y 轴的距离是2和5,若点P 在第四象限,则点P 的坐标是A .()5,2-B .()2,5-C .()5,2-D .()2,5-【答案】C【解析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,可得答案.【详解】解:点P 到x ,y 轴的距离分别是2和1,得|y|=2,|x|=1,若点P 在第四象限,y=-2,x=1.则点P 的坐标是(1,-2),故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.如图,在矩形ABCD 中放入6个全等的小矩形,所标尺寸如图所示,设小矩形的长为a ,宽为b ,则可得方程组( )A .3164a b a b +=⎧⎨-=⎩B .31624a b a b +=⎧⎨-=⎩C .2164a b a b +=⎧⎨-=⎩D .21624a b a b +=⎧⎨-=⎩【答案】A 【解析】设小矩形的长为a ,宽为b ,根据矩形的性质列出方程组即可.【详解】解:设小矩形的长为a ,宽为b ,则可得方程组3164a b a b +=⎧⎨-=⎩故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 7.若a+b=5,ab=-3,则()2a b -的值为( )A .25B .19C .31D .37 【答案】D【解析】分析:先根据完全平方公式得到原式=(a+b )2-4ab ,然后利用整体代入的方法计算. 详解:原式=(a+b )2-4ab ,∵a+b=5,ab=-3,∴原式=52-4×(-3)=1.故选:D .点睛:本题考查了完全平方公式:(a±b )2=a 2±2ab+b 2.也考查了整体思想的运用.8.如图,下列四组条件中,能判断AB ∥CD 的是( )A .∠1=∠2B .∠BAD =∠BCDC .∠ABC =∠ADC ,∠3=∠4D .∠BAD +∠ABC =180°【答案】C 【解析】A . ∵∠1=∠2 ,∴AD ∥BC,故此选项不正确;B.由∠BAD=∠BCD不能推出平行, 故此选项不正确;C.∵∠3=∠4,∠ABC=∠ADC∴∠ABD=∠CDB∴ AB∥CD, 故此选项正确D.∵∠BAD+∠ABC=180°,∴AD∥BC,故此选项不正确.故选C.9.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【答案】D【解析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°-40°=140°故选:D【点睛】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.10.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.【答案】B【解析】试题分析:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选B.考点:由实际问题抽象出二元一次方程.二、填空题题11.请你列不等式:“x的3倍与4的差不小于6”为_____.【答案】3x﹣4≥1【解析】直接表示出x的3倍为3x,再减去4,其结果大于等于1,得出不等式即可.【详解】由题意可得:3x﹣4≥1.故答案为3x﹣4≥1;【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确列出不等关系是解题关键.12.杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,归纳猜想出第n行中所有数字之和是______.【答案】12n【解析】由题意得出每行的数字之和等于2的序数减一次幂,据此解答即可【详解】∵第1行数字之和1=20,第2行数字之和2=21,第3行数字之和4=22,第4行数字之和8=23,…n-.∴第n行数字之和为21n-故答案为:21【点睛】此题考查规律型:数字的变化类,解题关键在于找到规律13.计算:18°26′+20°46′=_________________【答案】39°12′【解析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】18°26′+20°46′=38°72′=39°12′.故答案为:39°12′.【点睛】此类题考查了度、分、秒的加法计算,相对比较简单,注意以60为进制即可.14.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.【答案】40°【解析】∵MP与NQ分别垂直平分AB和AC∴∠B=∠BAP,∠QAC=∠C∵∠BAC=110°,∴∠B+∠C=70°又∵∠APQ=∠B+∠BAP∠AQP=∠C+∠QAC∴∠APQ+∠AQP=2∠B+2∠C=140°在△APQ中∠PAQ=180°-∠APQ-∠AQP=180°-140°=40°15.已知(a﹣1)2+|b+1|+b c a+-,则a+b+c=_____.【答案】2.+-,可得a-1=0,b+1=0,b+c-a=0,由此求出a、b、c的值,再代【解析】由(a﹣1)2b c a入a+b+c中计算即可.详解:∵(a﹣1)2b c a+-,∴10100a b b c a -=⎧⎪+=⎨⎪+-=⎩ ,解得:112a b c =⎧⎪=-⎨⎪=⎩,∴()1122a b c ++=+-+=.故答案为:2.点睛:本题的解题要点是:(1)一个式子的平方、绝对值和算术平方根都是非负数;(2)若几个非负数的和为0,则这几个非负数都为0.16.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的中位数是________cm .【答案】40【解析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm ,此中位数是40cm 故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的.17.关于,x y 的方程11235m n x y +-+=是二元一次方程,则m n -=__________.【答案】-2.【解析】根据二元一次方程的定义,可得x 和y 的指数分别都为1,列关于m 、n 的方程,然后求解即可.【详解】根据二元一次方程的定义,11,11m n +=-=,解得0,2m n ==.所以022m n -=-=-.【点睛】本题考查二元一次方程的定义. 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.三、解答题18.分解因式:(1)269ax ax a -+;(2)(1)(9)8m m m +-+;(3)4234a a +-【答案】 (1) a(x-3)²; (2) (m-3)(m+3); (3) (a ²+4)(a-1)(a+1).【解析】(1)首先提取公因式a,进而利用完全平方公式分解因式得出即可;(2)首先化简原式,进而利用平方差公式分解因式得出即可;(3)利用十字相乘法进行分解即可.【详解】(1) 269ax ax a -+=a(x-3)²;(2) (1)(9)8m m m +-+=m²-8m-9+8m=m²-9=(m-3)(m+3);(3) 4234a a +-=(a²+4)(a²-1)=(a²+4)(a-1)(a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.19.解方程组:(1)381x y x y -=⎧⎨-=⎩ ;(2)341153x y x y +=⎧⎨-=⎩ 【答案】(1)方程组的解是7252x y ⎧=⎪⎪⎨⎪=⎪⎩(1)方程组的解是12x y =⎧⎨=⎩ 【解析】分析:(1)用加减消元法求解即可;(1)用加减消元法求解即可.详解:(1)381x y x y -=⎧⎨-=⎩①②,①-②,得:1x =7,x =72, 把x =72代入②,得:712y -=,y =52. 所以原方程组的解为7252x y ⎧=⎪⎪⎨⎪=⎪⎩. (1)341153x y x y +=⎧⎨-=⎩①②,①+②×4,得:13x =13,解得:x =1, 把x =1代入①,得:y =1.所以原方程组的解为12x y =⎧⎨=⎩. 点睛:本题考查了用加减消元法解二元一次方程组,解题时要根据方程组的特点进行有针对性的计算.20.如图,//AB CD ,12∠=∠,试判断E ∠与F ∠的大小关系,并说明你的理由.∠=∠,理由详见解析【答案】E F【解析】连接BC,依据AB∥CD,可得∠ABC=∠DCB,进而得出∠EBC=∠FCB,即可得到BE∥CF,进而得到∠E=∠F.【详解】解:∠E=∠F.理由:连接BC,∵AB∥CD,∴∠ABC=∠DCB,又∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥CF,∴∠E=∠F..【点睛】本题考查的是平行线的判定与性质,利用两直线平行,内错角相等是解答此题的关键.21.安九高铁潜山段有甲、乙两个施工队,现中标承建安九高铁一段建设工程.若让两队合作,36天可以完工,需要费用180万元;若让两队合作30天后,剩下的工程由甲队做,还需10天才能完成,这样只需要费用160万元.(1)甲、乙两队单独完成此项工程各需多少天?(2)甲、乙两队单独完成此项工程各需费用多少万元?【答案】(1)甲,乙两队单独完成该项工作分别需60,90天;(2)甲、乙两队单独完成此项工程各需费用60万元,360万元.【解析】(1)设甲,乙两队单独完成该项工作分别需a,b天,根据“若让两队合作,36天可以完工;若让两队合作30天后,剩下的工程由甲队做,还需10天才能完成”列出方程组,求解即可;(2)设甲每天需要费用x万元,乙每天需要费用y万元,根据题意列出方程组,分别求出甲,乙每天需要的费用,结合(1)中结果解答即可.【详解】解:(1)设甲,乙两队单独完成该项工作分别需a,b天.由题意得:113611110301a ba b a⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪++=⎪⎪⎝⎭⎩,解这个方程组得6090 ab=⎧⎨=⎩,经检验得6090ab=⎧⎨=⎩是原方程的解答:甲,乙两队单独完成该项工程分别需60天,90天;(2)设甲每天需要费用x万元,乙每天需要费用y万元,由题意得:()()36180, 3010160, x yx y x⎧+=⎪⎨++=⎪⎩解得1,4. xy=⎧⎨=⎩∴甲单独完成此项工程需费用1×60=60(万元),乙单独完成此项工程需费用4×90=360(万元),答:甲、乙两队单独完成此项工程各需费用60万元,360万元.【点睛】此题主要考查了分式方程的应用和二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.此题用到的关系是工作量问题:工作效率=工作量÷工作时间.22.方程组2101x yax by+=⎧⎨+=⎩与256x ybx ay-=⎧⎨+=⎩有相同的解,求a,b及方程组的解.【答案】23ab=-⎧⎨=⎩,43xy=⎧⎨=⎩.【解析】根据题意方程组2101x yax by+=⎧⎨+=⎩与256x ybx ay-=⎧⎨+=⎩有相同的解,则利用已知的方程组先求解,再将解代入求解参数即可.【详解】∵方程组2101x yax by+=⎧⎨+=⎩与256x ybx ay-=⎧⎨+=⎩有相同的解,∴联立方程组210 25 x yx y+=⎧⎨-=⎩解得43 xy=⎧⎨=⎩∴431 436a bb a+=⎧⎨+=⎩解得23ab=-⎧⎨=⎩.【点睛】本题主要考查方程组的解,关键在于根据两个方程组求出方程组的解,此类题目是常考点应当熟练掌握. 23.三角形ABC在正方形网格中的位置如图所示,网格中每个小方格的边长为1个单位长度,请根据下列提示作图.(1)过点D作BC的平行线(2)将三角形ABC进行平移得到三角形EDF,使点B与点D重合,点A的对应点为点E,点C的对应点为点F,画出平移后的三角形EDF;(3)连接线段助DB,请直接写出三角形BDE的面积.【答案】(1)见解析;(1)见解析;(3)三角形BDE的面积为1.【解析】(1)根据题意画出即可;(1)根据题意画图即可;(3)用割补法求解即可.【详解】解:(1)如图;(1)如图;(3)三角形BDE的面积为1×3-12×1×1-12×1×3-12×1×1=1.【点睛】本题考查了平行线的画法,平移作图,三角形的面积公式,熟练掌握割补法是解答本题的关键. 24.如图,这是一个计算程序示意图.规定:从“输入x”到“加上5”为一次运算.例如:输入“x=3”,则“326⨯=,6+5=11.”(完成一次运算)因为111>,所以输出结果y=11.(1)当x=2时,y= ;当x=-3时,y= .(2)若程序进行了一次运算,输出结果y=7,则输入的x 值为 .(3)若输入x 后,需要经过两次运算才输出结果y ,求x 的取值范围.【答案】(1)9,2;(1)1;(2)72x -≤<-1.【解析】(1)把x=1和-2输入,求出结果,看结果是否大于等于1,不大于1,把求出的结果再代入代数式,求出结果,直到符合条件,就是输出结果;(1)把y=7代入代数式,计算即可;(2)根据运算流程结合需要经过两次运算可得出关于x 的一元一次不等式组,解不等式组即可得出结论.【详解】(1)当x=1时,y=1×1+5=9>1,所以输出9;当x=-2时,y=-2×1+5=-1<1,把x=-1代入,得-1×1+5=2>1,所以输出2.(1)y=7时,1x+5=7,解得,x=1. (2)根据题意 ()25122551x x +⎧⎪⎨++≥⎪⎩<①② 由①得:x <-1, 由②得:72x ≥-. ∴72x -≤<-1.【点睛】考查了一元一次不等式组的应用以及有理数的混合运算,解题的关键是:(1)根据运算流程代入数据求值;(1)根据运算流程得出关于x 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式组的解法是关键.25.学着说点理:补全证明过程:如图,AB∥EF,CD⊥EF于点D,若∠B=40°,求∠BCD的度数.解:过点C作CG∥AB.∵AB∥EF,∴CG∥EF.()∴∠GCD=∠.(两直线平行,内错角相等)∵CD⊥EF,∴∠CDE=90°.()∴∠GCD=.(等量代换)∵CG∥AB,∴∠B=∠BCG.()∵∠B=40°,∴∠BCG=40°.则∠BCD=∠BCG+∠GCD=.【答案】平行于同一条直线的两条直线平行,EDC,垂直的定义,90°,两直线平行,内错角相等,130°.【解析】过点C作CG∥AB.依据平行线的性质,即可得到∠DCG=90°,∠BCG=40°,进而得到∠BCD的度数.【详解】解:如图,过点C作CG∥AB.∵AB∥EF,∴CG∥EF.(平行于同一条直线的两条直线平行)∴∠GCD=∠EDC.(两直线平行,内错角相等)∵CD⊥FF,∴∠CDE=90°.(垂直的定义)∴∠GCD=90°.(等量代换)∵CG∥AB,∴∠B=∠BCG.(两直线平行.内错角相等)∵∠B=40°.∴∠BCG=40°,则∠BCD=∠BCG+∠GCD=130°.故答案为:平行于同一条直线的两条直线平行,EDC,垂直的定义,90°,两直线平行,内错角相等,130°.【点睛】此题主要考查了平行线的判定与性质,正确作出辅助线是解题关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为()A.3.7x10-5B.3.7x10-6C.3.7x10-7D.37x10-5【答案】A【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值时,是正数;当原数的绝对值,是负数.【详解】数据0.000037可用科学记数法表示为:故选A【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.能正确确定的值以及的值是解题关键.3.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.4.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人其中正确的结论个数为( )A.3 B.2 C.1 D.0【答案】A【解析】分析:(1)根据表示赞同的人数是50,所占的百分比是25%即可求得总人数;(2)利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解;详解:(1)接受这次调查的家长人数为:50÷25%=200(人),故命题正确;(2)“不赞同”的家长部分所对应的扇形圆心角大小是:360×90200=162°,故命题正确;(3)表示“无所谓”的家长人数为200×20%=40(人),故命题正确.故选:A.点睛:本题考查的是条形统计图和扇形统计图的综合运用,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.用到的知识点为:总体数目=部分数目÷相应百分比.5.在0、3221224 3.14160.2380.373773777373π-、、、、、、、、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),这十个数中,无理数的个数是( )A .1B .2C .3D .4 【答案】D【解析】根据无理数的定义,即可得到答案【详解】∵0、2212 3.14160.23873-、、、、是有理数;3240.3737737773π、、、(它的位数无限且相邻两个“3”之间“7”的个数依次加1个)是无理数,∴无理数的个数有4个.故选D .【点睛】本题主要考查无理数的定义,掌握无限不循环小数是无理数,是解题的关键.6.已知x a y b =⎧⎨=⎩是方程组23327x y x y +=⎧⎨-=⎩的解,则5a b -的值是( )A .10B .-10C .14D .21【答案】A【解析】把x =a ,y =b ,代入方程组2x+y=33x-2y=7⎧⎨⎩,两式相加即可得出答案. 【详解】把x =a ,y =b 代入方程组2x+y=33x-2y=7⎧⎨⎩, 得:23327a b a b +=⎧⎨-=⎩两式相加得:5a−b=7+3=10.故选A【点睛】此题考查二元一次方程组的解,解答本题的关键在于x =a ,y =b ,代入方程组,化简可得答案 7.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是,则这个音箱的长是() A . B . C . D .【答案】B【解析】设这个音箱的宽是xcm,根据题意可以表示出长和高,根据长方体的体积公式列方程求解.【详解】解:设这个音箱的宽是xcm,则高是cm,长是2xcm, 根据长方体的体积公式得2x∙x∙ x=540002 =54000=27000x=30,2x=60(cm).故选:B.【点睛】本题考查立方根的应用,解题的关键是明确题意,列出相应的方程.8.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠3 B.∠2=∠4C.∠C=∠CBE D.∠C+∠ABC=180°【答案】B【解析】根据平行线的判定分别进行分析可得答案.【详解】解: A. ∠1=∠3,同旁内角相等,不能判定直线平行,故此选项不正确;B. ∠2=∠4,同旁内角相等,不能判定直线平行,故此选项不正确;C. ∠C=∠CBE,根据内错角相等,两直线平行可得AB∥CD,故此选项错误;D. ∠C+∠ADC=180°,根据同旁内角互补,两直线平行可得AD∥BC,故此选项正确;故选D.【点睛】本题考查平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.9.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.453560(2)35x yx y-=⎧⎨-=-⎩B.453560(2)35x yx y=-⎧⎨-+=⎩C.453560(1)35x yx y+=⎧⎨-+=⎩D.453560(2)35x yy x=+⎧⎨--=⎩【答案】B【解析】根据题意,易得B.10.某学校的篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,设篮球有x个,足球有y个,可得方程组( )A .32249x y y x =+⎧⎨-=⎩B .32249x y x y =+⎧⎨-=⎩ C .23249x y x y =-⎧⎨=+⎩D .32249x y x y =-⎧⎨-=⎩【答案】B 【解析】直接利用篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,分别得出方程求出答案.【详解】设篮球有x 个,足球有y 个,可得方程组:32249x y x y =+⎧⎨-=⎩. 故选B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.二、填空题题11.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.【答案】60°【解析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D 的度数.【详解】∵DA ⊥CE ,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB ∥CD ,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是_____.【答案】10【解析】易得27元可购买的商品一定超过了5件,关系式为:5×原价+超过5件的件数×打折后的价格≤27,把相关数值代入计算求得最大的正整数解即可.【详解】解:∵27>5×3,∴27元可购买的商品一定超过了5件,设购买了x 件该商品.5×3+(x-5)×3×0.8≤27,2.4x≤24,x≤10,∴最多可购买该商品10件.【点睛】本题考查了一元一次不等式的实际应用,找到相应的关系式是解决问题的关键.注意能花的钱数应不大于有的钱数.13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.【答案】(2019,2)【解析】分析点P 的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.14.若关于x 的不等式20x a -≤只有6个正整数解,则a 应满足________.【答案】1214a ≤<【解析】首先利用不等式的基本性质解不等式,根据正整数解有6个,那么可知这些解就是1、2、3、4、5、6,进而可知6≤12a <7,求解即可. 【详解】∵20x a -≤ ∴2a x ≤ ∵正整数解有6个,那么可知这些解就是1、2、3、4、5、6∴1672a ≤< 解得1214a ≤<故答案为:1214a ≤<【点睛】本题考查了一元一次不等式的整数解,解题的关键是注意题目中的条件正整数解只有6个,要理解此条件表达的意思.15====,…,则第8个等式是__________.= 【解析】通过观察类比总结出通用规律,两个根式相等,第一个根式里面是整数加分数,第二个根式里面是分数,根式外面为整数,发现等式两边的整数和分数之间的关系,即可求解.=整数比右边整式大1,且等式左边整数在根式里面与分数相加,等式右边整式在根式外面与根式相乘.=个等式则整数就是几,且分数的分子都为1,分母比整数大2.==,其特点跟第一个等式和第二个等式一样,进一步验证了这个特点.则第n (+1n =所以第8(8+1=== 【点睛】本题考查了观察类比总结,关键在于充分理解题干给出的信息,找到各式的公共特点,得到通用公式. 16.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC 交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED的度数是______.【答案】110°.【解析】试题分析:由∠BDC =95°可得∠ADB =85°,根据三角形的内角和定理可得∠EBD =35°.根据平行线的性质和角平分线的定义可证得∠EDB =∠EBD =35°,再由三角形的内角和定理可得∠DEB =110°. 考点:三角形的内角和定理;平行线的性质.17.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =_____.【答案】10±【解析】利用题中四次方根的定义求解. 4410m =,∴4410m =,∴10m =±.故答案为:10±.【点睛】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.三、解答题18.某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?【答案】自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x 千米/小时,则汽车速度为2.5x 千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x 千米/小时,则汽车速度为2.5x 千米/小时,由题意得20452060 2.5x x-=, 解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.19.计算|32|239(6)27--【答案】2 3.- 【解析】根据绝对值,算术平方根、立方根进行计算即可.【详解】解:原式()23363,=-+---23363,=-+-+2 3.=-【点睛】考查实数的混合运算,掌握运算法则是解题的关键.20.学校为了解学生对新闻、体育、动画、娱乐、戏曲类电视节目的喜爱情况,采用抽样的方法在七年级选取了一个班的同学,通过问卷调查,收集数据、整理数据,制作了如下两个整统计图,请根据下面两个不完整的统计图分析数据,回答以下问题:(1)七年级的这个班共有学生_____人,图中a =______,b =______,在扇形统计图中,“体育”类电视节目对应的圆心角为:______.(2)补全条形统计图;(3)根据抽样调查的结果,估算该校1750名学生中大约有多少人喜欢“娱乐”类电视节目?【答案】(1)50,36%,10,72°;(2)画图见解析;(3)630人.【解析】(1)根据新闻人数以及百分比求出总人数即可解决问题.(2)求出娱乐人数,画出统计图即可.(3)利用样本估计总体的思想解决问题即可.【详解】(1)总人数=4÷8%=50(人),b=50×20%=10,a=1-6%-8%-20%-30%=36%,“体育“类电视节目对应的圆心角为360°×20%=72°,(2)娱乐人数=50-4-10-15-3=18,统计图如图所示:(3)1750×1850=630(人),答:估算该校1750名学生中人约有630人喜欢娱乐”类电视节目.【点睛】本题考查扇形统计图,样本估计总体的思想,频数分布直方图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.点C是直线l1上一点,在同一平面内,把一个等腰直角三角板ABC任意摆放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1,垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系 (不必说明理由);(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量关系,并说明理由;(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,AM与MN之间的数量关系. 【答案】(1)MN=AM+BN;(2)MN=BN-AM,见解析;(3)见解析,MN=AM﹣BN.【解析】(1)利用AAS定理证明△NBC≌△MCA,根据全等三角形的性质、结合图形解答;(2)根据直角三角形的性质得到∠CAM=∠BCN,证明△NBC≌△MCA,根据全等三角形的性质、结合图形解答;(3)根据题意画出图形,仿照(2)的作法证明.【详解】(1)MN=AM+BN(2)MN=BN-AM理由如下:如图2.因为l2⊥l1,l3⊥l1。
贵州省贵阳市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·高阳期末) 下列各图中,射线OA表示南偏东32°方向的是()A .B .C .D .2. (2分)(2019·遂宁) 某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A . 100B . 被抽取的100名学生家长C . 被抽取的100名学生家长的意见D . 全校学生家长的意见3. (2分)若点E(-a,-a)在第一象限,则点F(-a2,-2a)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分) (2016七下·大冶期末) 不等式2x+1≤5的解集,在数轴上表示正确的是()A .B .C .D .5. (2分)对于二元一次方程组用加减法消去x,得到的方程是()A . 2y=﹣2B . 2y=﹣36C . 12y=﹣36D . 12y=﹣26. (2分)(2011·遵义) 把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A . 115°B . 120°C . 145°D . 135°7. (2分)下列说法中错误的是()A . 4的算术平方根是2B . 负数有立方根,并且是负数C . 8的立方根是±2D . ﹣1的立方根是﹣18. (2分) (2017七下·自贡期末) 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A .B .C .D .9. (2分)如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5(4)∠B+∠BCD=180°.A . 1B . 2C . 3D . 410. (2分)(2017·五华模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .二、填空题 (共5题;共7分)11. (1分)若|a﹣4|+|b+5|=0,则a﹣b= ________12. (1分)已知x=3是方程的解,那么不等式(2-)x的解集是________.13. (1分)若方程2x2m+1+3y=﹣7是二元一次方程,则m=________.14. (1分) (2019七下·绍兴月考) 如图,已知的面积为16,,现将沿直线BC向右平移a个单位到的位置,当所扫过的面积为32时,a的值为________;15. (3分)观察下面的一列数:,﹣,,﹣,,﹣…请你找出其中排列的规律,解答(1)第10个数是________ ,第15个数是________(2)第2016个数是________三、解答题 (共7题;共57分)16. (10分)(2014·徐州)(1)解方程:x2+4x﹣1=0;(2)解不等式组:.17. (1分) (2019七下·普陀期中) 如图,直线a//b,∠1=25°,∠p=75°,则∠2=________18. (5分) (2019七下·巴中期中) 已知方程组,由于甲看错了方程①中的a得到方程组的解为,乙看错了方程②中的b得到方程组的解为 .若按正确a、b计算,求出原方程组的正确解.19. (11分)为了解我校初一年级学生的身高情况,随机对初一男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据调查所得数据绘制如图所示的统计图表.由图表中提供的信息,回答下列问题:组别身高(cm)A x<150B150≤x<155C155≤x<160D160≤x<165E x≥165(1)在样本中,男生身高的中位数落在________组(填组别序号);(2)求女生身高在B组的人数;(3)我校初一年级共有男生500人,女生480人,则身高不低于160cm的学生人数.20. (10分)(2018·昆明) (列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21. (10分)(2017·开江模拟) 为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?22. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)若CE=8,CF=6,求OC的长;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共7分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共57分)16-1、16-2、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、。
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年贵州省贵阳市七年级(下)期末数学试卷
一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请将正确
答案填写在括号内,每小題3分,其30分)
1.(3分)计算x2•x4的结果为()
A.x8B.x6C.6x D.8x
2.(3分)如图,下列各角中,是对顶角的一组是()
A.∠1和∠2B.∠1和∠3C.∠2和∠4D.)∠3和∠4 3.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()
A.B.C.D.
4.(3分)下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是()A.B.
C.D.
5.(3分)一种感冒病毒的直径约为0.0000226cm,将0.0000226这个数用科学记数法可表示为()
A.0.226×10﹣5B.2.26×10﹣5C.22.6×10﹣5D.226×10﹣5 6.(3分)在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学()
A.小明B.小亮C.小颖D.小静
7.(3分)若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()
A.2a2﹣B.4a2﹣4a+1C.4a2+4a+1D.4a2﹣1
8.(3分)将一把直尺与一块三角尺如图放置,若∠1=52°,则∠2的度数是()
A.152°B.138°C.142°D.128°
9.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()
A.至少有1个球是黑球B.至少有1个球是白球
C.至少有2个球是黑球D.至少有2个球是白球
10.(3分)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()
A.B.
C.D.
二、填空题(每小题4分,共20分)
11.(4分)计算(﹣2018)0﹣()﹣1的结果是.
12.(4分)如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线
BF上取两点C、D,使BC=CD,再出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是.
13.(4分)小颖画了一个边长为5cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.
14.(4分)如图,AB∥DE,CD=BF,若△ABC≌△DEF,还需补充的条件可以是.
15.(4分)如图,点P是AOB内任意一点,OP=5cm,点P与点C关于射线OA对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F,当△PEF的周长是5cm时,∠AOB的度数是度.
三、解答题
16.(10分)(1)计算:2a2(3a2﹣5b)
(2)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣1.17.(6分)如图是一个由4条线段构成的“鱼”形图案,其中∠1=55°,∠2=55°,∠3=125°,找出图中的平行线,并说明理由.
18.(6分)如图是由正方形组成的L形图,请你用三种方法分别在图中添加一个正方形使其成为轴对称图形,并画出对称轴.
19.(7分)棱长为a的小正方体,按照如图所示的方法一直维续摆放,自上而下分别叫第1层、第2层、……第n(n>0)层,第n层的小方体的个数记为S.
(1)完成下表:
n1234…
S13…
(2)上述活动中,自变量和因变量分别是什么?
(3)研究上表可以发现S随n的增大而增大,且有一定的规律,请你用式子来表示S与n 的关系,并计算当n=10时S的值.
20.(7分)从公式到语言表述,再到图形直观解释,可以让同学们从不同角度理解乘法公式,下图就给出了一个乘法公式的几何解释.
(1)根据图形写出这个乘法公式是.
(2)已知a+b=5,ab=3,求a2+b2的值.
21.(6分)在一个不透明袋子中装有颜色不同的黑、白两种球共40个球,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.如图是“摸到白球”的频率折线统计图:
(1)根据统计图,估算盒子里黑、白两种颜色的球各多少个?
(2)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?
22.(8分)如图,B是线段AD上一点,过B点直线CB⊥AD于点B,AD=BC.
(1)过点A作AF⊥AB,并截取AF=BD,点C、点F在线段AD的两侧,连接CD、DF、CF,依题意补全图.
(2)判断△CDF的形状,并说明理由.
2017-2018学年贵州省贵阳市七年级(下)期末数学试卷
参考答案
一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请将正确
答案填写在括号内,每小題3分,其30分)
1.B;2.C;3.B;4.D;5.B;6.D;7.A;8.C;9.A;10.B;
二、填空题(每小题4分,共20分)
11.﹣1;12.ASA;13.y=x2+10x;14.AB=ED;15.30;
三、解答题
16.;17.;18.;19.6;10;20.(a+b)2=a2+b2+2ab;21.;
22.;。