2020_2021学年新教材高中数学第五章三角函数5.6函数y=Asinωx+φ课时作业含解析人教A版必修一
- 格式:doc
- 大小:178.00 KB
- 文档页数:7
5.6 函数y=A sin(ωx+φ)【素养目标】1.深刻理解五点的取法,特别是作正弦型函数的图象时取的五点.(数学运算)2.从φ、ω、A的变化总结图象.(直观想象)3.能由y=sin x平移和伸缩变换为y=A sin(ωx+φ)及逆向平移和伸缩变换.(逻辑推理) 【学法解读】在本节学习中,借助实例构建三角函数y=A sin(ωx+φ)的形式,利用PPT观察φ,A,ω对y=A sin(ωx+φ)的图象的影响,学会由y=sin x如何变化为y=A sin(ωx+φ),提升数学素养中的直观想象.必备知识·探新知基础知识知识点1参数A,ω,φ对函数y=A sin(ωx+φ)图象的影响(1)φ对y=sin(x+φ),x∈R的图象的影响.(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响.(3)A(A>0)对y=A sin(ωx+φ)的图象的影响.思考1:(1)如何由y=f(x)的图象变换得到y=f(x+a)的图象?(2)函数y=sinωx的图象是否可以通过y=sin x的图象得到?提示:(1)向左(a>0)或向右(a<0)平移|a|个单位长度.(2)可以,只要横向“伸”或“缩”1ω倍y=sin x的图象即可.知识点2 函数y =A sin(ωx +φ)(A >0,ω>0)中,A ,ω,φ的物理意义(1)简谐运动的振幅就是A . (2)简谐运动的周期T =2πω.(3)简谐运动的频率f =1T =ω2π.(4)ωx +φ称为相位.(5)x =0时的相位φ称为初相.思考2:若函数y =A sin(ωx +φ)中的A <0或ω<0时怎么办?提示:当A <0或φ<0时,应先用诱导公式将x 的系数或三角函数符号前的数化为正数再确定初相φ.知识点3 函数y =A sin(ωx +φ)(A >0,ω>0)的性质 名称 性质 定义域 R 值域 [-A ,A ] 周期性 T =2πω对称中心 (k π-φω,0)(k ∈Z ) 对称轴x =k πω+π-2φ2ω(k ∈Z )__奇偶性__当__φ=k π(k ∈Z )__时是奇函数当__φ=k π+π2(k ∈Z )__时是偶函数__单调性__由2k π-π2≤ωx +φ≤2k π+π2,k ∈Z ,解得单调递增区间由2k π+π2≤ωx +φ≤2k π+3π2,k ∈Z ,解得单调递减区间(2)判断函数y =A sin(ωx +φ)(A >0,ω>0)的单调性时,应用了什么数学思想?提示:(1)判断函数的奇偶性,必须先求函数的定义域,若定义域关于原点不对称,则此函数为非奇非偶函数;若定义域关于原点对称,再根据奇偶函数的定义判断.(2)判断函数y =A sin(ωx +φ)(A >0,ω>0)的单调性时,要把ωx +φ看作一个整体,应用了“整体代入”的数学思想.基础自测1.下列说法中正确的个数是( A )①y =sin3x 的图象向左平移π4个单位所得图象的解析式是y =sin(3x +π4).②y =sin x 的图象上所有点的横坐标都变为原来的2倍所得图象的解析式是y =sin2x . ③y =sin x 的图象上所有点的纵坐标都变为原来的2倍所得图象的解析式是y =12sin x .A .0B .1C .2D .3[解析] ①y =sin3x 的图象向左平移π4个单位得y =sin[3(x +π4)]=sin(3x +34π),故①不正确;②y =sin2x 应改为y =sin 12x ,故②不正确;③y =12sin x 应改为y =2sin x ,故③不正确.故选A .2.函数y =A sin(ωx +φ)+1(A >0,ω>0)的最大值为5,则A =( C ) A .5 B .-5 C .4D .-43.为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( A ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度4.函数f (x )=sin(x -π4)的图象的对称轴方程是__x =3π4+k π(k ∈Z )__.5.函数y =3sin(12x -π6)的频率为__14π__,相位为__12x -π6__,初相为__-π6__.关键能力·攻重难题型探究题型一 “五点法”作图例1 用“五点法”画函数y =2sin(3x +π6)的简图.[分析] 列表时,取值要简单(与y =sin x 中五点比较).[解析] 先画函数在一个周期内的图象.令X =3x +π6,则x =13(X -π6).列表X 0 π2 π 3π2 2π x -π18π9 5π18 4π9 11π18 y2-2描点作图,再将图象左右延伸即可.[归纳提升] 用“五点法”作函数y =A sin(ωx +φ)图象的步骤 第一步:列表.ωx +φ 0 π2 π 3π2 2π x -φω π2ω-φω πω-φω 3π2ω-φω 2πω-φω yA-A第二步:在同一坐标系中描出各点.第三步:用光滑曲线连接这些点,得到一个周期内的图象,再将图象左右延伸即可.【对点练习】❶ 已知f (x )=2sin(x 2+π3).(1)在给定的坐标系内,用“五点法”作出函数f (x )在一个周期内的图象;(2)写出f (x )的单调递增区间;(3)求f (x )的最大值和此时相应的x 的值. [解析] (1)列表:x 2+π3 0 π2 π 3π2 2π x -2π3π3 4π3 7π3 10π3 f (x )2-2作图:(2)由2k π-π2≤x 2+π3≤2k π+π2,得4k π-5π3≤x ≤4k π+π3,k ∈Z .所以函数f (x )的单调递增区间为[4k π-5π3,4k π+π3],k ∈Z .(3)当x 2+π3=π2+2k π,即x =π3+4k π(k ∈Z )时,f (x )max =2.题型二 三角函数的图象变换例2 如何由函数y =sin x 的图象得到函数y =3sin(2x -π3)+1的图象?[分析] 本题主要考查正弦函数的图象变换,可根据两种变换方式中的一种进行,正确写出平移或伸缩变换的方向、大小即可.[解析] 解法一:y =sin x ――――――――→向右平移π3个单位长度y =sin(x -π3)――――――――――――――→将各点的横坐标缩短为原来的12纵坐标不变y =sin(2x -π3)―――――――――――――→将各点的纵坐标伸长为原来的3倍横坐标不变 y =3sin(2x -π3)――――――――→向上平移1个单位长度y =3sin(2x -π3)+1.解法二:y =sin x ―――――――――――――→将各点的横坐标缩短为原来的12纵坐标不变y =sin2x ―――――――――→向右平移π6个单位长度y =sin2(x -π6)―――――――――――――→将各点的纵坐标伸长为原来的3倍横坐标不变y =3sin2(x -π6) =3sin(2x -π3)――――――――→向上平移1个单位长度y =3sin(2x -π3)+1.[归纳提升] 1.法一是先平移后伸缩;法二是先伸缩后平移.2.两种变换中平移的单位长度是不同的,在应用中一定要区分清楚,以免混乱而失误.弄清平移对象是减少失误的好方法.【对点练习】❷ 将函数y =2sin(2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( D )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)[解析] 函数y =2sin(2x +π6)的周期为π,所以将函数y =2sin(2x +π6)的图象向右平移π4个单位长度后,得到函数图象对应的解析式为y =2sin[2(x -π4)+π6]=2sin(2x -π3).故选D .题型三 由图象确定函数的解析式例3 (1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的解析式为( D )A .f (x )=2sin(12x +π6)B .f (x )=2sin(12x -π6)C .f (x )=2sin(2x -π6)D .f (x )=2sin(2x +π6)(2)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且A (π2,1),B (π,-1),则ω=__2__,φ= __-5π6__.[分析] (1)由图象可以确定最大值为2,周期为π,再利用一个点的坐标求φ. (2)曲线上由A 到B 是周期的12,从而求出ω,再求φ.[解析] (1)由图象可知,A =2,T =4(5π12-π6)=π,所以2πω=π,所以ω=2,所以f (x )=2sin(2x+φ),因为图象过点(π6,2),所以2sin(π3+φ)=2,所以sin(π3+φ)=1,所以π3+φ=π2+2k π,k ∈Z ,所以φ=π6+2k π,k ∈Z ,因为|φ|<π2,所以φ=π6,所以f (x )=2sin(2x +π6).(2)根据函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象,且A (π2,1),B (π,-1),可得从点A到点B 正好经过了半个周期,即12·2πω=π-π2,所以ω=2.再把点A ,B 的坐标代入可得2sin(2×π2+φ)=-2sin φ=1,2sin(2×π+φ)=2sin φ=-1,所以sin φ=-12,所以φ=2k π-π6,或φ=2k π-5π6,k ∈Z .再结合五点法作图,可得φ=-5π6.[归纳提升] 由图象确立三角函数的解析式时,若设所求解析式为y =A sin(ωx +φ),则在观察图象的基础上可按以下规律来确定A ,ω,φ.(1)A :一般可由图象上的最大值、最小值来确定.(2)ω:因为T =2πω,故往往通过求周期T 来确定ω.可通过已知曲线与x 轴的交点来确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)φ:从“五点法”中的第一个点(-φω,0)(也叫初始点)作为突破口,要从图象的升降情况找准第一个点的位置.依据五点列表法原理,点的序号与式子的关系如下: “第一点”(即图象上升时与x 轴的交点)为ωx +φ=0; “第二点”(即图象曲线的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π; “第四点”(即图象曲线的“谷点”)为ωx +φ=3π2;“第五点”(即图象第二次上升时与x 轴的交点)为ωx +φ=2π.在用以上方法确定φ的值时,还要注意题目中给出的φ的范围,不在要求范围内的要通过周期性转化到要求范围内.(4)A ,ω,φ三个量中初相φ的确定是一个难点,除使用初始点(-φω,0)外,还可在五点中找两个特殊点列方程组来求解φ.【对点练习】❸ 函数y =A sin(ωx +φ)的部分图象如图所示,则( A )A .y =2sin(2x -π6)B .y =2sin(2x -π3)C .y =2sin(2x +π6)D .y =2sin(2x +π3)[解析] 由图知,A =2,周期T =2[π3-(-π6)]=π,所以ω=2ππ=2,所以y =2sin(2x +φ).因为图象过点(π3,2),所以2=2sin(2×π3+φ),所以sin(2π3+φ)=1,所以2π3+φ=2k π+π2(k ∈Z ).令k =0得φ=-π6,所以y =2sin(2x -π6).题型四 正弦型函数y =A sin(ωx +φ)图象的对称性例4 在函数y =2sin(4x +2π3)的图象的对称中心中,离原点最近的一个对称中心的坐标是__(π12,0)__.[分析] 利用整体代换法求解.[解析] 设4x +2π3=k π(k ∈Z ),得x =k π4-π6(k ∈Z ),所以函数y =2sin(4x +2π3)图象的对称中心坐标为(k π4-π6,0)(k ∈Z ).取k =1得(π12,0)满足条件.[归纳提升] 正弦型函数对称轴与对称中心的求法对称轴对称中心 y =A sin(ωx +φ)令ωx +φ=k π+π2(k ∈Z )求对称轴令ωx +φ=k π(k ∈Z ) 求对称中心的横坐标称轴方程为__x =-π24__.[解析] 由4x +2π3=k π+π2(k ∈Z ),得x =k π4-π24,取k =0时,x =-π24满足题意.误区警示例5 函数y =2sin(-2x +π3)的相位和初相分别是( C )A .-2x +π3,π3B .2x -π3,-π3C .2x +2π3,2π3D .2x +2π3,π3[错解] 对解答本题时易犯的错误具体分析如下:常见错误错误原因相位和初相分别是-2x +π3,π3错解均忽视了相位和初相的概念:概念中要求A >0,ω>0.当不满足条件时应设法创造出条件.y =2sin(-2x +π3)=-2sin(2x -π3)∴相位和初相分别是2x -π3,-π3[错因分析] 此类问题一定要注意满足定义中的前提条件是“A >0,ω>0”,若不满足,则必须先利用诱导公式转换为“A >0,ω>0”再求.[正解] ∵y =2sin(-2x +π3)=2sin[π-(-2x +π3)]=2sin(2x +2π3)∴相位和初相分别是2x +2π3,2π3.[方法点拨] 要正确理解函数y =A sin(ωx +φ)中A 、ω、φ的意义.学科素养函数y =A sin(ωx +φ)性质的综合应用例6 设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调区间及最值;(3)画出函数y =f (x )在区间[0,π]上的图象.[分析] 本题关键是对图象的对称轴为x =π8这一条件的利用,由图象一对称轴为x =π8得:当x =π8时2x +φ=k π+π2(k ∈Z )进而可求φ值.[解析] (1)由2x +φ=k π+π2,k ∈Z 得x =k π2+π4-φ2,令k π2+π4-φ2=π8,解得φ=k π+π4,k ∈Z . ∵-π<φ<0,∴φ=-3π4.(2)由(1)知,f (x )=sin(2x -3π4),由2k π-π2≤2x -3π4≤2k π+π2(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),故函数的单调递增区间是 [k π+π8,k π+5π8](k ∈Z ).同理可得函数的单调递减区间是 [k π+5π8,k π+9π8](k ∈Z ).当2x -3π4=2k π+π2(k ∈Z ),即x =k π+5π8(k ∈Z )时函数有最大值1;当2x -3π4=2k π-π2(k ∈Z ),即x =k π+π8(k ∈Z )时函数有最小值-1.(3)由y =sin(2x -3π4)知,故函数y =f (x )在区间[0,π]上的图象是课堂检测·固双基1.将函数y =sin(x +π4)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( D )A .y =cos2xB .y =sin(2x +π4)C .y =sin(12x +π8)D .y =sin(12x +π4)2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的振幅为12,周期为2π3,初相为π6,则该函数的表达式为( C )A .y =12sin(x 3+π6)B .y =12sin(x 3-π6)C .y =12sin(3x +π6)D .y =12sin(3x -π6)3.函数y =cos(2x -π6)+1的一个对称中心为( D )A .(π6,0)B .(π3,0)C .(π6,1)D .(π3,1)4.要得到函数y =cos2x 的图象,只需将y =cos(2x +π4)的图象( B )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度[解析] 平移问题遵循“左加右减,只针对x 而言”的原则.则y =cos2x 只需向左平移π8个单位即可.而y =cos(2x +π4)需右移π8个单位,得到y =cos2x .5.函数y =sin ωx (ω>0)在区间[0,1]上恰好有50个最大值,则ω的取值范围是__[197π2,201π2)__. [解析] T =2πω为其最小正周期,则(49+14)T ≤1<(50+14)T 时,有50个最大值点,所以ω∈[197π2,201π2).。
2019-2020学年新教材高中数学第五章三角函数5.6 函数y=Asin(ωx +φ)讲义新人教A版必修第一册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学第五章三角函数5.6 函数y=Asin(ωx+φ)讲义新人教A版必修第一册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学第五章三角函数5.6 函数y=Asin(ωx+φ)讲义新人教A版必修第一册的全部内容。
5。
6 函数y=A sin(ωx+φ)最新课程标准:结合具体实例,了解y=A sin(ωx+φ)的实际意义,能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响.知识点一A,ω,φ对函数y=A sin(ωx+φ)图象的影响1.φ对函数y=sin(x+φ)图象的影响2.ω对函数y=sin(ωx+φ)图象的影响3.A对函数y=A sin(ωx+φ)图象的影响错误!(1)A越大,函数图象的最大值越大,最大值与A是正比例关系.(2)ω越大,函数图象的周期越小,ω越小,周期越大,周期与ω为反比例关系。
(3)φ大于0时,函数图象向左平移,φ小于0时,函数图象向右平移,即“左加右减”.(4)由y=sin x到y=sin(x+φ)的图象变换称为相位变换;由y=sin x到y=sinωx 的图象变换称为周期变换;由y=sin x到y=A sin x的图象变换称为振幅变换.知识点二函数y=A sin(ωx+φ),A>0,ω>0的有关性质1。
定义域:R。
2.值域:[-A,A].3.周期性:T=错误!。
课时作业54 函数y =A sin(ωx +φ)——基础巩固类——一、选择题1.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x 的图象( B ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析:y =sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π12=sin ⎝⎛⎭⎪⎫4x -π3.故选B. 2.将函数y =sin2x 的图象向右平移π2个单位长度,所得图象对应的函数是( A )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:y =sin2x 的图象向右平移π2个单位长度得到函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2=sin(2x -π)=-sin(π-2x )=-sin2x 的图象.因为-sin(-2x )=sin2x ,所以是奇函数.3.函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π上的简图是( A )解析:当x =0时,y =sin ⎝ ⎛⎭⎪⎫-π3=-32<0,故可排除B ,D. 当x =π6时,y =sin ⎝⎛⎭⎪⎫2×π6-π3=sin0=0,排除C ,故选A.4.将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( B ) A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减 B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 解析:函数图象右移π2个单位后得到函数解析式为y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+π3=3sin ⎝ ⎛⎭⎪⎫2x -2π3,把选项逐一代入验证可得,x ∈⎣⎢⎡⎦⎥⎤π12,7π12时,2x -2π3∈⎣⎢⎡⎦⎥⎤-π2,π2,函数单调递增,选B.5.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫其中ω>0,A >0,|φ|<π2的部分图象如图所示,则f (x )的解析式为( A )A .f (x )=sin ⎝⎛⎭⎪⎫2x +π3B .f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3C .f (x )=sin ⎝ ⎛⎭⎪⎫12x -π3D .f (x )=sin ⎝⎛⎭⎪⎫2x -π3 解析:T =⎝⎛⎭⎪⎫7π12-π3×4=π,由T =2πω得ω=2,由题图象知A =1,又由2×π3+φ=π+2k π(k ∈Z ),|φ|<π2得φ=π3.所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3.故选A.6.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝ ⎛⎭⎪⎪⎫3π40,则ω的最小值是( D ) A.13 B .1 C.53D .2解析:把f (x )=sin ωx 的图象向右平移π4个单位长度得y =sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π4的图象. ∵所得图象过点⎝ ⎛⎭⎪⎪⎫3π40,∴sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫3π4-π4=0.∴sinωπ2=0,∴ωπ2=k π(k ∈Z ).∴ω=2k (k ∈Z ).∵ω>0,∴ω的最小值为2. 二、填空题7.y =-2sin ⎝ ⎛⎭⎪⎫3x -π3的振幅为2,周期为2π3,初期φ=2π3. 解析:y =-2sin ⎝ ⎛⎭⎪⎫3x -π3=2sin ⎝ ⎛⎭⎪⎫3x -π3+π =2sin ⎝⎛⎭⎪⎫3x +2π3.∴振幅A =2,周期T =2π3,初相φ=2π3.8.若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是3π8.解析:把函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,得到f (x )=sin ⎣⎢⎡⎦⎥⎤2x -φ+π4=sin ⎝⎛⎭⎪⎫2x -2φ+π4的图象. 由于f (x )=sin ⎝ ⎛⎭⎪⎫2x -2φ+π4的图象关于y 轴对称,所以-2φ+π4=k π+π2,k ∈Z .即φ=-k π2-π8,k ∈Z .当k =-1时,φ的最小正值是3π8.9.已知f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2在⎣⎢⎡⎦⎥⎤0,4π3上单调,且f ⎝ ⎛⎭⎪⎫π3=0,f ⎝ ⎛⎭⎪⎫4π3=2,则f (0)=-1.解析:由题意知14·2πω=4π3-π3,所以ω=12.由f ⎝ ⎛⎭⎪⎫π3=0,得12×π3+φ=k π,k ∈Z . 所以φ=-π6+k π,k ∈Z .又因为|φ|≤π2,所以φ=-π6.f (0)=2sin ⎝ ⎛⎭⎪⎫-π6=-1. 三、解答题10.已知函数f (x )=3sin(2x +φ)⎝ ⎛⎭⎪⎫φ∈⎝ ⎛⎭⎪⎫0,π2,其图象向左平移π6个单位长度后,关于y 轴对称.(1)求函数f (x )的解析式.(2)说明其图象是由y =sin x 的图象经过怎样的变换得到的.解:(1)将函数f (x )=3sin(2x +φ)图象上的所有点向左平移π6个单位长度后,所得图象的函数解析式为y =3sin[2(x +π6)+φ]=3sin(2x +π3+φ).因为图象平移后关于y 轴对称, 所以2×0+π3+φ=k π+π2(k ∈Z ),所以φ=k π+π6(k ∈Z ).因为φ∈(0,π2),所以φ=π6.所以f (x )=3sin(2x +π6).(2)将函数y =sin x 的图象上的所有点向左平移π6个单位长度,所得图象的函数解析式为y =sin(x +π6),再把所得图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得函数y=sin(2x +π6)的图象,再把图象上各点的纵坐标伸长到原来的3倍(横坐标不变),即得函数y =3sin(2x +π6)的图象.11.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1. (1)求函数y =f (x )的周期、最大值和对称中心;(2)在直角坐标系中画出y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象. 解:(1)周期T =2πω=2π2=π,∵-1≤sin ⎝ ⎛⎭⎪⎫2x -π4≤1,∴f (x )的最大值是1+ 2.由2x -π4=k π(k ∈Z ),得x =k π2+π8(k ∈Z ),∴对称中心为(k π2+π8,1)(k ∈Z ).(2)列表如下:x -π2-π8π8 3π8 π2 f (x )2 1-211+22函数y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象如图所示.——能力提升类——12.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( C )A .5B .6C .8D .10解析:由题图可知-3+k =2,k =5,y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+5,∴y max =3+5=8.13.将函数f (x )=sin2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D ) A.5π12 B.π3C.π4D .π6解析:由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=|π2-φ|=π3,又0<φ<π2,故φ=π6,选D.14.函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象重合,则φ=5π6. 解析:y =cos(2x +φ)的图象向右平移π2个单位后得到y =cos[2(x -π2)+φ]的图象,化简得y =-cos(2x +φ),又可变形为y =sin(2x +φ-π2).由题意可知φ-π2=π3+2k π(k ∈Z ),所以φ=5π6+2k π(k ∈Z ),结合-π≤φ<π知φ=5π6.15.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎪⎫5π120,求θ的最小值.解:(1)根据题表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin(2x -π6).(2)由(1)知f (x )=5sin(2x -π6),得g (x )=5sin(2x +2θ-π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π(k ∈Z ),解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎪⎫5π120成中心对称,令k π2+π12-θ=5π12(k ∈Z ),解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.。