高化公式推导
- 格式:docx
- 大小:329.97 KB
- 文档页数:36
浙江大学材化学院高分子化学公式推导第一章绪论(Introduction)(1)分子量的计算公式:M0:重复单元数的分子量M1:结构单元数的分子量(2)数均分子量:N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。
x i表示相应的分子所占的数量分数。
(3)重均分子量:m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量W i表示相应的分子所占的重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂的分解速率:引发剂的浓度引发剂分解一般属于一级反应,因而分解速率为的一次方。
将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率的计算式如下:一般用单体的消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp推得:自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常数。
在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:以及单体浓度随时间的变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等, Ri=Rt即:解出:再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体, Ri <<Rp由此,用单体消失速率来表示的聚合总速率就等于链增长速率代入引发速率的表达式得:代入引发剂浓度随时间的变化关系得到:积分得:两边同时变号当引发剂的浓度可看作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。
高阶求导公式法高阶求导公式法是微积分中常用的一种方法,用于求解高阶导数。
本文将介绍高阶求导公式法的基本概念、原理和应用,并通过具体的例子加深理解。
一、基本概念和原理高阶求导公式法是指通过一系列的公式,将高阶导数表示为低阶导数的线性组合。
在微积分中,导数表示函数在某一点上的变化率,而高阶导数则表示函数变化率的变化率。
高阶求导公式法的基本思想是将高阶导数表示为一阶导数的多次求导结果。
二、常用的高阶求导公式1. 幂函数求导公式:对于幂函数y = x^n,其中n为常数,其k阶导数可以通过如下公式求得:y^(k) = n(n-1)(n-2)...(n-k+1)x^(n-k),其中k为正整数。
2. 指数函数求导公式:对于指数函数y = e^x,其k阶导数可以通过如下公式求得:y^(k) = e^x,其中k为正整数。
3. 三角函数求导公式:对于正弦函数y = sin(x)和余弦函数y = cos(x),其k阶导数可以通过如下公式求得:y^(k) = sin(x + kπ/2),其中k为正整数。
三、高阶求导的应用高阶求导公式在物理学、工程学等领域有着广泛的应用。
以下是一些具体的应用示例:1. 高阶导数在物理学中的应用:在物理学中,速度是位移对时间的导数,而加速度则是速度对时间的导数。
我们可以通过对位移-时间函数进行高阶求导,得到速度和加速度的变化情况。
2. 高阶导数在工程学中的应用:在工程学中,高阶导数可以用于分析电路中的电流和电压的变化。
通过对电流-时间函数或电压-时间函数进行高阶求导,可以了解电路中的变化速率和变化加速度。
3. 高阶导数在经济学中的应用:在经济学中,边际效应是指某一变量的微小变化对另一变量的影响。
通过对经济学模型中的函数进行高阶求导,可以计算出边际效应的变化情况,从而帮助经济学家做出决策。
四、例子分析为了更好地理解高阶求导公式法的应用,我们以一个具体的例子进行分析。
例子:已知函数y = x^3 - 2x^2 + 3x - 4,求函数的四阶导数。
常用高阶导数公式证明一阶导数假设函数y=y(y)在y处可导,则函数y=y(y)在y处的导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数如果函数y=y(y)在y处可导,那么它的二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$高阶导数函数y=y(y)的y阶导数定义如下:$$ f^{(n)}(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f^{(n-1)}(x + \\Delta x) - f^{(n-1)}(x)}}{\\Delta x} $$常用高阶导数公式证明二阶导数的公式一阶导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$将一阶导数y′(y)的定义代入二阶导数公式中,得到:$$ f''(x) = \\lim_{{\\Delta x}\\to0}\\frac{{\\left(\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x}\\right)\\big|_{x+\\Delta x} - f'(x)}}{\\Delta x} $$根据导数的定义,上式可简化为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} -f'(x)}}{\\Delta x} $$由此可得到二阶导数的通用公式。
关于高中化学常用计算公式有哪些在每年的化学考试中,计算题的分值大约占15%,但高中化学计算题的得分率却不高,高中化学计算类型比较多,其中有些计算经常考查,如能用好方法,掌握技巧,就一定能节约时间,提高计算的正确率。
下面小编为大家带来高中化学常用计算公式有哪些,希望对您有所帮助!高中化学常用计算公式有哪些1. 有关物质的量(mol)的计算公式⑴ 物质的量(n)质量(m)摩尔质量(M)和物质所含微粒数(N)之间的换算关系物质的量(mol)=物质的质量(g)÷物质的摩尔质量(g/mol)n=m÷M或M=m÷n或m=n×M⑵ 物质的量(n)、阿伏加德罗常数(NA)、微粒数(N)之间有换算关系物质的量(mol)=微粒数(个)÷6.02×10∧23(个/mol)n=N÷NA或N=n×NA或NA=N÷n⑶ 在标准状况下,气体的物质的量(n)、气体体积(V)、气体摩尔体积(Vm)的换算关系气体物质的量(mol)=标准状况下气体的体积(L)÷22.4(L/mol)n=V÷22.4或V=n×22.4⑷ 物质的量浓度C(B),溶质的物质的量n(B),与溶液体积(V)的换算关系:溶质的物质的量(mol)=物质的量浓度(mol/L)×溶液体积(L)n(B)=C(B)×V或C(B)=n(B)÷V或V=n(B)÷C(B)⒉ 标准状况下气体的密度ρ(g/L)=气体的摩尔质量(g/mol)÷气体摩尔体积(L/mol)=M/22.4mmol/Lρ(g/L)=M÷22.4mmol/L标准状况下气体的摩尔质量M=22.4ρmol/L⒊ 平均摩尔质量或平均式量的计算公式⑴ 已知混合物的总质量m(混)和总物质的量n(混):M=m(混)÷n(混)说明:这种求混合物平均摩尔质量的方法,不仅适用于气体,而且对固体或液体也同样适用。
第一章绪论(Introduction)(1)分子量的计算公式:M:重复单元数的分子量0M:结构单元数的分子量1(2)数均分子量:N,N…N分别是分子量为M,M…M的聚合物分子的分子数。
i212i1x表示相应的分子所占的数量分数。
i (3)重均分子量:m,m …m 分别是分子量为M ,M …M的聚合物分子的重量i22i11W i表示相应的分子所占的重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在0.5~0.9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂的分解速率:引发剂的浓度的一次方。
引发剂分解一般属于一级反应,因而分解速率为将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:为体系中单体总浓度;增长及终止速率常数;分别为引发、[M]kp式中:kd、、kt为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率的计算式如下:一般用单体的消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本=kp =kp=kp=…kpkp 无关,即各步速率常数相等,x123推得:自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:为kt、ktd、ktc为总终止速率;Rt为歧化终止速率;Rtd为偶合终止速率;Rtc式中:相应的速率常数。
在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:以及单体浓度随时间的变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等,Ri=Rt即:解出:再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体,Ri <<Rp由此,用单体消失速率来表示的聚合总速率就等于链增长速率得:代入引发速率的表达式得到:代入引发剂浓度随时间的变化关系积分得:两边同时变号当引发剂的浓度可看作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。
高中化學·公式、定理匯總有機除雜方法及原理1、化合價(常見元素的化合價) :鹼金屬元素、Ag 、H:+1 F:—1Ca 、M g、B a 、Zn :+2 Cl :—1,+1,+5 ,+7Cu:+1,+2 O:—2Fe :+2,+3 S:—2,+4,+6Al:+3P:—3,+3,+5Mn :+2,+4,+6,+7 N:—3 ,+2,+4,+52 、氧化還原反應定義:有電子轉移(或者化合價升降)的反應本質:電子轉移(包括電子的得失和偏移)特徵:化合價的升降氧化劑(具有氧化性)——得電子——化合價下降——被還原——還原產物還原劑(具有還原性)——失電子——化合價上升——被氧化——氧化產物口訣:得——降——(被)還原——氧化劑失——升——(被)氧化——還原劑3 、金屬活動性順序表K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au還原性逐漸減弱4 、離子反應定義:有離子參加的反應電解質:在水溶液中或熔融狀態下能導電的化合物非電解質:在水溶液中和熔融狀態下都不能導電的化合物離子方程式的書寫:第一步:寫。
寫出化學方程式第二步:拆。
易溶于水、易電離的物質拆成離子形式;難溶(如CaCO3 、BaCO3、BaSO4 、AgCl 、AgBr 、AgI、Mg(OH)2 、Al(OH)3、Fe(OH)2、Fe(OH)3 、Cu(OH)2 等),難電離(H2CO3、H2S、CH3COOH、HClO、H2SO3、NH3•H2O、H2O等),氣體(CO2、SO2 、N H3 、Cl2 、O2、H2 等),氧化物(Na2O 、M gO 、Al2O3 等)不拆第三步:刪。
刪去前後都有的離子第四步:查。
檢查前後原子個數,電荷是否守恆離子共存問題判斷:①是否產生沉澱(如:Ba2+和 SO42-,Fe2+和 OH-);②是否生成弱電解質(如:NH4+和 OH- ,H+和 CH3COO-)③是否生成氣體(如:H+和CO32-,H+和SO32-)④是否發生氧化還原反應(如:H+ 、N O3-和 Fe2+/I-,F e3+和 I-)5 、放熱反應和吸熱反應化學反應一定伴隨著能量變化。
高中化学化学平衡常数计算公式推导化学平衡常数是描述化学反应达到平衡时反应物和生成物浓度之间的关系的一个重要指标。
在化学平衡常数的计算中,有一些常用的公式可以帮助我们进行推导和计算。
本文将介绍一些常见的化学平衡常数计算公式,并通过具体的例子来说明其应用。
一、平衡常数的定义化学平衡常数(Kc)是指在特定温度下,反应物和生成物浓度之间的比值的乘积,用于描述化学反应达到平衡时各组分浓度的相对大小。
平衡常数的计算公式如下:Kc = [C]^c [D]^d / [A]^a [B]^b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和生成物C、D的浓度,a、b、c、d分别表示反应物A、B和生成物C、D的摩尔系数。
二、浓度单位的转换在计算平衡常数时,我们需要将反应物和生成物的浓度转换为适合计算的单位。
常见的浓度单位包括摩尔/升(mol/L)、摩尔分数和百分比。
下面以摩尔/升为例进行说明:1. 摩尔分数转换为摩尔/升:浓度(mol/L)= 摩尔分数 ×溶液的密度2. 百分比转换为摩尔/升:浓度(mol/L)= 百分比浓度 ×溶液的密度 / 100三、平衡常数的计算公式推导1. 反应物和生成物浓度已知的情况下:假设反应物A、B和生成物C、D的初始浓度分别为[A]₀、[B]₀、[C]₀、[D]₀,平衡时浓度分别为[A]、[B]、[C]、[D]。
根据化学平衡常数的定义,我们可以得到以下公式:Kc = [C]^c [D]^d / [A]^a [B]^b= ([C] / [C]₀)^c ([D] / [D]₀)^d / ([A] / [A]₀)^a ([B] / [B]₀)^b2. 初始浓度和平衡浓度之间的关系:在大多数情况下,初始浓度和平衡浓度之间存在一定的关系。
例如,对于一个反应物A,其初始浓度为[A]₀,平衡时浓度为[A],则有以下关系:[A] = [A]₀ - x其中,x表示反应物A的消耗量。
高中化学化学平衡常数计算公式推导详解在高中化学学习中,化学平衡常数是一个非常重要的概念。
它描述了化学反应在达到平衡时,反应物和生成物之间的相对浓度关系。
化学平衡常数的计算公式是化学平衡表达式中各物质浓度的乘积之比。
本文将详细介绍化学平衡常数的计算公式的推导过程,并通过具体的例子来说明此题的考点和解题技巧。
在化学平衡反应中,我们通常使用化学平衡表达式来描述反应物和生成物之间的相对浓度关系。
对于一般的反应aA + bB ⇌ cC + dD,化学平衡表达式可以写为:Kc = [C]^c[D]^d / [A]^a[B]^b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和生成物C、D的浓度,a、b、c、d分别表示它们的摩尔系数。
化学平衡常数Kc的计算公式就是根据化学平衡表达式推导得出的。
首先,我们需要明确一个重要的概念——平衡浓度。
平衡浓度是指在反应达到平衡时,各物质的浓度值。
根据化学平衡表达式,我们可以得到:Kc = [C]^c[D]^d / [A]^a[B]^b在平衡状态下,各物质的浓度值就是平衡浓度。
因此,我们可以将化学平衡表达式中的浓度值替换为平衡浓度,得到:Kc = (C_eq)^c(D_eq)^d / (A_eq)^a(B_eq)^b其中,C_eq、D_eq、A_eq、B_eq分别表示C、D、A、B的平衡浓度。
接下来,我们需要推导平衡浓度与初始浓度之间的关系。
假设反应物A的初始浓度为[A]0,反应物B的初始浓度为[B]0,生成物C的初始浓度为[C]0,生成物D的初始浓度为[D]0。
根据化学平衡反应的特点,反应物和生成物的浓度在反应过程中会发生变化,但在达到平衡时,它们的浓度值会保持不变。
因此,我们可以得到以下关系:[B]0 - b[C]eq = 0[C]0 + c[C]eq = 0[D]0 + d[C]eq = 0由上述关系,我们可以解得平衡浓度与初始浓度之间的关系:[C]eq = [C]0 / (1 + c)[D]eq = [D]0 / (1 + d)[A]eq = [A]0 / (1 - a)[B]eq = [B]0 / (1 - b)将平衡浓度代入化学平衡常数的计算公式中,我们可以得到:Kc = ([C]0 / (1 + c))^c * ([D]0 / (1 + d))^d / ([A]0 / (1 - a))^a * ([B]0 / (1 - b))^b经过进一步的化简,我们可以得到化学平衡常数的最终计算公式:Kc = ([C]0 / [A]0)^c * ([D]0 / [A]0)^d * ([A]0 / [B]0)^a * ([A]0 / [B]0)^b通过上述推导过程,我们可以看出,化学平衡常数的计算公式与反应物和生成物的初始浓度有关,同时也与它们的摩尔系数有关。
高分子化学公式推导浙江大学
第一章绪论(Introduction)(1)分子量的计算公式:
M0:重复单元数的分子量,DP为重复单元数
M1:结构单元数的分子量, Xn为结构单元数
(2)数均分子量:定义为某体系的总质量m被分子总数所平均.
N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。
x i表示相应的分子所占的数量分数。
(3)重均分子量:i聚体的分子量乘以其重量分数的加和.
m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量
W i表示相应的分子所占的重量分数
(6)分布指数
:分布指数
第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学
:引发剂的分解速率:引发剂的浓度
引发剂分解一般属于一级反应,因而分解速率为的一次方。
将上式积分得:
进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)
对应半衰期时:,由前面的推导有:
半衰期
(2)自由基聚合微观动力学
链引发速率:
链增长速率:
链终止速率:
式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。
推导如下:
链引发反应由以下两个基元反应组成:
式中:为初级自由基;为单体自由基。
若第二步的反应速率远大于第一步反应(一般均满足此假设),有:。
公式推导原理
公式推导原理是通过逻辑推理和数学方法,从已知的数学规律和关系出发,推导出新的数学公式。
在推导过程中,通常需要使用各种数学符号和语言来描述数学规律和关系,并将数学问题转化为具体的表达式。
此外,对于一些高阶的数学公式,可能需要进行近似表达。
例如,设f(x)在
x0处具有n阶导数,可以找一个关于(x−x0)的n次多项式pn(x)来近似表
达f(x),要求使得pn(x)与f(x)之差是当x→x0时比(x−x0)n高阶的无穷小。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。