一次函数应用题(k的实际意义)(人教版)(含答案)
- 格式:doc
- 大小:542.61 KB
- 文档页数:7
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
八年级下册第19章《一次函数》实际应用常考题专练(四)1.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?2.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中l1,l2分别表示使用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?3.元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?4.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中,路程随时间变化的图象(分别是正比例函数图象和一次函数图象).求:(1)分别写出轮船和快艇行驶路程随时间变化的函数表达式.(2)经过多长时间,快艇和轮船相距20千米?5.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到达乙地前,何时轿车在货车前30千米.6.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的关系.根据图象回答:(1)甲、乙两地之间的距离为千米.(2)两车同时出发后小时相遇.(3)线段CD表示的实际意义是.(4)慢车和快车的速度分别为多少km/h?(写出计算过程)7.甲乙两人同时登同一座山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是米/分钟,乙在A地提速时距地面的高度b为米;(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后y和x之间的函数关系式;(3)在(2)的条件下,登山多长时间时,乙追上了甲,此时甲距C地的高度为多少米?8.甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?9.为深入推进“健康沈阳”建设,倡导全民参与健身,我市举行“健康沈阳,重阳登高”活动,广大市民踊跃参加.甲乙两人同时登山,2分钟后乙开始提速,且提速后乙登高速度是甲登山速度的3倍,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米,乙在距地面高度为300米时对应的时间t是分钟;(2)请分别求出线段AB、CD所对应的函数关系式(需写出自变量的取值范围);(3)登山分时,甲、乙两人距地面的高度差为70米?10.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?参考答案1.解:(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=420,故答案为:120,2,420;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+420,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣420,则当x=5时,s取得最小值,此时s=180,由上可得,行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.2.解:(1)设直线l对应的函数解析式为y=kx,1200k=60,解得k=0.3,对应的函数解析式为y=0.3x,即直线l1对应的函数解析式为y=ax+b,设直线l2,解得,即直线l对应的函数解析式为y=0.2x+20,2由上可得,用租书卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y =0.3x,用会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y=0.2x+20;(2)当x=50时,租书卡的租金为0.3×50=15(元),会员卡的租金为0.2×50+20=30(元),∵15<30,∴小红准备租某本名著50天,选择租书卡租书方式比较合算;当y=90时,租书卡可以租用90÷0.3=300(天),会员卡可以租用(90﹣20)÷0.2=350(天),∵300<350,∴小明准备花费90元租书,选择会员卡租书方式比较合算.3.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.4.解:(1)设轮船行驶路程随时间变化的函数表达式是y=kx,∵点(8,160)在函数y=kx的图象上,∴160=8k,解得k=20,即轮船行驶路程随时间变化的函数表达式是y=20x;设快艇行驶路程随时间变化的函数表达式是y=ax+b,∵点(2,0),(6,160)在函数y=ax+b的图象上,∴,解得,即快艇行驶路程随时间变化的函数表达式是y=40x﹣80;(2)当20x=20时,得x=1,令|20x﹣(40x﹣80)|=20,解得,x1=3,x2=5,当x=6时,轮船行驶的路程为20×6=120,∵160﹣120>20,∴令20x=160﹣20,解得x=7,即当x=7时,快艇和轮船相距20千米,由上可得,经过1小时、3小时、5小时或7小时时,快艇和轮船相距20千米.5.解:(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.6.解:(1)由图象可得,甲、乙两地之间的距离为900千米,故答案为:900;(2)由图象可得,两车同时出发后4小时相遇,故答案为:4;(3)线段CD表示的实际意义是快车到达乙地后,慢车继续行驶到甲地,故答案为:快车到达乙地后,慢车继续行驶到甲地;(4)慢车的速度为:900÷12=75(km/h),快车的速度为:900÷4﹣75=225﹣75=150(km/h),即慢车和快车的速度分别为75km/h、150km/h.7.解:(1)由图象可得乙一分钟走了15米,则乙在提速前登山的速度是15米/分钟,2分钟走了30米,∴b=30,故答案为:15,30;(2)由图象可得:t=20﹣9=11分,设AB解析式为:y=kx+b,解得:∴线段AB解析式为:y=30x﹣30(2≤x≤11);(3)∵C(0,100),D(20,300)∴线段CD的解析式:y=10x+100(0≤x≤20),由∴∴经过6.5分钟后,乙追上甲,此时甲距C地的高度=165﹣100=65米.8.解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==250 米/分钟.故答案为:乙;250.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=250x,设甲乙相遇后(即10<x<16 ),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,∴y=500x﹣3000,联立两直线的解析式,解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得或250x=3000﹣250,解得x=5或x=11.答:在甲、乙相遇之前,5分钟或11分钟时甲与乙相距250米.9.解:(1)由题意可得,甲登山的速度是每分钟(300﹣100)÷20=10(米),乙在A地提速时距地面的高度b=(15÷1)×2=30,乙在距地面高度为300米时对应的时间t=2+(300﹣30)÷(10×3)=11,故答案为:10,30,11;(2)由(1)可得,点A 的坐标为(2,30),点B 的坐标为(11,300), 设线段AB 对应的函数解析式为y =kx +a ,,解得,即线段AB 对应的函数解析式为y =30x ﹣30(2≤x ≤11);设线段CD 所对应的函数关系式是y =mx +n ,∵点C 的坐标为(0,100),点D 的坐标为(20,300),∴, 解得,即线段CD 所对应的函数关系式是y =10x +100(0≤x ≤20);(3)登山前2分钟,甲乙两人的最近距离是100+10×2﹣30=90(米), 当2≤x ≤11时,|(30x ﹣30)﹣(10x +100)|=70,解得x 1=3,x 2=10,当11<x ≤20时,令10x +100=300﹣70解得x =13,由上可得,登山3、10或13分钟时,甲、乙两人距地面的高度差为70米, 故答案为:3、10或13.10.解:(1)设y 1关于x 的函数解析为y 1=kx ,120k =100,得k =,即y 1关于x 的函数解析为y 1=x (0≤x ≤120),设y 2关于x 的函数解析为y 2=ax +b ,,得,即y 2关于x 的函数解析为y 2=x ﹣20(15≤x ≤90); (2)令x =x ﹣20,得x =40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.。
八年级数学下册一次函数的实际应用解答题专项练习1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?4.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B 生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y =;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y=200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟), 乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克, 根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克, 根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h), 故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;=k1x, (2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,乙由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y 乙=5x +20;当0≤x ≤2时,设y 乙与x 的函数解析式为y 乙=kx ,可得2k =30,解得k =15,即y 乙=15x ; ∴y 乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m ,开挖6小时,甲、乙两队挖的河渠的长度相差10m ;故答案为:10;10;(4)当0≤x ≤2时,15x ﹣10x =5,解得x =1.当2<x ≤4时,5x +20﹣10x =5,解得x =3,当4<x ≤6时,10x ﹣(5x +20)=5,解得x =5.答:当两队所挖的河渠长度之差为5m 时,x 的值为1h 或3h 或5h .11.解:(1)由图可知,升级前A 生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A 生产线每天生产口罩4×(1+20%)=4.8(万个), 故答案为:4.8;(2)A 生产线技术升级后,A 生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B 生产线从第8天开始生产到第15天的产能为56万个,所以每条B 生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B 生产线有x 条,根据题意得:15×4.8+8x =136,解得:x =8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元), ∴150+40﹣182=8(元),答:一起购买可省8元.。
学生做题前请先回答以下问题问题1:一次函数的图象是什么?正比例函数的图象呢?问题2: k, b 的意义: k 反应图象的_____; b 表示一次函数图象和____轴交点的______ .问题3:对于一次函数 y=kx+b 来讲,当 k>0 时,图象必过第_______ 象限;当 k<0,时,图象必过第_____象限;当 b>0 时,图象必过第______象限;当 b<0 时,图象必过第_____象限.问题4:对于一次函数 y=kx+b,若 kb>0,则其图象必过第 ____象限.以下是问题及答案,请对比参考 :问题 1:一次函数的图象是什么?正比例函数的图象呢?答:一次函数的图象是一条直线,正比例函数的图象是一条经过原点的直线.问题 2:k, b 的意义: k 反应图象的; b 表示一次函数图象和轴交点的.答:倾斜程度; y,纵坐标.问题 3:对于一次函数 y=kx+b 来讲,当 k>0 时,图象必过第象限;当 k<0,时,图象必过第象限;当 b>0 时,图象必过第象限;当 b<0 时,图象必过第象限.答:对于一次函数 y=kx+b 来讲,当 k>0 时,图象必过第一、三象限;当 k<0,时,图象必过第二、四象限;当 b>0 时,图象必过第一、二象限;当 b<0 时,图象必过第三、四象限 .问题 4:对于一次函数 y=kx+b,若 kb>0,则其图象必过第象限.答:二、三.分析:①因为 kb>0,所以 k, b 同号;②分两种情况:当 k>0, b>0,一次函数图象经过第一、二、三象限;一次函数的表达式、图象、性质(人教版)一、单选题(共15道,每道6分)1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致描述水的深度 h 和放水时间t 之间的关系的是( ) A. B.C. D.答案: C解题思路:试题难度:三颗星知识点:用图象表示变量之间的关系当 k<0, b<0 ,一次函数图象经过第二、三、四象限;③综上,此一次函数的图象必经过第二、三象限.2.如图反映了两个变量之间的关系,下列的四个情境比较适合该图的是 ( )A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D.踢出的足球的速度与时间的关系答案: B解题思路:试题难度:三颗星知识点:用图象表示变量之间的关系3.下列函数:① ;② ;③ ;④ ;⑤ ;⑥ .其中是一次函数的有( )A.4 个B.3 个C.2 个D.1 个答案: A解题思路:试题难度: 三颗星知识点: 一次函数的定义.C D. .答案: B 解题思路:试题难度: 三颗星知识点: 正比例函数的定义过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 答案: A 解题思路:试题难度: 三颗星知识点: 一次函数的图象与性质是正比例函数,且图象在第二、四象限内,则 m 的值是( )4 已知函数 AB5.在平面直角坐标系中,若直线 经过第一、三、四象限,则直线 不经6.若一次函数 y=kx+b 的图象经过第一、三、四象限,则点 A(k, b)位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案: D解题思路:试题难度:三颗星知识点:坐标的象限特征7.正比例函数的函数值 y 随 x 的增大而增大,则一次函数 y=x+k 的图象大致是( )A. B.C. D.答案: A解题思路:试题难度:三颗星知识点:一次函数的图象与性质8.关于 x 的一次函数,其图象可能是( )答案: C 解题思路:试题难度: 三颗星知识点: 一次函数的图象与性质A.一B.二C.三D. 四答案: B 解题思路:试题难度: 三颗星知识点: 一次函数的性质10.若一次函数 y=-x+b 的图象经过第一、二、四象限,则 b 的值可以是( )A.-2B.-1C.0D.2答案:D的图象不经过第( )象限.9.一次函数C. D.A. B.试题难度: 三颗星知识点: 一次函数的性质11.若一次函数 y=kx+b 的图象经过第一象限,且与 y 轴负半轴相交,则( ). .答案: B 解题思路:试题难度: 三颗星知识点: 一次函数的性质12.下列函数中, y 随 x 的增大而减小的是( )A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x 答案:CB C D A ..试题难度:三颗星知识点:一次函数的性质13.若函数的图象经过原点,且 y 随 x 的增大而增大,则( )A.m=2B.m=-2C.m=±2D.m=0答案: B解题思路:试题难度:三颗星知识点:一次函数的性质14.已知正比例函数 y=kx,若 y 随 x 的增大而减小,则一次函数 y=kx-k 的图象大致是( )A. B.C. D.答案: C解题思路:试题难度:三颗星知识点:一次函数的性质15.已知一次函数 y=kx+b,若图象不经过第一象限,则 () A.k<0, b>0 B.k<0,b≧ 0C.k<0, b<0D.k<0, b≦ 0答案: D解题思路:试题难度:三颗星知识点:一次函数的性质。
一次函数中k的意义及应用一次函数y=kx+b(k≠0)中k的实际背景1、探究k>0时,k的大小与直线倾斜程度的关系.2、探究k在实际问题中的意义.探究一直线y=kx+b(k≠0)中,k决定了直线的倾斜程度.请分析当k>0时,k的大小与直线倾斜度的关系.(1)在同一坐标系中画y=0.5x+1; y=x+1; y=2x+1.(2)观察分析在k>0时,k的大小与直线倾斜程度的关系.例1.如图表示一骑自行车和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象,请你根据图象解决下面问题:(1)两人在途中行驶的速度是多少?(2)请你分别求出表示自行车和摩托车行驶过程的函数解析式.(不要求写自变量取值范围)例2.如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象求:(1)甲乙两人速度(2)OA、BA的函数解析式(不写自变量取值范围)实战演练1.如图,射线l甲,l乙分别表示甲,乙两名运动员在自行车比赛中所走路程s与时间t的函数关系,则他们的速度关系是( )A.甲比乙快B.乙比甲快C.甲乙同速D.不一定2.如图,是某蓄水池的横断面示意图,分深水区和浅水区.如果这个蓄水池以固定的流量注水,下面哪个图能大致表示水的深度h和时间t之间的函数关系( )3.有一个附有进水管、出水管的水池,每单位时间内进出水量都分别固定,设从某时刻开始,4h 内只进水不出水,在随后时间内不进水只出水,得到时间x (h)与水量y (m3)之间的关系图:回答下列问题:(1)进水管4h内共进水多少?每小时进水多少?(2)当0≤x≤4,求y与x的关系式.(3)当x=9时,水池中的水量是多少?(4)若4h后,只放水不进水,那么多少小时可将水池中的水放完?探究二:小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额y(元)与卖瓜数x(千克)之间的关系如图所示.求y与x的函数关系式综合演练1.如图是龟兔赛跑的路程和时间变化图. 结合图象,你能读到哪些信息?请列举出来2.阅读函数图象,并根据你所获得的信息回答问题.折线OAB表示某个具体问题的函数图象,请你编写一道符合该图象意义的应用题;3、有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h(米)随时间t(小时)变化A th hB thCtDth一次函数应用题1、 车间有20名工人,每人每天加式甲种零件5个或乙种零件4个,在这20名工人中,派x 人加工甲种零件,其余的加工乙种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元。
一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
一次函数习题精选及答案一次函数是初中数学中的重要内容,也是高中数学的基础。
它可以描述线性关系,如一个物体在匀速直线运动时的位置和时间的关系。
因此,掌握一次函数的性质和解题方法是非常重要的。
下面将为大家分享一些典型的一次函数习题和解答,希望能够帮助大家更好地理解和掌握这一知识点。
1.已知函数 y=2x+1,问在 x=3 的时候 y 的值是多少?解答:将x=3代入函数中得:y=2×3+1=7,因此当x=3时,y=7。
2. 已知函数 y=kx,若该函数在点(2,6)上的函数值为12,则k的值为多少?解答:将x=2和y=12代入函数中得:12=k×2,解得k=6,因此该函数的解析式为y=6x。
3.已知函数 y=3x-5,求该函数的零点及其在 x=2 处的函数值。
解答:令y=0,解得x=5/3,因此函数的零点为x=5/3。
将x=2代入函数中得:y=3×2-5=1,因此当x=2时,y=1。
4.已知函数 y=2x+3,求函数图像在 y 轴上的截距。
解答:将x=0代入函数中得:y=2×0+3=3,因此函数图像在 y轴上的截距为3。
5.已知函数 y=-x/2+4,求函数图像在 x 轴上的截距。
解答:将y=0代入函数中得:0=-x/2+4,解得x=8,因此函数图像在 x 轴上的截距为8。
6.已知函数 y=ax+b,且该函数在点(1,5)上的斜率为2,求函数的解析式。
解答:根据斜率的定义可知:2=(y2-y1)/(x2-x1)=(ax2+b-ax1-b)/(x2-x1)=a,因此函数的斜率为2。
将x=1和y=5代入函数中得:5=a+b,因此可以得到函数的两个方程:a=2,a+b=5,解得b=3,因此该函数的解析式为y=2x+3。
以上是一些经典的一次函数习题和解答,它们覆盖了一次函数的一些基本概念和思想。
在实际的解题过程中,还需要结合具体的实例和题目进行逐一分析和解答。
因此,除了掌握基本的一次函数知识外,也需要不断地进行习题练习和解析,培养自己的数学思维和能力。
人教版八年级下册数学一次函数应用题训练1.某旗舰店元月份售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年三月后,这两款玩具持续热销,于是旗舰店准备再购进这两款玩具共540个,其中“冰墩墩”的数量不超过“雪容融”数量的两倍.若三月份购进的这两款玩具全部售出,那么旗舰店应如何进货才能使销售利润最大?2.周末,小刚同学骑自行车从家里出发到野外郊游.从家出发1小时后到达第一个景点,游玩一段时间后按原速前往第二个景点,此时,小刚同学的妈妈驾车沿相同路线前往第二个景点,如图,是他们离家的路程y(千米)与小刚同学离家的时间x(小时)的函数图像.(1)小刚同学在第一个景点游玩了多少小时?他骑车的速度是多少千米/小时?第二个景点与第一个景点相距多少千米?(2)求妈妈驾车的速度及妈妈追上小刚同学所用的时间.3.某装修公司与甲、乙两家品牌供应商签订长期供应某款门锁的供货合同,该公司每月向每家供应商至少订购门锁20把,根据业务需求,该装修公司每月向两家供应商订购该款门锁共200把.五月份该公司向甲、乙两家供应商支付门锁的费用分别是4400元和12000元,甲供应商门锁的单价是乙供应商的1.1倍.(1)五月份甲、乙两家供应商门锁的单价分别是多少元?(2)受国际金属价格波动的影响,六月份,甲供应商门锁的单价在五月份的基础上提高a )元,乙供应商的单价提高了15%.若在乙供应商处购买的门锁数量不少了a(0于甲的一半,则如何安排进货才能使装修公司的进货成本最少?最少进货成本是多少?4.已知,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S(千米),与该日下午时间t(时)之间的关系.根据图象回答下列问题:(1)直接写出:甲出发______小时后,乙才开始出发;乙的速度为______千米/时;甲骑自行车在全程的平均速度为______千米/时.(2)求乙出发几小时后就追上了甲?(3)求乙出发几小时后与甲相距10千米?5.从今年3月开始,上海疫情牵动着全国人民的心.4月9日,上海最大方舱医院投入使用,某市政府计划派出360名医务工作者去上海方舱医院支援,经过研究,决定从当地租车公司提供的甲,乙两种型号客车中租用20辆作为交通工具.租车公司提供给的有关两种型号客车的载客量和租金信息如下表.设公司租用甲型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并写出x的取值范围;(2)若要使租车总费用不超过7400元,一共有几种租车方案?并求出最低租车费用.6.为了体验大学校园文化,乐乐利用周末骑电动车从家出发去西北大学,当他骑了一段路时,想起要帮在西北大读书的果果买一本书,于是原路返回到刚经过的书店,买到书后继续前往西北大.如图是他离家的距离与时间的关系示意图,请根据图中提供的信息,回答下列问题:(1)乐乐家离西北大的距离是多少?乐乐在书店停留了多长时间?(2)买到书后,乐乐从书店到西北大骑车的平均速度是多少?(3)本次去西北大途中,乐乐一共行驶了多少米?7.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?8.每年的11月9日是全国消防日,学校组织大家这个周末前往消防队学习消防安全知识,哥哥和弟弟从家出发到消防队参观消防演练,哥哥步行一时间后,弟弟骑自行车沿相同路线行走,两人均匀速前行,他们的路程差s(米)与哥哥出发时间t(分)之间的关系如图所示.(1)求哥哥和弟弟的速度各是多少?(2)求他们家到消防队的距离.(3)求图中的a,b的值.9.甲、乙两人同时从家乘车去县城,途中甲因故下车,改骑自行车前往(换车时间不计)已知甲骑自行车的速度为15千米/时,乙到达县城休息1小时后,以另一速度返回,1小时后与甲相遇,图为甲、乙两人之间的距离y(千米)与行使时间x(小时)之间的函数关系:(1)请将图中的()内填上正确的值,并直接写出乙从家到县城的行驶速度;(2)求出乙返回到与甲相遇过程中,y与x之间的函数关系式,并求出乙返回时的行驶速度;(3)求出相遇时距离家有多远及家与县城之间的距离.10.有A、B两个港口,水由A流向B,水流的速度是3千米/时,甲船由A顺流驶向B,乙船同时由B逆流驶向A,各自不停地在A、B之间往返航行.甲在静水中的速度是21千米/时,乙在静水中的速度是15千米/时;甲、乙同时出发,设行驶的时间为t 小时,甲船距B港口的距离为1S千米,乙船距B港口的距离为2S千米;如图为1S(千米)和t(小时)关系的部分图像;(1)A、B两港口的距离是______千米;(2)求甲船在A、B两个港口之间往返一次1S(千米)和t(小时)所对应的关系式;(3)在图中画出乙船从出发到第一次返回B港口这段时间内,S(千米)和t(小时)2的关系图象;(4)直接写出甲、乙两船第二次相遇时距离B港口的距离是多少?11.某商店今年春季分两次订购A,B两种商品销售,同种商品前后进价相同,具体情况如下表.(1)求这两种商品订货的单价.(2)夏季来临,需求增加,商店计划再订购这两种商品共1000件,其中A种件数不少于B种件数的4倍.销售价每件A种30元,B种100元.求夏季销售这两种商品的毛利W(元)与再订购A种商品件数m之间的函数关系式.并求最大毛利.12.某校组队参加庆祝中国共青团成立100周年经典诵读比赛,需要为参赛选手每人配备一个朗诵文件夹.已知甲、乙两家店铺销售同款文件夹,原价相同,但销售方式不同.在甲店铺,无论一次性购买多少个文件夹,一律打8.5折;在乙店铺,当购买数量不超过30个时,按原价出售.当购买数量超过30个时,超过的部分打7折.设该校需购买x个朗诵文件夹,在甲店铺购买所需的费用为1y元,在乙店铺购买所需的费用为2y元,1y,2y关于x的函数图象如图所示.(1)分别求出1y ,2y 关于x 的函数解析式; (2)求图中m 的值,并说明m 的实际意义;(3)若该学校一次性购买朗诵文件夹的数量超过40个,但不超过90个,到哪家店铺购买更优惠?13.从今年3月开始,上海的疫情时刻牵动着全国人民的心.4月9日,上海最大方舱医院投入使用,市政府计划派出360名医务工作者去上海方舱医院支援.经研究,决定租用当地租车公司提供的A ,B 两种型号客车共20辆作为交通工具,运送所有医务工作者去方舱医院.下表是租车公司提供的两种型号客车的载客量和租金信息。
(完整版)一次函数应用题及答案一次函数应用题(讲义)一、知识点睛1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函数图象与_实际场景____________对应起来;2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;3.结合实际场景解释所求结果.二、精讲精练1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:(1)直接写出快、慢两车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的函数图象如图中折线所示,该加油站截止至13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)求出线段BC 所对应的函数关系式.3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示槽中水的深度与注水时间之间的关系,线段DE 表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?元/件)(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).甲槽4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于灾情严重,政府部门决定对药品供应方提供价格稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.图1图25.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式.(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.轴、点、线;实际场景2.函数图象二、精讲精练1.(1)快车速度为120km/h,慢车速度为80km/h ,A,B两站间的距离为1200km;(2)PQ:y=-40x+1320 (11≤x≤15);QH:y=-120x+2520(15<x≤21);(3)x=5,7,583时,两车相距200千米.2.(1)x=4;(2)y=1.1x(5≤x≤10).3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2DE:y=-2x+12联立32212 y xy x=+=-+?解得:28 xy=?=?∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.(3)84立方厘米;(4)60平方厘米.4.(1)该药品的稳定价格为36(元/件),稳定需求量为34(万件);(2)当药品每件价格在大于36小于70时,该药品的需求量低于供应量;(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.5.(1)99418821059y x x=-+≤≤();(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。
一次函数知识点总结+习题解析一,函数1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常里。
在某一变化过程中,有两个量,如x和y,对于x的每一个值,y都有唯一的值与之对应,其中x是自变量,y是因变量,此时称y是x的函数.例如:y=3x+5,其中3,5叫做常量,x叫做自变量,y随x的改变而改变(即有原因的改变)叫因变量,也可称作y是x的函数2.表示方法(1)解析法:用数学式子表示函数的方法叫做解析法。
如:S=30t,S=πR2;.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式,例如y=4x就是一个函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边代数式中的变量是自变里,等式左边的一个字母表示函数.例如:y=2x-4中x是自变量,y是x的函数。
(3)函数关系式在书写时有顺序性。
就表示x是y的函数。
例如:y=2x+3是表示y是x的函数,若写成x=y−32(4)求y与x的函数关系时,必须是只用变量x的代数式表示y,得到的等式右边只含x的代数式.即y=ax+b(a≠0)的形式4.自变量的取值范围:(1)很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y= √X−3中,自变量x受到开平方运算的限制,有X-3≥0即x≥3;还会涉及到一些实际应用中的变量存在意义,例如面积,路程,时间都必须大于等于0才会有意义。
(2)在初中阶段,自变量的取值范围考虑下面几个方面:①整式型:一切实数②根式型:当根指数为偶数时,被开方数为非负数。
(如√2x−5有意义其中2x-5≥0)成立即有意义则2x+1≠0))③分式型:分母不为0.(如3x−22x+1④复合型:不等式组(即同时满足多个不等式都成立的未知数的集合)⑤应用型:实际有意义即可(如时间,面积,路程等需要≥0,人,房子等必须为正整数)中的自变量x的取值范围是例题1:函数y=√x+5x+4答案: x≥-5且x≠-4解:根据题意得{x +5≥0①x +4≠0②由①得x≥-5 由②得x≠-4 所以x≥-5且x≠-4解析:因为二次根式内的任意数(代数式)大于等于0,分数/分式有意义的前提条件是分子不等于0,所以得{x +5≥0①x +4≠0②,解两个不等式,求同时满足两个不等式得解得集合,即所以x≥-5且x≠-4 点评:考查一次函数自变量的取值范围,(分子分母有意义),解不等式方程组例题2:函数y=√|2x−6|−2x−7中的x 的取值范围是答案:x≥4 且x≠7或x≤2 解:根据题意得 {||2x −6|−2≥①x −7≠0②由①|2x-6|-2≥0得|2x-6|≥2, 去绝对值得,2x-6≥2或2x-6≤-2 解的x≥4或x≤2③ 由②得x≠7④结合③④的公共解集得x≥4 且x≠7或x≤2解析:因为二次根式内的任意数(代数式)大于等于0,分数/分式有意义的前提条件是分子不等于0,所以得|2x-6|-2≥0,又因为绝对值大于等于0,所以得2x-6≥2或2x-6≤-2,分别解出①式和②式x 的解集,求出同时满足两个不等式的公共解集即是答案(画图求解最易) 点评:考查一次函数自变量的取值范围(分子分母有意义),解不等式方程组,去绝对值5.函数图象:函数的图象是由平面直角中的一系列点组成的.6.函数图像的位置决定两个函数的大小关系: (1)图像y1在图像y2的上方↔y1>y2; (2)图像y1在图像y2的下方↔y1<y2;(3)特別说明:图像y 在x 轴上方y>0;图像y 在x 轴下方y<0例題3:如图直线L 1:y 1=k 1x +b 1与L 2:y 2=k 2x+b 2直线在在同一平面直角坐标系中的图象如图所示,则关于x 的不等式y1>y2的解集为( ) A 、x>1 B 、x く1 C 、x>2 D 、x く2答案:AA、x>1B、xく1C、x>2D、xく2解:由图像可得,在交点右侧y1>y2,在交点左侧y1<y2,交点坐标为(1,2),所以x>1时y1>y2,答案选A解析:在平面直角坐标系中,一次函数图像在在x取同一值,直线在上方的y值大于直线在下方的y值。
一次函数应用题(k的实际意义)(人教版)
一、单选题(共5道,每道20分)
1.已知,A,B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的距离y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:
(1)甲车提速后的速度是( )千米/时,乙车的速度是( )千米/时,点E的坐标为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一次函数应用题
2.(上接第1题)(2)乙车返回时y与x的函数关系式为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一次函数应用题
3.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)快车和慢车的速度分别是( )km/h.
A.80;60
B.140;80
C.140;60
D.70;60
答案:A
解题思路:
试题难度:三颗星知识点:一次函数应用题
4.(上接第3题)(2)两车返回时y与x之间的函数关系式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:一次函数应用题
5.甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行驶往乙港,休息1小时后立即返回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行驶往甲港.已知水流速度是2千米/时,下图表示轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数关系式(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度).
请问快艇出发( )小时,轮船和快艇相距12千米?
A.2.2或2.6或5或5.4
B.0.2或0.6或3或3.4
C.0.2或0.6或5
D.3或3.4
答案:C
解题思路:
试题难度:三颗星知识点:一次函数应用题。