汇编《因动点产生的相似三角形问题》
- 格式:doc
- 大小:746.17 KB
- 文档页数:19
第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1例2 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1例3 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C1:1(2)()y x x mm=-+-(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1例4 2010年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例5 2009年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1例6 2008年苏州市中考第29题图1。
§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 湖南省衡阳市中考第28题二次函数y =a x 2+b x +c (a ≠0)的图象与x 轴交于A (-3, 0)、B (1, 0)两点,与y 轴交于点C (0,-3m )(m >0),顶点为D .(1)求该二次函数的解析式(系数用含m 的代数式表示);(2)如图1,当m =2时,点P 为第三象限内抛物线上的一个动点,设△APC 的面积为S ,试求出S 与点P 的横坐标x 之间的函数关系式及S 的最大值;(3)如图2,当m 取何值时,以A 、D 、C 三点为顶点的三角形与△OBC 相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P 运动,可以体验到,当点P 运动到AC 的中点的正下方时,△APC 的面积最大.拖动y 轴上表示实数m 的点运动,抛物线的形状会改变,可以体验到,∠ACD 和∠ADC 都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP ,△APC 可以割补为:△AOP 与△COP 的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A (-3, 0)、B (1, 0)两点,设y =a (x +3)(x -1). 代入点C (0,-3m ),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m (x +3)(x -1)=mx 2+2mx -3m .(2)如图3,连结OP .当m =2时,C (0,-6),y =2x 2+4x -6,那么P (x , 2x 2+4x -6). 由于S △AOP =1()2P OA y ⨯-=32-(2x 2+4x -6)=-3x 2-6x +9, S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++.所以当32x =-时,S 取得最大值,最大值为274. 图3 图4 图5 (3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m . ①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB =.所以△CDA ∽△OBC . ②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得22m =. 此时222DA FD DC EC m===,而3232OC m OB ==.因此△DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H (x ,-2x -6).又因为P (x , 2x 2+4x -6),所以HP =-2x 2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以 S =S △APC =S △APH +S △CPH=32(-2x 2-6x ) =23273()24x -++. 图6例 2 湖南省益阳市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值. 动感体验图1请打开几何画板文件名“14益阳21”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段.观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上.而BP与AP是相关的,这样就可以以AP为自变量,求S的函数关系式.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=23.所以AD=23.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以APAD=823=433,而PCPB=3.此时△APD与△PCB不相似.图2 图3 图4②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以APAD=223=33.所以∠APD=60°.此时△APD∽△CBP.综上所述,当x=2时,△APD∽△CBP.(3)如图5,设△ADP的外接圆的圆心为G,那么点G是斜边DP的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m .在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m )=m -1,∠OFM =30°,所以OM =3(1)3m -. 所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-. 在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2.于是S =S 1+S 2=π(GP 2+OB 2)=22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10.这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m )-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例 3 湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒2个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得930,3.b cc-++=⎧⎨=⎩解得2,3.bc=⎧⎨=⎩所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠PAQ=45°,AP=3-t,AQ=2t.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP=2AQ.解方程3-t=2t,得t=1(如图2).②当∠QPA=90°时,AQ=2AP.解方程2t=2(3-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A、B两点间的水平距离、竖直距离相等,AB=2.由B(0, 3)、M(1, 4),可知B、M两点间的水平距离、竖直距离相等,BM2.所以∠MBQ=∠BOP=90°.因此△MBQ与△BOP相似存在两种可能:①当BM OBBQ OP=23322tt=-.解得94t=(如图5).②当BM OPBQ OB=23322tt=-.整理,得t2-3t+3=0.此方程无实根.考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E 方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t =3.。
动点产生的相似三角形方法总结嘿,朋友们!今天咱来唠唠动点产生的相似三角形这档子事儿。
你说这动点啊,就像个调皮的小孩子,在那图形里跑来跑去,一会儿在这儿,一会儿在那儿。
可别小瞧了这小家伙,它跑着跑着就能跑出好多有趣的相似三角形来呢!咱就拿个简单的例子来说吧,比如在一个直角三角形里,有个动点在一条边上溜达。
你就眼睁睁看着它,嘿,突然就和原来的三角形有那么点相似的味道了。
这就好像是孙悟空七十二变,一下子就变出个差不多的模样来。
你想想看,这动点多神奇啊!它能让原本平平无奇的图形变得充满了变化和惊喜。
有时候你觉得它跑得没道理,可仔细一瞧,哎呀,原来这里面藏着相似三角形的秘密呢!那怎么才能抓住这个小调皮呢?这可得有点眼力见儿。
你得仔细观察它的运动轨迹,看看它跑到哪儿的时候,那些边啊角啊就有了相似的感觉。
就跟警察抓小偷似的,得瞅准时机,一下子就把它给揪住。
而且啊,这动点产生的相似三角形可不是孤立存在的,它们之间往往有着千丝万缕的联系。
一个相似三角形可能会引出另一个相似三角形,就像连锁反应一样。
这多有意思啊!比如说,当一个动点跑到某个位置,和原来的三角形形成了一组相似。
然后呢,随着它继续跑,又会和另外的部分形成新的相似。
这就像搭积木一样,一块一块地堆起来,最后呈现出一个奇妙的图形大厦。
咱可不能小瞧了这动点产生的相似三角形,在很多数学问题里,它可都是关键所在呢!要是能把它玩转了,那些难题可就都不在话下啦。
你说,这动点是不是很神奇?它就那么跑一跑,相似三角形就出来了。
是不是感觉数学的世界真的是充满了奥秘和乐趣?咱可得好好去探索一番,把这些有趣的东西都给弄明白咯!反正我是觉得这动点产生的相似三角形太有意思啦,你们呢?难道不觉得吗?。
因动点产生的相似三角形问题(解析)如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图11.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小. 2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM .3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似.满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点, 设y=ax (x-2),代入点A(1,3)-,可得33a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-. (2)由2232333(1)3333y x x x =-=--, 得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3(1,)3-,得3tan 3ABO ∠=,23AB =,233OM =. 所以∠ABO =30°,3OAOM=. 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况: ①如图3,当3BA OA BC OM ==时,23233BA BC ===.此时C (4,0). ②如图4,当3BC OABA OM==时,33236BC BA ==⨯=.此时C (8,0).图3 图42、如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±.所以符合题意的点Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
因动点产生的相似三角形问题关键词:动点、相似三角形动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。
相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个,定理1:两个角对应相等,两三角形相似‘AA”定理2:两边对应成比例且夹角相等“SAS”定理3:三边对应成比例。
“SSS”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似.(2)两条直角边对应成比例的两个直角三角形相似.(3)斜边和一条直角边对应成比例的两个直角三角形相似.如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.由动点产生的相似三角形问题一般在函数和几何图中出现,其中以函数表现居多。
题型一般有是否存在点P,使得:①△PDE∽△ABC②以P、D、E为顶点的三角形与△ABC相似或者通过动点产生相似解决有关问题一般以大题为主,也有出现在填空后两题。
函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
因动点产生的相似三角形问题(类型一)原理:相似定理SAS(两边对应成比例且夹角相等,两个三角形相似.)方法:1观察两三角形是否为特殊三角形,找出两三角形相等的角2、设所求点的坐标进而用函数解析式来表示各边的长度,之后运用相似对应边成比例来列方程求解。
题型一:直角三角形相似的问题例题11、如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM x⊥轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标答案:练习.如图所示,已知抛物线21=-与x轴交于A、B两点,与y轴交于点C.y x(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与∆PCA相似.若存在,请求出M点的坐标;否则,请说明理由.题型二存在公共角的两三角形相似问题例题如图,在平面指教坐标系内,已知A(0,6),B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向O移动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向A移动,设点P、Q移动的时间为t秒。
(1)求直线AB的解析式;(2)当t为何值时,△APQ于△AOB相似?(3)当t为何值时,△APQ的面积为24/5个平方单位?答案:(1)设直线AB的解析式为y=k x+b由题意,得解得所以,直线AB的解析式为y=-x+6.(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10-2t1)当∠APQ=∠AOB时,△APQ∽△AOB.所以=解得t=(秒)2)当∠AQP =∠AOB 时,△AQP ∽△AOB .所以= 解得 t =(秒)(3)过点Q 作QE 垂直AO 于点E .在Rt △AOB 中,Sin ∠BAO =ABBO =在Rt △AEQ 中,QE =AQ ・Sin ∠BAO =(10-2t )・=8-t( 2分)S △APQ =21AP ・QE =t ・(8-t )=-+4t =524 解得t =2(秒)或t =3(秒).练习:已知:如图,在平面直角坐标系中,A B C △是直角三角形,90ACB ∠= ,点A C ,的坐标分别为(30)A -,,(10)C ,,3tan 4BAC ∠=.(1)求过点A B ,的直线的函数表达式;点(30)A -,,(10)C ,,B (13),,3944y x =+(2)在x 轴上找一点D ,连接D B ,使得A D B △与A B C △相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P Q ,分别是A B 和A D 上的动点,连接PQ ,设A P D Q m ==,问是否存在这样的m 使得APQ △与AD B △相似,如存在,请求出m 的值;如不存在,请说明理由.题型三由平行得出角相等的三角形相似问题A COBxy例题:Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.答案:(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b=+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当E A E FA O F P=时,2552FP=.解得FP=1.此时点P的坐标为(1,1).②如图4,当E A F PA O E F=时,2525F P=.解得FP=5.此时点P的坐标为(5,1).练习、设抛物线22y ax bx=+-与x轴交与两个不同的点A(-1,0)、B(m,0),与y轴交与点C,且∠ACB=90°(1)求m的值和抛物线的解析式(2)已知点D(1,n)在抛物线上,过点A的直线1y x=+交抛物线于另一点E。
类型一 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.(1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点, 设y=ax (x-2),代入点A(1,3)-,可得33a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-. (2)由2232333(1)3333y x x x =-=--, 得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3(1,)3-, 得3tan 3ABO ∠=,23AB =,233OM =. 所以∠ABO =30°,3OAOM=. 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况:①如图3,当3BA OA BC OM ==时,23233BA BC ===.此时C (4,0). ②如图4,当3BC OABA OM==时,33236BC BA ==⨯=.此时C (8,0).图3 图4例2 2009年临沂市中考第26题如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图62012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4, 代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3.(2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==. 所以点E 的横坐标为112t +.将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+.所以当t =1时,△ACG 面积的最大值为1.(3)2013t =或2085t =-.点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得12085t =-,22085t =+(舍去).如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图3例 2012年菏泽市中考第21题如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.满分解答(1)△AOB 绕着原点O 逆时针旋转90°,点A ′、B ′的坐标分别为(-1, 0) 、(0, 2). 因为抛物线与x 轴交于A ′(-1, 0)、B (2, 0),设解析式为y =a (x +1)(x -2), 代入B ′(0, 2),得a =1.所以该抛物线的解析式为y =-(x +1)(x -2) =-x 2+x +2. (2)S △A ′B ′O =1.如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3. 如图2,作PD ⊥OB ,垂足为D .设点P 的坐标为 (x ,-x 2+x +2).232'1111(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形. 2321113(2)(2)22222PDBS DB PD x x x x x ∆=⨯=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ∆=+=-+四边形梯形. 解方程-x 2+2x +2=3,得x 1=x 2=1.所以点P 的坐标为(1,2).图2 图3 图4(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.考点伸展第(2)题求四边形PB ′OB 的面积,也可以如图4那样分割图形,这样运算过程更简单.'11'222PB O P S B O x x x ∆=⋅=⨯=. 22112(2)222PBOP S BO y x x x x ∆=⋅=⨯-++=-++. 所以2'''2+2PB O PBO PB A D S S S x x ∆∆=+=-+四边形.甚至我们可以更大胆地根据抛物线的对称性直接得到点P :作△A ′OB ′关于抛物线的对称轴对称的△BOE ,那么点E 的坐标为(1,2).而矩形EB ′OD 与△A ′OB ′、△BOP 是等底等高的,所以四边形EB ′A ′B 的面积是△A ′B ′O 面积的4倍.因此点E 就是要探求的点P .。
§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2019年湖南省衡阳市中考第28题二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A(-3, 0)、B(1, 0)两点,与y 轴交于点C(0,-3m)(m >0),顶点为D .(1)求该二次函数的解析式(系数用含m 的代数式表示);(2)如图1,当m =2时,点P 为第三象限内抛物线上的一个动点,设△APC 的面积为S ,试求出S 与点P 的横坐标x 之间的函数关系式及S 的最大值;(3)如图2,当m 取何值时,以A 、D 、C 三点为顶点的三角形与△OBC 相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P 运动,可以体验到,当点P 运动到AC 的中点的正下方时,△APC 的面积最大.拖动y 轴上表示实数m 的点运动,抛物线的形状会改变,可以体验到,∠ACD 和∠ADC 都可以成为直角. 思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP ,△APC 可以割补为:△AOP 与△COP 的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似. 4.直角三角形ACD 存在两种情况. 图文解析(1)因为抛物线与x 轴交于A(-3, 0)、B(1, 0)两点,设y =a(x +3)(x -1). 代入点C(0,-3m),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m(x +3)(x -1)=mx 2+2mx -3m . (2)如图3,连结OP .当m =2时,C(0,-6),y =2x 2+4x -6,那么P(x, 2x 2+4x -6).由于S △AOP =1()2P OA y ⨯-=32-(2x 2+4x -6)=-3x 2-6x +9,S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9,所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++.所以当32x =-时,S 取得最大值,最大值为274.图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m(x +3)(x -1)=m(x +1)2-4m ,得D(-1,-4m). 在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331mm =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB=.所以△CDA ∽△OBC .②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得2m =.此时2DA FD DC EC m===3OC m OB ==DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC . 考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H . 由直线AC :y =-2x -6,可得H(x,-2x -6). 又因为P(x, 2x 2+4x -6),所以HP =-2x 2-6x . 因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH=32(-2x 2-6x) =23273()24x -++. 图6例 2 2019年湖南省益阳市中考第21题如图1,在直角梯形ABCD 中,AB//CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .2·1·c·n·j·y(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S 1、S 2,若S =S 1+S 2,求S 的最小值. 动感体验 图1请打开几何画板文件名“14益阳21”,拖动点P 在AB 上运动,可以体验到,圆心O 的运动轨迹是线段BC 的垂直平分线上的一条线段.观察S 随点P 运动的图象,可以看到,S 有最小值,此时点P 看上去象是AB 的中点,其实离得很近而已. 思路点拨1.第(2)题先确定△PCB 是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB 的外接圆的圆心O 很关键,圆心O 在确定的BC 的垂直平分线上,同时又在不确定的BP 的垂直平分线上.而BP 与AP 是相关的,这样就可以以AP 为自变量,求S 的函数关系式. 图文解析(1)如图2,作CH ⊥AB 于H ,那么AD =CH .在Rt △BCH 中,∠B =60°,BC =4,所以BH =2,CH =AD =(2)因为△APD 是直角三角形,如果△APD 与△PCB 相似,那么△PCB 一定是直角三角形. ①如图3,当∠CPB =90°时,AP =10-2=8.所以APAD =3,而PCPBAPD 与△PCB 不相似.图2 图3 图4②如图4,当∠BCP =90°时,BP =2BC =8.所以AP =2.所以APAD APD =60°.此时△APD ∽△CBP .综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m . 在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m)=m -1,∠OFM =30°,所以OM 1)m .所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-.在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2. 于是S =S 1+S 2=π(GP 2+OB 2)=22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+.所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10. 这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值. 问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m)-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例 3 2019年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得930,3.b cc-++=⎧⎨=⎩解得2,3.bc=⎧⎨=⎩所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠PAQ=45°,AP=3-t,AQ.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP AQ.解方程3-t=2t,得t=1(如图2).②当∠QPA=90°时,AQ AP(3-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P =t ,x Q =3-t ,所以y E =3-t ,y Q =t ,y F =-(3-t)2+2(3-t)+3=-t 2+4t .因为y E -y P =y F -y Q ,解方程3-t =(-t 2+4t)-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).图4 图5(4)由y =-x 2+2x +3=-(x -1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =由B(0, 3)、M(1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM 所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BM OB BQ OP =3t=.解得94t =(如图5).②当BM OP BQ OB =3t =.整理,得t 2-3t +3=0.此方程无实根.考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P →E 方向,将点Q 向上平移,得F(3-t, 3).再将F(3-t, 3)代入y =-x 2+2x +3,得t =1,或t =3.2019-2020学年数学中考模拟试卷一、选择题1.下列计算正确的是( ) A .b 2•b 3=b 6 B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 32.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A. B. C. D.3.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y =6的解,则k 的值为( )A.34B.43C.﹣34D.﹣434.6月15日“父亲节”,小明准备送给父亲一个礼盒(如图所示),该礼盒的俯视图是( )A. B. C. D.5.下列标志中,是中心对称图形的是( )A. B. C. D.6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠CAB =30°,AC =则图中阴影部分的面积是( )A .32π-B .32π C .3924π- D .3π-7.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22S S >乙甲;②22S S <甲乙.③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的是( )A.①③B.①④C.②④D.②③8.如图所示的几何体的左视图是()A.B.C.D.9.如图,DE∥MN,Rt△ABC的直角顶点C在DE上,顶点B在MN上,且BC平分∠ABM,若∠A=58°,则∠BCE的度数为()A.29°B.32°C.58°D.64°10.如图,在菱形ABCD中,AB=8,∠B=60°,P是AB上一点,BP=5,Q是CD边上ー动点,将四边形APQD沿直线PQ折叠,A的对应点A`.当CA`的长度最小时,则CQ的长为( )A.7 B.C.D.11.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .12.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,则下列判断不正确的是( )A .△ABC ≌△DCB B .△AOD ≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC二、填空题 13.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=______.14.写出一个解为11x y =⎧⎨=-⎩的二元一次方程是_____.15.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为______.16.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 17.计算:=_____.18.利用标杆测量建筑物的高度的示意图如图所示,若标杆的高为米,测得米,米,则建筑物的高为__米.三、解答题19.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下.收集数据20名大学生对两部电影的打分结果如下:《流浪地球》78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99《绿皮书》88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92整理、描述数据绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论(1)估计该大学超级喜欢电影《绿皮书》的有人;(2)你认为观众更喜欢这两部电影中的(填《流浪地球》或《绿皮书》),理由是.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B 型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a 的取值范围.21.某学校打算假期组织老师外出旅游,初步统计,参加旅游的人数约在30~60人左右.该校联系了两家报价均为1200元的旅行社,甲旅行社的优惠措施是30人以内(包括30人)全额收费,超出部分每人打六折;乙旅行社的优惠措施是每人打九折,若人数在30人(包括30人)以上,还可免去两个人的费用. (1)该校选择哪一家旅行社合算?(2)若该校最终确定参加旅游的人数为48人,学校可给每位参加旅游的教师补贴200元,则参加旅游的教师每人至少要花多少钱?22.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:∠APO =∠CPO ;(2)若⊙O 的半径为3,OP =6,∠C =30°,求PC 的长.23.(1)计算:(0+3tan30°﹣2|+11()2-(2)解方程:3+1x xx x -= 24.已知四边形ABCD 内接于O ,AB 为O 的直径,148BCD ∠=︒.(Ⅰ)如图①,若E 为AB 上一点,延长DE 交O 于点P ,连接AP ,求APD ∠的大小;(Ⅱ)如图②,过点A 作O 的切线,与DO 的延长线交于点P ,求APD ∠的大小.25.春暖花开,树木萌芽,某种时令蔬菜的价格呈上升趋势,若这种蔬菜开始时的售价为每斤20元,并且每天涨价2元,从第六天开始,保持每斤30元的稳定价格销售,直到11天结束,该蔬菜退市. (1)请写出该种蔬菜销售价格y 与天数x 之间的函数关系式;(2)若该种蔬菜于进货当天售完,且这种蔬菜每斤进价z 与天数x 的关系为z =﹣21(8)8-x +12(1≤x≤11),且x 为整数,那么该种蔬菜在第几天售出后,每斤获得利润最大?最大利润为多少?【参考答案】***一、选择题二、填空题13.806814.x+y=01516.7×10617.318.15三、解答题19.补全统计图与统计表见解析;(1)720;(2)见解析.【解析】【分析】(1)根据题干中所给数据,整理可补全直方图;再根据众数和中位数的定义可得;(2)答案不唯一,合理即可.【详解】(1)补全《流浪地球》的分布直方图如下:填统计表如下:估计该大学超级喜欢电影《绿皮书》的有1800×820=720(名),故答案为:720; (2)答案不唯一,喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数; 为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在以上的只有12人.故答案为:《绿皮书》,在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数. 【点睛】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键. 20.(1)每台A 型、B 型净水器的进价分别是2000元、1800元;(2)a 的取值范围是20≤a≤90. 【解析】 【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以求得x 的取值范围和利润与x 的函数关系式,然后根据一次函数的性质即可解答本题. 【详解】(1)设每台A 型的进价为m 元,5000045000200m m =-, 解得,m =2000,经检验,m =2000是原分式方程的解, ∴m ﹣200=1800,答:每台A 型、B 型净水器的进价分别是2000元、1800元; (2)2000x+1800(50﹣x )≤98000, 解得,x≤40,设公司售完50台净水器并捐款后获得的利润为w 元,w =(2500﹣2000)x+(2180﹣1800)(50﹣x )﹣ax =(120﹣a )x+19000, 当a≥120时,w≤19000不合题意,当a <120时,120﹣a <0,当x =40时,w 取得最大值, ∴20200≤40(120﹣a )+19000≤23000, 解得,20≤a≤90,即a 的取值范围是20≤a≤90. 【点睛】本题考查一次函数的应用、一元一次不等式的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质解答,注意分式方程要检验.21.(1)当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社;(2)820. 【解析】 【分析】(1)设x 人参加旅游,用x 分别表示甲和乙旅行社的费用,两费用相等则列方程求出对应的人数,谁家费用较大列不等式求出对应的人数范围.(2)人数为48人则选甲旅行社花费少,把总费用求出后再减去学校补贴总额200×48元,得到总旅游费用,再除以48记得人均费用.【详解】解:(1)设参加旅游的人数为x人(30<x<60),甲旅行社费用为y1元,乙旅行社费用为y2元,得:y1=1200×30+1200×0.6(x-30)=720x+14400y2=1200×0.9(x-2)=1080x-2160当y1=y2时,720x+14400=1080x-2160解得:x=46当y1>y2时,720x+14400>1080x-2160解得:x<46当y1<y2时,720x+14400<1080x-2160解得:x>46答:当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社.(2)由(1)得,人数为48人时选甲旅行社费用更低.∴(720×48+14400-200×48)÷48=820(元)答:参加旅游的教师每人至少要花820元.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,是选择方案的常考题.22.(1)详见解析;(2).【解析】【分析】(1)根据切线长定理证明;(2)根据切线的性质得到∠PAC=90°,根据勾股定理求出AP,根据含30°的直角三角形的性质计算即可.【详解】(1)证明:∵PA、PB是⊙O的切线,∴∠APO=∠CPO;(2)解:∵PA是⊙O的切线,∴∠PAC=90°,∴AP=,在Rt△CAP中,∠C=30°,∴PC=2AP=.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握切线长定理、勾股定理是解题的关键.23.(1);(2)x=﹣1.5.【解析】【分析】(1)根据0指数幂、特殊的三角函数值、绝对值及负整数指数幂即可解答.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】(1)原式=13221+-++=+(2)去分母得:x 2=x 2﹣2x ﹣3, 移项合并得:﹣2x =3, 解得:x =﹣1.5,经检验x =﹣1.5是原方程的解. 【点睛】本题考查了0指数幂、特殊的三角函数值、绝对值、负整数指数幂及解分式方程,掌握各种运算的法则是关键,解分式方程必须检验.24.(Ⅰ);58APD ∠=︒;(Ⅱ)26APD ∠=︒. 【解析】 【分析】(Ⅰ)连接BD ,根据圆内接四边形的对角互补得出BAD 32∠=︒,再根据直径所对的圆周角是直角得出ADB 90∠=︒,从而求出ABD ∠,再根据同弧所对的圆角角相等即可得出APD ∠的度数. (Ⅱ)连接AD,根据等腰三角形的性质,可得ADO OAD 32∠∠==︒,再根据切线的性质和三角形即可得出APD ∠度数. 【详解】 解:(Ⅰ)连接BD ,∵四边形ABCD 是圆内接四边形, ∴BCD BAD 180.∠∠+=︒ ∵BCD 148,∠=︒ ∴BAD 32.∠=︒ 又AB 是O 的直径,∴BDA 90.∠=︒∴BAD ABD 90,∠∠+=︒ ∴ABD 58.∠=︒∴APD ABD 58.∠∠==︒(Ⅱ)连接AD,由(Ⅰ)可知:BAD 32,∠=︒又OA OD =,可得ADO OAD 32,∠∠==︒ ∵DP 切O 于点A,∴OA PA ⊥,即PAO 90.∠=︒ 则PAD PAO OAD 122,∠∠∠=+=︒ 在APD 中,∵PAD ADO APD 180,∠∠∠++=︒ ∴APD 26∠=︒. 【点睛】本题考查了圆内接四边形定理、圆周角定理、切线的性质等知识,熟练掌握相关的定理定义是解题的关键.25.(1)202(1)218(16)30(611)x x x y x +-=+<⎧=⎨⎩…剟;(2)在第11天进货并售出后,所获利润最大,且为每件最大利润为19.125元. 【解析】 【分析】(1)根据销售价格随时间的变化关系设y 与x 之间的函数关系为y =kx+b,由分段函数求出其值即可; (2)根据利润=售价﹣进价就可以表示出利润与时间之间的关系,由二次函数的性质就可以求出结论. 【详解】解:(1)该种蔬菜销售价格y 与天数x 之间的函数关系式:y =()()()20212181630611x x x x ⎧+-=+≤≤⎪⎨≤≤⎪⎩;(2)设利润为W,则W =y ﹣z =()()()()()()()222211218812141688113081281861188x x x x x x x x x ⎧++--=+≤≤⎪⎪⎨⎪+--=-+≤≤⎪⎩为整数为整数,W =21148x +,对称轴是直线x =0,当x >0时,W 随x 的增大而增大, ∴当x =5时,W 最大=258+14=17.125(元)W =()218188x -+,对称轴是直线x =8,当x >8时,W 随x 的增大而增大,∴当x=11时,W最大=18×9+18=1918=19.125(元)综上可知:在第11天进货并售出后,所获利润最大且为每件19.125元.【点睛】本题主要考查了二次函数的应用,待定系数法求函数的解析式的运用,二次函数的最值的运用,解答时求出利润的解析式是关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .642.某市今年约有140000人报名参加初中学业水平考试,用科学记数法表示140000为( ) A .41410⨯B .31410⨯C .41.410⨯D .51.410⨯3.下列计算结果正确的是( ) A.(﹣a )2•a 6=﹣a 8B.(m ﹣n )(m 2+mn+n 2)=m 3﹣n 3C.(﹣2b 2)3=﹣6b 6D.4.已知点P (a+1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( ) A.﹣1<a <B.﹣<a <1C.a <﹣1D.a>5.已知a 是方程x 2﹣3x ﹣2=0的根,则代数式﹣2a 2+6a+2019的值为( ) A .2014B .2015C .2016D .20176.在一个不透明的口袋中装有2个红球和若干个黑球,这些球除颜色外其他都相同,将袋中的球搅匀,从中任意摸出一个球,是黑球的概率是23,则袋中原有黑球( ) A .2B .3C .4D .67.如图,P 是抛物线y =﹣x 2+x+3在第一象限的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为( )A .6B .7.5C .8D .8.下列函数中,自变量x 的取值范围为x >1的是( )A .y =B .11-=x yC .11-=x y D .y =(x ﹣1)09.如图,抛物线21y x 3x 42=++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,AC ,则ABC 的面积为( )A .1B .2C .4D .810.如图,AB 为O 的直径,P 为BA 延长线上的一点,D 在O 上(不与点A ,点B 重合),连结PD 交O于点C ,且PC=OB .设,P B αβ∠=∠=,下列说法正确的是( )A .若30β︒=,则120D ︒∠= B .若60β︒= ,则90D ︒∠= C .若10α︒= ,则150AD ︒= D .若15α︒= ,则90AD ︒=11.如图,菱形ABCD 的边AB=5,面积为20,∠BAD <90°,⊙O 与边AB 、AD 都相切,AO=2,则⊙O 的半径长等于( )A B C D 12.一个正多边形,它的每一个外角都等于40°,则该正多边形是( ) A .正六边形 B .正七边形C .正八边形D .正九边形二、填空题13.已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 12+x 22<a 2+b 2;④当a+b =ab 时,方程有一根为1.则正确结论的序号是_____.(填上你认为正确结论的所有序号)14.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.15.如图,已知AD ∥BC ,要使四边形 ABCD 为平行四边形,需要添加的一个条件是:____.(填一个你认为正确的条件即可,不再添加任何线段与字母)16.圆锥的底面半径是4cm ,母线长是5cm ,则圆锥的侧面积等于_____cm 2.17.若二次函数y=2x 2的图象向左平移2个单位长度后,得到函数y=2(x+h )2的图象,则h= .18.如图,直线m ∥n ,Rt △ABC 的顶点A 在直线n 上,∠C =90°,若∠1=25°,∠2=75°,则∠B =_____.三、解答题19.已知:在△ABC 中,点D 、E 分别在AC 、AB 上,且满足∠ABD =∠ACE ,求证:AD•CE=AE•BD.20.先化简,再求值:22211211x x x x x x ⎛⎫-÷-+ ⎪-+-⎝⎭,其中1x =.21.如图,已知等腰△ABC 中,AB =AC .以C 为圆心,CB 的长为半径作弧,交AB 于点D .分别以B 、D 为圆心,大于12BD 的长为半径作弧,两弧交于点E .作射线CE 交AB 于点M .分别以A 、C 为圆心,CM 、AM 的长为半径作弧,两弧交于点N .连接AN 、CN(1)求证:AN ⊥CN(2)若AB =5,tanB =3,求四边形AMCN 的面积.22.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48°,测得底部C 处的俯角为58°,求乙建筑物的高度CD.(结果取整数,参考数据:tan58°≈1.60,tan48°≈1.11).23.如图,在△ABC 中,∠BAC =90°,以AC 为直径的⊙O 交BC 于点D ,点E 在AB 上,连接DE 并延长交CA 的延长线于点F ,且∠AEF =2∠C .(1)判断直线FD 与⊙O 的位置关系,并说明理由;(2)若AE =2,EF =4,求⊙O 的半径.24.如图,直线m :y =kx (k >0)与直线n :3y x =-+C ,点A 、B 为直线n 与坐标轴的交点,∠COA =60°,点P 从O 点出发沿线段OC 向点C 匀速运动,速度为每秒1个单位,同时点Q 从点A 出发沿线段AO 向点O 匀速运动,速度为每秒2个单位,设运动时间为t 秒.(1)k = ;(2)记△POQ 的面积为S ,求t 为何值时S 取得最大值;(3)当△POQ 的面积最大时,以PQ 为直径的圆与直线n 有怎样的位置关系,请说明理由.25.重庆小面是一款发源于山城重庆的地方特色传统小吃,是重庆最受欢迎的美食之一.重庆小面佐料丰富且用料考究,不同店面还根据自身菜谱加入豌豆、牛肉、肥肠、杂酱等,口感独特,麻辣鲜香,近年来闻名全国,某天,小明家花了48元购买牛肉面作为早饭,小华家花了28元购买豌豆面作为早饭,且小明家购买牛肉面的碗数与小华家购买豌豆面的碗数相同.已知面馆一碗豌豆面的价格比一碗牛肉面的价格少5元.(1)求购买一碗豌豆面和一碗牛肉面各需要多少元?(2)面馆一碗豌豆面的成本为4元,一碗牛肉面的成本为7元,某天面馆卖出豌豆面和牛肉面共400碗,且卖出的豌豆面和牛肉面的总利润不低于1800元,则面馆当天至少卖出牛肉面多少碗?【参考答案】***一、选择题二、填空题13.①②④.14.AB=BC(或AC⊥BD)答案不唯一15.AD=BC,AB∥DC, ∠A=∠C, ∠B=∠D等16.20π17.18.40°三、解答题19.详见解析.【解析】【分析】根据相似三角形的判定可证明△ABD∽△ACE,然后利用相似三角形的性质即可求证答案.【详解】证明:∵∠ABD=∠ACE,∠A=∠A,∴△ABD∽△ACE,∴AD AE BD CE,即AD•CE=AE•BD.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.20.2.【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.2221(1)121x x x x x x -÷-+--+, =2221(1)(1)(1)1x x x x x x ----÷-- =222211(1)21x x x x x x --⋅--+- =211121x x x -⋅-- =11x -,当1x === 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(1)详见解析;(2)12.【解析】【分析】(1)由作图可知四边形AMCN 是平行四边形,CM ⊥AB ,据此即可得答案;(2)在Rt △CBM 中,利用tan ∠B =CM BM=3,由此可以设BM =k ,CM =3k ,表示出AM ,然后在Rt △ACM 中,利用勾股定理求出k 的值,继而求得CM =3,AM =4,利用矩形面积公式即可求得答案.【详解】(1)由作图可知:CN =AM ,AN =CM ,∴四边形AMCN 是平行四边形,∵CM ⊥AB ,∴∠AMC =90°,∴四边形AMCN 是矩形,∴∠ANC =90°,∴AN ⊥CN .(2)在Rt △CBM 中,∵tan ∠B =CM BM=3, ∴可以假设BM =k ,CM =3k ,∵AC =AB =5,∴AM =5﹣k ,在Rt △ACM 中,∵AC 2=CM 2+AM 2,∴25=(3k)2+(5﹣k)2,解得k =1或0(舍弃),∴CM =3,AM =4,∴四边形AMCN 的面积=CM•AM=12.本题考查了作图——复杂作图,矩形的判定,勾股定理等,熟练掌握作图的基本方法是解题的关键. 22.乙建筑物的高度CD约为38m.【解析】【分析】作AE⊥CD于E,根据正切的定义分别求出CE、DE,得到答案.【详解】解:如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形.∴AE=BC=78在Rt△ACE中,tan58°=CE AE∴CE=AE ·tan58°≈78×1.60=124.8(m)在Rt△ADE中,tan48°=DE AE∴DE= AE ·tan48°≈78×1.11=86.58(m)∴CD=CE—DE=124.8—86.58≈38(m)即乙建筑物的高度CD约为38m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(1)直线FD与⊙O相切,理由详见解析;(2)⊙O的半径为【解析】【分析】(1)连接OD,根据已知条件得到∠AEF=∠AOD,等量代换得到∠AOD+∠AED=180°,求得∠ODF=90°,于是得到结论;(2)解直角三角形得到∠F=30°,AF OF=2OD,于是得到OD=FA,即可得到结论.【详解】解:(1)直线FD与⊙O相切;理由:连接OD,∵∠AEF=2∠C,∠AOD=2∠C,∴∠AEF=∠AOD,∵∠AEF+∠AED=180°,∴∠AOD+∠AED=180°,∵∠BAC=90°,∴∠ODF=90°,∴直线FD与⊙O相切;(2)∵∠BAC=90°,AE=2,EF=4,∴∠F=30°,AF ,∵∠ODF=90°,∴OF=2OD,∴OD=FA,∴⊙O的半径为【点睛】本题利用了切线的判定和性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(1)k(2)当t=32时,S有最大值;(3)直线AB与以PQ为直径的圆O相离,理由详见解析.【解析】【分析】(1)依据k=tan∠COA进行求解即可;(2)如图1所示:过点P作PD⊥OA,垂足为D.由锐角三角函数的定义和特殊锐角三角函数值可求得PD,然后利用三角形的面积公式列出关系式,最后利用配方法求得三角形面积最大时t的值即可;(3)如图2所示:过点P作PD⊥OA垂足为D,过圆心O作OE⊥AB,垂足为E.首先证明四边形,四边形OPCE为矩形,然后求得d和r的值即可.【详解】(1)k=tan∠COA(2)如图1所示:过点P作PD⊥OA,垂足为D.。
综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x41y 2+-=)⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
练习1、已知抛物线2y ax bx c =++经过53(33)02P E ⎛⎫⎪ ⎪⎝⎭,,,及原点(00)O ,. (1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+)(2)过P 点作平行于x 轴的直线P C 交y 轴于C 点,在抛物线对称轴右侧且位于直线P C 下方的抛物线上,任取一点Q ,过点Q 作直线Q A 平行于y 轴交x 轴于A 点,交直线P C 于B 点,直线Q A 与直线P C 及两坐标轴围成矩形O A B C .是否存在点Q ,使得O P C △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.例1题图图OAByxOAByx图y xEQ PC B OA (3)如果符合(2)中的Q 点在x 轴的上方,连结O Q ,矩形O ABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处。
例1如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.图2所以AB=22,BC=42,∠ABC=90°.所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4(2)作PD⊥BC,垂足为D.在Rt△BPD中,BP=5t,cos B=45,所以BD=BP cos B=4t,PD=3t.当AQ⊥CP时,△ACQ∽△CDP.所以AC CDQC PD=,即68443tt t-=.解得78t=.图5 图6(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E.由于H是PQ的中点,HF//PD,所以F是QD的中点.又因为BD=CQ=4t,所以BF=CF.因此F是BC的中点,E是AB的中点.所以PQ的中点H在△ABC的中位线EF上.考点伸展本题情景下,如果以PQ为直径的⊙H与△ABC的边相切,求t的值.如图7,当⊙H与AB相切时,QP⊥AB,就是BP BCBQ BA=,3241t=.如图8,当⊙H与BC相切时,PQ⊥BC,就是BP BABQ BC=,t=1.如图9,当⊙H与AC相切时,直径2222(3)(88)PQ PD QD t t=+=+-,半径等于FC=4.所以22(3)(88)8t t+-=.解得12873t=,或t=0(如图10,但是与已知0<t<2矛盾).图7 图8 图9 图10444于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC 是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.图1444别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±.所以符合题意的点Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
因此△OCQ ∽△QOA . 当BA QA QA OA=时,△BQA ∽△QOA .此时∠OQB =90°. 所以C 、Q 、B 三点共线.因此BO QACO OA =,即14b QA b =.解得4QA =.此时Q (1,4).图4 图5考点伸展第(3)题的思路是,A 、C 、O 三点是确定的,B 是x 轴正半轴上待定的点,而∠QOA 与∠QOC 是互余的,那么我们自然想到三个三角形都是直角三角形的情况.这样,先根据△QOA 与△QOC 相似把点Q 的位置确定下来,再根据两直角边对应成比例确定点B 的位置.如图中,圆与直线x =1的另一个交点会不会是符合题意的点Q 呢?如果符合题意的话,那么点B 的位置距离点A 很近,这与OB =4OC 矛盾.例4如图1,已知抛物线的方程C1:1(2)()y x x mm=-+-(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12黄冈25”,拖动点C 在x 轴正半轴上运动,观察左图,可以体验到,EC 与BF 保持平行,但是∠BFC 在无限远处也不等于45°.观察右图,可以体验到,∠CBF 保持45°,存在∠BFC =∠BCE 的时刻.思路点拨1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小. 2.第(4)题的解题策略是:先分两种情况画直线BF ,作∠CBF =∠EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程.满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BCCB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =,得244m m BF m +=+.所以2(4)4m m BF m ++=. 由2BC CE BF =⋅,得222(4)4(2)4m m m m m+++=+⨯.整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BCBC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+. 由2BC BE BF =⋅,得2(2)222(22)m m +=+.解得222m =± 综合①、②,符合题意的m 为222+考点伸展第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.例5如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标; (2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I 上下运动,观察图形和图象,可以体验到,x 2-x 1随S 的增大而减小.双击按钮“第(3)题”,拖动点Q 在DM 上运动,可以体验到,如果∠GAF =∠GQE ,那么△GAF 与△GQE 相似.思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例6如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P 在抛物线上运动,可以体验到,△P AM 的形状在变化,分别双击按钮“P 在B 左侧”、“ P 在x 轴上方”和“P 在A 右侧”,可以显示△P AM 与△OAC 相似的三个情景.双击按钮“第(3)题”, 拖动点D 在x 轴上方的抛物线上运动,观察△DCA 的形状和面积随D 变化的图象,可以体验到,E 是AC 的中点时,△DCA 的面积最大.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=.。