七年级数学上册 2.2 合并同类项教案 新人教版
- 格式:pdf
- 大小:272.44 KB
- 文档页数:4
七年级数学上册合并同类项教案人教新课标版一、教学目标:知识与技能:1. 理解同类项的概念,掌握同类项的定义和判断方法。
2. 学会合并同类项的技巧,能够熟练地进行同类项的合并。
过程与方法:1. 通过观察、分析和归纳,培养学生的逻辑思维能力。
2. 利用小组合作、讨论交流的方式,提高学生的合作能力和口头表达能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心。
2. 培养学生勇于探究、积极思考的学习态度。
二、教学重点与难点:重点:1. 同类项的概念和判断方法。
2. 合并同类项的技巧。
难点:1. 同类项的判断。
2. 合并同类项时的系数处理。
三、教学准备:教师准备:1. 同类项的概念和判断方法的讲解。
2. 合并同类项的例题和练习题。
学生准备:1. 预习同类项的概念和判断方法。
2. 准备笔记本,记录重点知识和解题步骤。
四、教学过程:1. 导入:利用生活中的实例,如购物时找零钱,引入同类项的概念,激发学生的兴趣。
2. 新课讲解:讲解同类项的定义和判断方法,通过示例进行解释,让学生理解和掌握。
3. 例题讲解:给出合并同类项的例题,讲解解题思路和步骤,让学生跟随讲解,理解和掌握合并同类项的方法。
4. 练习巩固:让学生独立完成练习题,巩固对同类项的概念和合并同类项的技巧的理解和掌握。
5. 课堂小结:对本节课的主要内容和知识点进行总结,强调同类项的判断和合并同类项的方法。
五、课后作业:1. 完成课后练习题,巩固同类项的概念和合并同类项的技巧。
2. 选择两道难度较高的题目进行挑战,提高自己的解题能力。
六、教学反思:教师在课后对自己的教学进行反思,思考是否清晰地讲解了同类项的概念和判断方法,是否给了学生足够的练习机会,以及学生对知识的掌握程度。
根据反思的结果,调整教学方法和策略,以提高教学效果。
七、评价与反馈:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态和理解程度。
2. 作业评价:检查学生作业的完成情况,关注学生对同类项概念和合并同类项技巧的掌握情况,以及对难点的理解程度。
《七年级第二章整式的加减》教案2.2整式的加减(合并同类项)【教学课型】:新课◆课程目标导航【教学目标】:1.知识与技能:理解合并同类项的概念,掌握合并同类项的法则。
2.过程与方法:经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
渗透分类和类比的思想方法。
3.情感态度与价值观:在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
【教学重点】:重点:正确合并同类项。
【教学难点】:难点:找出同类项并正确的合并。
【教学方法】:分层次教学,讲授、练习相结合。
◆教学过程设计一、复习引入:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。
他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。
问:①他们两次共买了多少本软面抄和多少支水笔?②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?(知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动的投入程度和积极性,激发学生的求知欲。
)二、讲授新课:1.合并同类项的定义:(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所的结果都为(21x +25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。
(板书:合并同类项。
)2.例题:例1:找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并合并同类项。
解原式= ()()()22835245335245322222222+-=-++-++=-++-+xy y x xy y x xy xy y x y x根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。
教学目标1.理解并掌握同类项的概念及其应用;2. 从具体情境中学会识别同类项;3. 在独立思考、小组交流的环境下培养解题能力与合作意识.2学情分析1.学生已有的知识基础学生已经学过有理数的运算及运算律,代数式的有关知识,特别是学生对化繁为简的数学思想应该有浓厚的主动探索的意识。
也就是说对本课内容的学习,要求掌握的知识基础学生已大体上具备。
2.学生学习新知的障碍七年级学生刚刚跨入少年期理性思维的发展很有限,他们在知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱,小组合作能力以及语言表达能力也比较欠缺,3重点难点重点:同类项的概念及其应用难点:正确判断同类项、对其概念进行应用4教学过程4.1 第一学时4.1.1教学活动活动1【导入】创设情境思考一:观察屏幕,数一数硬币,一共有多少钱?活动2【活动】发现新知【思考二】:有八只小白兔,每只身上都标有一个单项式,你能根据这些单项式的特征将这些小白兔分到不同的房间里吗?观察并讨论:1.每一组单项式所含字母有何特点?2.相同字母的指数有何特点?归纳得出:同类项定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
“两同”【游戏互动】:“找朋友”:屏幕上给出多个单项式,找出同类项“朋友”,进行分组讨论,得出:“两无关”:与字母顺序无关、与单项式系数无关;几个常数项也是同类项。
自由回答:说出单项式与没有找到朋友的单项式做朋友。
【思考三】写出一个含字母a、b、c的五次单项式,并考虑:所含字母相同,次数也相同的单项式一定是同类项吗?为什么?活动3【练习】新知应用1.同类项的判断2.根据同类项定义求相关字母的值3.检测目标(相关习题)活动4【活动】小结小组讨论整合并汇报:本堂课你收获了什么?1.定义:同类项的概念2.判定:口诀“两同两无关”3.思想:分类思想、整体思想4、思考:合并同类项活动5【作业】课后思考提升1.用不同的下划线标出导案上所给多项式标出其中的同类项;2.思考导案巩固拓展部分所给的两个多项式中存在中哪种特别的同类项?3.思考:确定多项式中的同类项时应该注意什么?。
七年级数学上册合并同类项教案人教新课标版一、教学目标1. 让学生理解合并同类项的概念,掌握合并同类项的法则。
2. 培养学生运用合并同类项解决实际问题的能力。
3. 提高学生的数学思维能力和逻辑推理能力。
二、教学内容1. 合并同类项的概念:同类项是指字母相同且相同字母的指数也相同的项。
2. 合并同类项的法则:将同类项的系数相加,字母和字母的指数不变。
三、教学重点与难点1. 教学重点:合并同类项的概念和法则。
2. 教学难点:如何判断同类项以及合并同类项时的系数运算。
四、教学方法1. 采用问题驱动法,引导学生主动探究合并同类项的方法。
2. 通过举例讲解,让学生清晰地理解合并同类项的概念和法则。
3. 利用练习题巩固所学知识,提高学生的实际应用能力。
五、教学过程1. 导入新课:通过简单的数学问题,引导学生思考如何合并同类项。
2. 讲解合并同类项的概念和法则,让学生明白合并同类项的原理。
3. 举例讲解:用具体的数学题目演示合并同类项的步骤和方法。
4. 学生练习:让学生独立完成一些合并同类项的题目,巩固所学知识。
5. 总结与拓展:总结合并同类项的方法,引导学生思考合并同类项在实际问题中的应用。
6. 布置作业:布置一些合并同类项的练习题,让学生进一步巩固所学知识。
六、教学评价1. 通过课堂提问,观察学生对合并同类项概念和法则的理解程度。
2. 通过练习题的完成情况,评估学生对合并同类项的实际应用能力。
3. 结合学生的课堂表现和作业完成情况,对学生的数学思维能力和逻辑推理能力进行评价。
七、教学拓展1. 引导学生思考:合并同类项在实际生活中的应用,例如在购物时计算总价。
2. 让学生探索:合并同类项与其他数学概念的联系,如代数式的简化、方程的求解等。
八、教学资源1. PPT课件:展示合并同类项的概念、法则和实例。
2. 练习题:提供不同难度的练习题,巩固学生对合并同类项的掌握。
3. 辅导书籍:为学生提供额外的学习资料和练习题。
新人教版七年级数学上册2.2《合并同类项》教学设计一. 教材分析新人教版七年级数学上册2.2《合并同类项》是整式运算的一个重要内容。
在这一节中,学生将学习如何合并同类项,掌握合并同类项的法则,并能运用到实际问题中。
教材通过生动的实例和丰富的练习,引导学生探索和发现合并同类项的规律,培养学生的运算能力和逻辑思维能力。
二. 学情分析七年级的学生已经掌握了整式的基本概念,对加减法有了一定的了解,但对于合并同类项的概念和方法还不够清晰。
因此,在教学过程中,教师需要从学生的实际出发,通过生动的实例和丰富的练习,激发学生的学习兴趣,引导学生主动探索和发现合并同类项的规律。
三. 教学目标1.理解合并同类项的概念,掌握合并同类项的法则。
2.能够正确合并同类项,解决实际问题。
3.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.合并同类项的概念和法则。
2.如何运用合并同类项解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现合并同类项的规律。
2.通过实例讲解,让学生直观地理解合并同类项的概念和方法。
3.运用练习题进行巩固和拓展,提高学生的运算能力和逻辑思维能力。
六. 教学准备1.PPT课件:制作合并同类项的教学PPT,包括实例、练习题等。
2.教学素材:准备一些实际的数学问题,用于引导学生运用合并同类项解决实际问题。
七. 教学过程利用PPT展示一些实际问题,引导学生思考如何解决这些问题。
例如,计算以下表达式的值:(3x + 5x - 2x + 4)让学生尝试解答,从而引出合并同类项的概念。
2.呈现(15分钟)通过PPT展示合并同类项的定义和法则,让学生直观地理解合并同类项的概念和方法。
同时,通过实例讲解,让学生掌握合并同类项的技巧。
3.操练(15分钟)让学生进行一些合并同类项的练习题,巩固所学知识。
教师可适时给予解答和指导,帮助学生掌握合并同类项的方法。
4.巩固(10分钟)通过一些实际问题,让学生运用合并同类项的方法进行解答。
合并同类项优秀教案一、教材分析:1、教材所处的地位及作用:本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。
合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。
另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。
可以说合并同类项是有理数加减运算的延伸与拓广。
因此,这节课是一节承上启下的课。
2、学情分析:七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。
于是我根据学生和中小学教材衔接的特点设计了这节课。
二、教学目标:1.知识目标:(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
四、教学方法与教学手段:(1)教法分析:基于本节课容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。
七年级数学上册合并同类项教案人教新课标版第一章:认识合并同类项1.1 学习目标1. 了解合并同类项的概念;2. 学会合并同类项的法则;3. 能够正确合并简单的同类项。
1.2 教学内容1.2.1 合并同类项的定义1.2.2 合并同类项的法则1.2.3 合并同类项的例子1.3 教学步骤1.3.1 引入合并同类项的概念,展示生活中的实例;1.3.2 讲解合并同类项的法则,引导学生理解并掌握;1.3.3 进行课堂练习,让学生动手合并同类项;1.4 课后作业1. 完成练习题,巩固合并同类项的知识;2. 搜集生活中的实例,尝试用合并同类项的方法解决实际问题。
第二章:合并同类项的方法与技巧2.1 学习目标1. 掌握合并同类项的方法;2. 学会运用技巧快速合并同类项;3. 能够解决实际问题。
2.2 教学内容2.2.1 合并同类项的方法2.2.2 合并同类项的技巧2.2.3 实际问题举例2.3 教学步骤2.3.1 复习合并同类项的基本概念和方法;2.3.2 讲解合并同类项的技巧,引导学生灵活运用;2.3.3 分析实际问题,运用合并同类项的方法解决;2.4 课后作业1. 完成练习题,巩固合并同类项的方法和技巧;2. 运用合并同类项的方法解决实际问题。
第三章:合并同类项的综合训练3.1 学习目标1. 提高合并同类项的速度和正确率;2. 培养学生的逻辑思维能力;3. 能够灵活运用合并同类项解决综合问题。
3.2 教学内容3.2.1 合并同类项的综合练习3.2.2 合并同类项的应用题3.3 教学步骤3.3.1 进行合并同类项的专项训练,提高学生的速度和正确率;3.3.2 引导学生运用合并同类项的方法解决应用题;3.3.4 进行课堂讨论,培养学生的逻辑思维能力。
3.4 课后作业1. 完成练习题,提高合并同类项的速度和正确率;2. 运用合并同类项的方法解决应用题。
第四章:合并同类项在实际问题中的应用4.1 学习目标1. 学会运用合并同类项的方法解决实际问题;2. 培养学生的创新能力和实践能力;3. 提高学生运用数学知识解决实际问题的能力。
合并同类项
知识与技能
理解同类项的概念,掌握合并同类项的法则,会合并同类项。
并能先合并同类项化简后求值.
过程与方法
经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.
教
学
目
标情感
态度
与价
值观
掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.
教学
重点
掌握合并同类项法则,熟练地合并同类项.
教材
分析教学
难点
多字母同类项的合并.
教 学 过 程
教师活动学生活动备注(教学目的、时间分配等)
一、设疑导入:
1.运用有理数的运算律计算:
100×2+252×2=
100×(-2)+252×(-2)=
二、探疑互动:
我们来看本章引言中的问题(2).
在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是多少?
有理数可以进行加减
计算,那么整式能否可以
加减运算呢?怎样运算
呢?
全长是100t+120×2.1t,
即100t+252t
3分
1.类比数的运算,我们应如何化简式子100t+252t 呢?并说明你的道理。
(1)运用有理数的运算律计算: 100×2+252×2=______; 100×(-2)+252×(-2)=________. 100×2+252×2=(100+252)×2=352×2 100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2) 我们知道字母可以表示数,如果用t 表示上述算术中的数2(或- 2) 就有, 100t+252t=(100+252)×t=352t . 事实上,100t+252t 与100×2+252×2和100×(-2)+252×(-2)有相同的结构, 都是两个数分别与同一个数乘积的和,这里t 表示同一个因数, 因此根据分配律也应该有:100t+252t=(100+252)t=352t 2.填空: (1)100t-252t=( )t ; (2)3x 2+2x 2=( )x 2;
(3)3ab 24ab 2=( )ab 2.
这就是说,上面的三个多项式都可以合并为一个单项式。
讨论:具备什么特点的多项式可以合并呢? 归纳: 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项, 几个常数项也是同类项.
练习:判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( ) (2)3xy 与3x ( )
(3) -5m2n3与2n3m2( ) (4)53与35 ( )
(5) x3与53 ( )
因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并。
例如:
4x 2+2x+7+3x-8x 2-2 (找出多项式中的同类项)
=4x 2-8x 2+2x+3x+7-2 (加法交换律)
=(4x 2-8x 2 )+(2x+3x)+(7-2)(加法结合律)
=(4-8)x 2 +(2+3)x+(7-2) (加法分配律)
=-4x 2+5x+5
归纳:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.
注意:1、若两个同类项的系数互为相反数,则两项的和等于零,即这两项相抵消,如-3ab 2+3ab 2=(-3+3)ab 2=0·ab 2=0.
2、多项式中只有同类项才能合并,不是同类项不能合并.
3、通常我们把一个多项式的各 启发学生类比数的运算,逆用乘法分配律。
小组讨论:上述运算有什
么共同特点,你能从中得
出什么规律?
观察(1)中多项式的项100t 和-252t ,它们都含有相同字母t ,并且t 的
指数都是1;
(2)中的多项式的项3x 2+2x 2都含有相同字母x ,并且字母x
的指数都是2;(3) 中的多项式的项3ab 2和-4ab 2都含有字母a ,b ,并且字母a 的指数都是1,
b 的指数都是2.
两个相同,两个无关。
5
8分
5分
8分
项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x+5或写成5+5x-4x 2.
例1.合并下列各式的同类项:
(1)xy 2-1
5
xy 2(2)-3x 2y+2x 2y+3xy 2-2xy 2;
(3)4a 2+3b 2+2ab-4a 2-4b 2.
例2.(1)求多项式2x 2-5x+x 24x-3x 22的值,其中x=1
2
. (2)求多项式3a+abc-13c 2-3a+13c 2
的值,其中a=-16
,b=2,c=-3.
解:(1)2x 2-5x+x 2+4x-3x 2-2 (仔细观察,标出同类项)
=(2+1-3)x 2+(-5+4)x-2 (系数相加,字母部分不变)
=-x-2 (系数是“1”或“-1”时省略不写)
当x=12时,原式=-12-2=-5
2
(2)3a+abc 213c --3a 2
13
c + =(3-3)a+abc+(-13+1
3)c 2
=abc 当a=-16,b=2,c=-3时,原式=(-1
6
)×2×(-3)=1
例3.(1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm , 第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x 千克,上午卖出3袋, 下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
三解疑归类:
1.同类项的找法,
2.同类项的合并的法则。
3.会合并同类项。
四查疑落实:
谈谈本节课的收获?
只把系数相加,字母和字
母的指数不变。
1.什么叫做同类项?
2.什么叫做合并同类项?怎
5分
8分
样合并同类项?
3分
3.对于求多项式的值,不
要急于代入,应先观察多
项式,看其中有没有同类
项,若有,要先合并同类
项使之变得简单,而后代
入求值。
板 书
一、同类项
二、合并同类项
三、合并同类项法则
教学后记:。