原来是介样~车翼改变了F1的命运 详解空气动力学的演变史!
- 格式:doc
- 大小:479.00 KB
- 文档页数:8
揭秘F1赛车科技(一):车身、底盘现在中国的F1车迷几乎在以几何级数增长,这项刺激的运动正吸引越来越多的人周末坐在电视机前。
而作为一个高科技的综合体,F1赛车本身就是一个夺目的焦点,所以,此次我们便来看看,F1赛车究竟主要蕴含了那些先进技术。
而鉴于整车系统的庞杂,我们将分为车身底盘、动力及制动系统、空气动力学及TC系统三个篇章为大家逐次讲解:车身及底盘部分驾驶舱相信所有人对今年宝马车手库比卡从撞车事故安然无恙的生还,并且两天之后就出院的奇迹记忆犹新,当时彻底损毁的赛车仅剩的那部分就是驾驶舱,这个保护车手免于事故伤害的部分正是F1赛车上最坚固的部分。
驾驶舱在F1赛车上处于车身结构的中央位置,它的前面是前鼻锥和前悬,后面则是引擎和后悬架,它是一种单壳体结构,行话称之为“tub”。
在结构上它是底盘的一部分,也是车手的救生舱。
宝马索伯F1赛车的单壳体,微观上是蜂窝状结构碰撞后仅存的救生舱救了罗伯特库比卡驾驶舱都是根据车队正式车手的身材量身打造,用很多层碳素纤维粘合而成,并且在高温中定形,要知道碳纤材料的强度是同等质量钢的5倍,所以驾驶舱几乎是金刚不坏之身。
F1有条基本规定是车手在不移动任何部件(但是必须拆下方向盘),可以在五秒之内离开驾驶舱,所以驾驶舱必须有足够的结构强度,而且不能在碰撞中飞出任何零件。
驾驶舱的前后部分是所谓吸能区,在碰撞中就像我们看到的,它们都会变成碎片,以此尽量分散冲击力。
驾驶舱的顶部(引擎进气口)包括T形臂也是非常重要的安全设计,它们可以保护车手的头部在翻滚中不会受伤,和敞篷跑车上的防滚架原理一样。
为了减小来自侧面的碰撞碎片对车手的头部的伤害,驾驶舱侧沿也被有意加高。
翻车事故中车顶的T形臂充当了防滚架的角色,它也是安装摄像头的地方,根据颜色可以区别车队的一号和二号车手我们都知道市面上的量产车要经过一些碰撞测试,比如著名的Euro-NCAP(欧洲新车安全评鉴协会)。
虽然欧盟的标准在世界上已经算是最严格的了,但是诸如54km/h的正面碰撞测试拿到F1来可以说几乎没有任何意义。
f1空气动力学f1空气动力学F-1赛车风驰电掣的速度,能在5秒之内瞬间加速到200km/h以上,最大过弯侧向加速可达4个G,极速最高超过350km/h,这样高的速度与过弯能力,除了需要优异的悬吊设置来让轮带尽可能的保持与跑道路面接触之外,也需要足够的下压力来产生足够的摩擦力,否则空有强大的马力,在过弯时将无从发挥,因此空气动力学设计的优劣已成为今日F 1决胜的关键之一。
空气动力学的工程师们在风洞中实现他们的空力艺术,由功能强大的设计计算机所产生的3D模拟,并在大型的风洞中不断的测试。
F1车队每年都会花上300万美元到1500万美元不等的风洞操作经费来验证空气动力学组件的效率。
空气动力学效率就是下压力和空气拖放阻力的比例。
目标就是要获得最大的抓地力,和最小的拖放阻力。
下压力是空气动力学上垂直方向的向下压力总合,这些力量是由前鼻翼和后尾翼所产生,用来把赛车压在地面上,下压力越大,赛车在跑道上的抓地力就越大。
理论上,由前后翼产生的可怕力量,可以让一部F-1赛车抵抗地心引力,让600公斤重的F1赛车在隧道的天花板上倒吊著跑,因为赛车可以产生超过车身重量数倍的下压力。
要让F-1赛车那样高速的过弯,那么必须把车底、车顶以及车身周围的气流引导到完美的境界!关键的前后翼影响F1赛车空力稳定性的最重要因素是前鼻翼,这是决定通过车身上方、下方和其他如散热器、后尾翼气流的比例和方向的关键性组件。
除了分流前方的空气之外,前鼻翼在操控上也扮演重要的角色,那就是产生下压力来将前轮压在地面上。
尾翼是F-1赛车外观上重要的一部份,尾翼的组合被当前的比赛规则限制在只能有三片。
透过调整前后翼的设置,车队可以控制赛车的抓地力来配合不同的赛道特性及底盘本身所产生的定值的下压力。
理论上,翼面角度越陡,产生的空气动力学的拖放阻力越大,车速提高时对车辆产生的下压力越大。
同时,陡峭的翼面设置会降低赛车的速度表现以及增加油耗。
F-1赛车空气力学的最高境界就是『平衡』。
【知识贴】揭秘F1赛车科技(三):空气动力学及TC系统1楼一、空气动力学现代F1赛车就像是一架贴地飞行的战斗机,只不过它的“机翼”产生的力是向下的。
随着技术的完善,空气动力学已经成为车队最后可以竞争的领域之一,这也是为什么各支车队每年要花费几百万到数千万美元在空气动力学套件的研发上,所以空气动力学可谓是赛事制胜的法宝。
简单的空气动力模型虽然空气动力学是非常复杂的工程,但是工程师们考虑的问题其实只有两个:一、增加下压力,让赛车紧抓地面,这样可以以更高的速度过弯;二、减小阻力,通过减小气流扰动产生的阻力以提高赛车在直道的速度。
因为增加下压力的同时会产生风阻,所以两个看似矛盾方向的平衡点,正是制胜的关键。
F1车队开始研究空气动力学始于上世纪60年代末期,但是它的原理早在莱特兄弟的飞机上天之前就已经由伯努利发现了。
当气流以不同的速度通过一个机翼的上下表面,就会产生压强差,为了平衡这种压强差,机翼就会向压强小的一面运动。
我们只要让气流通过的两个翼面的长度不一样,就可以产生速度差,进而产生我们需要的升力,或者对于F1来说的下压力。
F1就像是倒过来的机翼,现代F1赛车可以产生3.5倍于自身重量的下压力,简单的说,就是只要达到一定的速度,这些赛车都可以贴在天花板上开而不掉下来。
理论上说合适的设计可以产生非常高的下压力,但是过高的下压力所带来的高速会让车手的身体无法承受,而导致一些事故的发生,从七十年代开始,定风翼的位置、大小、角度等逐步被限制,从而限制车速的提高。
但是F1车队的工程师很快找到了产生下压力的新方法,那就是七十年代莲花车队曾在Brabham BT46B赛车上使用的地效应底盘,这种底盘就是在车后安装一个巨大的风扇,然后把车底部的空气全部抽走产生几乎真空的环境,让大气压把赛车紧紧压在地面上。
这辆赛车只参加过一站比赛,它的巨大优势让国际汽联马上禁止了这种设计。
地效应底盘的莲花F1赛车现在的F1赛车底盘主要靠车底的侧裙和后部的扩散器来达到相似的效果:底盘周围的侧裙对空气扰流可以产生气坝,气坝阻止了周围的空气进入底盘下部,而扩散器可以加速车底的空气离开,等于抽走了车底的空气而在底盘与地面之间生成了一个超低压区,由此可以产生巨大的下压力。
浅析F1空气动力学:与飞机不一样的翅膀特约记者瑞夫报道了解飞机原理的人都知道,飞机能飞上天全都因为其在起飞加速过程中产生的升力,将其送上蓝天,而从飞机诞生之日起一门新的科学也随之诞生了,这就是空气动力学。
与飞机不同的是,F1赛车对于空气动力学应用的追求是完全反向的,为了“防备”赛车在高速行驶中飞起来,需要通过一些空气动力学部件给赛车一定下压力,同时为赛车提供抓地力,而F1赛车也有了自己的翅膀——前定风翼和后定风翼以及其他空气动力学部件。
空气动力学在F1赛车上的应用主要体现在两个方面:一是让定风翼产生的下压力为轮胎提供足够的抓地力,另一个则是尽量减少赛车行驶中的空气阻力。
在早年的F1比赛中,赛车与普通汽车看起来差别不大,但自从空气动力学引进后,F1赛车开始出现了显著变化,首先就是定风翼的产生。
定风翼的基本工作原理其实与我们所看到的一架普通飞机的机翼是一样的,最大的区别在于当飞机机翼因为飞机提速而产生足够升力时,赛车定风翼则将机翼的升力工作原理进行倒置。
反向安装的前、后定风翼将会使空气产生下降的力量,一般我们将其称为“下压力”,以保证高速行进中的赛车“抓住”地面不会引起大幅摆动甚至是漂浮乃至侧翻。
一辆F1赛车的定风翼能产生相当于赛车重量3.5倍的下压力。
上世纪60年代,定风翼开始应用于F1赛车上,导致F1赛车的速度普遍得到提高,但由于各个车队在定风翼的使用上缺乏足够的安全保障,随之而来的是事故的增加,于是1970年F1规则对于定风翼的尺寸和应用作出了限制,这种限制一直持续到现在。
赛车定风翼处于不同角度下产生的下压力是各不相同的,而前后翼的角度和赛道有直接的关系,因为空气的阻力和下压力是成反比例的,如果定风翼角度小,那么赛车的空气阻力就小,最高速度就大,但是赛车缺乏下压力和稳定性;相反,如果定风翼角度大,那么赛车的阻力就大,最高速度受影响,但是赛车在弯道的抓地力就强。
所以,根据赛道的不同,定风翼设置的角度也不同。
F1赛车的空气动力学原理怎样运用空气动力学的原理使F1赛车的速度发挥到极致的水平如何才能设计一个简单的风洞有哪些简单模型可以测试下压力与阻力虽然一级方程式赛车是一种高速汽车,但在机械概念上却较接近喷射机,而非家庭房车。
它们巨大的双翼不但具用商业广告牌的作用,同时还可以产生至关重要的「下压力」。
这种空气动力会使流经汽车上方的气流将车身向下压,使车子紧贴在车道上。
相反地,飞机则是利用巨大的双翼产生「上升力」。
将车身压在车道上可使轮胎获得更大的抓地力,进而在弯道时产生更快的加速度。
由于一般普通房车没有下压力,因此甚至无法产生1G(一个重力单位)转弯力。
一级方程式赛车能产生4个G的转弯力。
在时速230公里时的状况下,F1赛车上方气流产生的下压力足以使它在隧道里沿着隧道的顶部行走。
在设计当今一级方程式赛车的过程中,扮演重要角色的空气动力学家正面临着一个基本的挑战:如何在产生下压力的同时不增加空气阻力。
这正是汽车必须克服的问题。
在汽车空气动力设计的过程中,风洞扮演着重要的角色。
进行风洞实验时,通常先制作一半体积的模型,而风洞就像一个巨大的吹风机,将空气吹向静止的模型。
虽然这个吹风机的价格非常昂贵,但美洲虎车队仍然编列四千九百万美元的预算,将在该车队新建的银石(Silverstone)工厂建造一个风洞。
空气动力可以根据不同赛车场的特征而调整。
较直的跑道需要较低的下压力设定值,如此可减少阻力,并且有助于赛车提高极速。
较曲折的车道需要较高的下压力设定值,如此可令赛车的极速降低。
例如,在曲折的霍根海姆车道上,赛车很难达到300km/h的速度,但在蒙扎车道上,车速可以超过350km/h。
部现代的F1赛车与一架飞机有许多共通之处,就如它与一辆普通汽车的相通处一样多。
空气动力学已成这项运动成功的关键所在,因此各个车队每年要在这个环节的研发上花费几千万美圆。
空气动力学设计师有两个基本的任务:一是如何获得下压力,来帮助是赛车轮胎抓住赛道并提升转向力;二是把因气流和启动引起的使赛车减慢的阻力减到最小。
【最新整理,下载后即可编辑】F1方程式赛车的空气动力学班级:学号:姓名:年月号引言空气动力学在F1领域中扮演着重要的角色。
在引擎的研发相对稳定的下,空气动力学几乎主宰着一辆赛车的全部性能。
从上纪六十年代F1赛车第一次使用尾翼,到七十年代地面效应的引进,再到近些年双层扩散器、废气驱动扩散器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。
空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。
F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。
确切地说,就是研究由路况差异而导致的气动翼片与底盘间距的变化对赛车性能的干预强弱。
前翼前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。
F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。
人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种翼形不仅成熟,而且有效。
F1赛车在高速行驶时,流过前翼所在区域的气流被前前翼分割为两部分:一部分从翼片的上表面流过,另一部分则流过翼片的下表面,这两股气流依附在翼片上流动,最后在前翼后方的某一区域重新汇聚,两股的气流的区别在于,由于襟翼与主翼呈一个很大的倾角,因此襟翼拥有较大的迎风面积,在气体的流动过程中,翼片上表面的气流在流动中受到了阻碍,流速有所降低,而翼片下表面的气流则可以在无阻碍的状态下顺利通过,结合前,上翼面文提到过的运用在气体领域的伯努利方程p+1/2ρv2=P的气流流速低,压强大,下翼面的气流流速高,压强小,两者作差,即产生了我们所需的气动负升力。
F1赛车与空气动力学速度与激情F1—世界一级方程式锦标赛一些令人窒息的数字F1: FIA Formula 1 World Championship(世界一级方程式锦标赛)由FIA(国际汽车运动联合会)举办世界三大体育盛事之一加速性:2.5s内从0加速到100km/h,5s内加速到200km/h 制动性:1.9s内从200km/h减速到0,刹车距离55m赛道急速记录:372.6km/h弯道过载:4个G左右F1赛车组成赛车必备部件:引擎、底盘、悬挂系统、轮胎、刹车系统、车身、方向盘四大要素:引擎、车手、空气动力学、轮胎 空气动力学部件:前翼、后翼、扩散器、鼻锥、导流板作用:产生赛车前部的下压力组成:主翼、端板、级联翼片、中段翼 影响气流向后的走向与车身中后部下压力平衡增加翼面积增加翼型弯度推迟流动分离,增加失速迎角 显著增大下压力系数减小气流上洗较小诱导阻力引导气流离开轮胎级联翼片产生附加下压力引导气流绕过前轮,减小气动阻力中段翼翼型上下对称 不产生下压力尾翼作用:产生赛车后部的下压力 与车身前部下压力平衡组成:上层尾翼、端板、翼梁、失速尾翼、DRS减阻系统上层尾翼增加翼面积增加翼型弯度推迟流动分离,增加失速迎角 显著增大增大下压力系数连接结构减小诱导阻力获取下压力翼梁接近扩散器,提高扩散器的效率失速尾翼直道加速超车弯道、直道性能可兼得DRS系统(减阻系统)利用液压系统将襟翼放平,减小下压力和阻力扩散器扩散器是底盘末端的一段上翘结构扩散器给底盘下方被压缩的气流提供了一个释放的出口,进而诱导底盘下方的气流加速作用:疏导气流,提高空气动力学的效能发生碰撞时吸收撞击能量,保护车手安全阶梯鼻锥:使更多的气流流入车底,提高扩散器的工作效率,提高下压力“吸尘器”、“食蚁兽”、“剑齿虎”、……曾经另类的F1赛车F1是高科技、团队精神、车手智慧与勇气的集合体,代表着人类最高的汽车设计制造水平,引领着汽车产业的技术发展方向,是先进民用汽车技术的实验场和发源地。
赛车空动优化的秘密作者:梁子平来源:《汽车之友》2014年第21期对于方程式赛车而言,车身的空气动力学可以很大程度上影响赛车的操控性能。
但由于空气动力学套件工作时受到多方面的影响,使得在某些条件下这些套件无法适应复杂的外界环境,极大地降低赛车的性能。
本文将以FSC赛车和F1赛车为技术背景,讨论从优化边界层的角度可以为赛车的空气动力学性能带来怎样的提升。
什么叫边界层赛车的前翼、尾翼和扩散器,虽然工作原理和各自所处的气流环境存在较大差异,但它们却有一个共同点:必须利用气流的持续附着才能正常工作。
一旦引发气流失速,这些套件都将失效,无法为赛车提供足够的负升力。
一般程度上来说,气流的分离往往是物面的粘滞作用和逆压梯度造成的,而这又与边界层密切相关。
通过翼面开槽、安装涡流发生器等措施,可以为翼面下方提供能量,弥补流速损失,进而优化边界层,延迟失速的发生。
因此,对边界层的处理和优化对于一辆方程式赛车而言至关重要。
流体流过物面的过程中,由于受到粘滞作用的影响程度不同,使得沿壁面法线方向存在相当大的速度梯度,我们将紧贴物面、沿物面法线方向速度变化很大的一层流体称为边界层。
在离物面较远处,粘性力比惯性力小得多,可以把黏性应力略去不计,按无粘流体处理;而在紧贴物面的一层,粘滞力完全占主导作用,流体的流速为零。
因此,可以将边界层理解为紧贴物面受黏性影响显著的流体薄层。
通常将边界层的厚度δ定义为从物面到约等于99%的外部流动速度处的垂直距离,而流速达到0.99v处定义为边界层的外边界。
在这一边界之外,可以近似忽略粘性影响。
由于气流在流动过程中受到黏性影响使得速度有所损耗,因此流动越向下游,边界层越厚。
根据雷诺数的大小,边界层内的流动有层流与湍流两种形态。
一般上游为层流边界层,下游从某处以后转变为湍流,且边界层急剧增厚。
层流和湍流之间有一过渡区。
当所绕流的物体被加热(或冷却)或高速气流掠过物体时,在邻近物面的薄层区域有很大的温度梯度,这一薄层称为热边界层。
在一级方程式比赛中,超高的速度使空气成为了一种可怕的力量,它可以使赛车发挥出优势,也可以成为速度的障碍。
简单地说,一个物体的前端越大,那么它所遇到的风阻就越强,所以如果在相同动力的驱动下,较大物体的移动速度可能会比较小物体的慢。
不过在一级方程式比赛中,情况就不那么简单了。
下压力的存在就使事情复杂了,因为风阻也可以用来提高赛车的性能。
如果可以正确地引导风力,那么就能让其为赛车提供通过弯道时所需的额外抓地力。
吉兰解释道:“简单说下压力就是向下作用于地面的力。
你可以想像一下飞机,它要飞起来就需要一个向上的作用力。
而我们赛车风翼的作用就正好与飞机机翼的作用相反。
在赛车上,我们需要一种朝地面向下作用的力,以便让赛车在通过弯道时能够紧贴在赛道上。
对于空气动力学专家来说,最大的挑战就是要让气流的正面效应最大化,而同时要将其负面效应消除到最小。
在早期,一级方程式中对空气动力学的运用比较原始,也非常危险,不过现在这种技术已经演变成为了一门艺术,它决定着你能否在F1比赛中取得成功。
吉兰表示:“一级方程式中的空气动力学已经存在很长一段时间了。
在二十世纪60年代就出现了最早的空气动力学风翼。
从上世纪70年代开始,F1赛车上的空气动力学变得越来越总要。
不过直到最近10年,一级方程式的空气动力学才取得了突破性的发展。
现在这门技术已经变得非常出色。
”“现在,空气动力学是一支F1车队可以在赛车上做出调整的最重要项目。
其他项目,比如轮胎,大家都在使用同样的轮胎,引擎也被冻结了,所以空气动力学是我们可以进行调整的最大项目,也是对赛车性能影响最大的方面。
”虽然丰田TF107赛车的每一个外部零件在设计的时候都考虑到了空气动力学性能,但赛车上最为关键的空气动力学部件是赛车的最前端和尾端。
作为赛车上最先接触空气阻力的部件,前定风翼是整车空力学的关键所在。
它为赛车周围的气流开辟出通道,保证气流能够达到正确的区域,产生足够的下压力,同时还能防止带来负面效应。
原来是介样~车翼改变了F1的命运详解空气动力学的演变
史!
我们知道,车身设计的影响力足以全盘改变汽车的高速性能,从极速、稳定性以至于经济性能都能与此息息相关,现在再讨论车子时,空气动力学已是无法忽略的一大主题。
法拉利恩佐曾经对空气动力学不屑一顾,认为这是没能力制造大排量优质发动机的“弱者”的讨巧行为,但他的赛车上最终还是加上了扰流器和尾翼,量产车中的空气套件也成了卖点之一。
F1赛车获胜的主要指标是平均车速,因此过弯速度成为取胜的关键。
为此,各种空气动力学装置——车翼在F1赛车上应运而生。
“谁掌握了空气,谁就掌握了F1”。
空气动力学不仅对F1至关重要,对高速行使的量产车更是具有不可替代的现实意义。
目前改装车俗称的“大包围”、“扰流板”就是F1赛车车翼演变的产物。
我们知道,车身设计的影响力足以全盘改变汽车的高速性能,从极速、稳定性以至于经济性能都能与此息息相关,现在再讨论车子时,空气动力学已是无法忽略的一大主题。
线型的设计风格起源于1920年代末,直到1950年代,在长达二十余年中,风靡整个设计领域。
从最初的飞机到火车、汽车,从电冰箱到吸尘器,从口红到饮料瓶,流线型风格成为带动销售最典型的因素。
这台1923年的TYPE 32车型,由于造型的关系,被人称为坦克。
据称,这个设计是为了达到更高的空气动力学性能。
但事实上,并没有这个效果。
只是189km/h的时速却创造了记录。
1934年,克莱斯勒气流轿车上市了,这是世界上最早的流线型汽车,但由于当时消费者的审美意识还停留在箱式汽车的年代。
所以花费了大笔资金研制的气流轿车的销量非常失败,甚至差点导致克莱斯勒破产。
1936年,林肯轿车在流线型汽车的设计上又近了一步,精心设计的外观,再加上之前气流的铺垫,所以和风轿车还是比较成功的。
然而,真正达到减小风阻系数、公认的最能够代表流线型车身的车型,是1935年问世的大众甲壳虫,也可以说甲壳虫车车身就是标准的流线型车身。
费迪南德.波尔舍在希特勒宣布造国民汽车的号召后,便开始思考一款经久耐用、经济实惠的车型。
他发现瓢虫的身体结构非常顺滑,风阻系数极小,经过瓢虫的启发后,甲壳虫的外观便诞生了。
甲壳虫的车身最大限度的发挥了瓢虫的长处,车身钣金采用整体冲压,既轻便又坚固,工艺性好,整个设计非常完美。
流线型汽车的大量生产就是从大众甲壳虫开始的,流线型车身也成为当时社会追求的一种时髦样式。
但是,流线型车身的缺点也是显而易见的。
与箱式车身相比,车内空间明显变得很小,特别是后排空间,头顶上几乎没有空间。
而且,在1940年代,汽车的实际最大速度也只有60-70km/h,在这速度范围内,流线形车身起到减小风阻的效果不大。
流线型汽车的另一个致命的缺点就是对横向风的不稳定性。
流线型车身的侧面线条刚好与飞机机翼上面隆起,下面平滑的结构相似。
当有横向风吹来时,流线型汽车便会产生升力,导致受风面轮胎抓地力减弱,漂浮起来,有脱离原始轨道的危险。
此外,流线型车外形近似瓢虫,车身上的过渡面较多,当时的金属工艺还不像现在一样发达,所以车身覆盖件的质量很差。
因此,决定了流线形车身的生命力不强。
而今天的甲壳虫汽车其实只具备了当时流线型车身的外观特征,其并不是真正的流线型车身。
原名“迅雷”的克莱斯勒是来自陆地速度记录保持者。
在1938年巴纳维亚盐地上这架像是兄长的劳斯莱斯12缸车跑出了357.53英里每小时的惊人纪录!后来乔治艾斯顿上校准许克莱斯勒使用这个名字。
迅雷上最为显著的就是就是它的平滑的侧面。
整辆车的挡板外没有任何皱褶和突起。
它的外形很大一部分是由于空气动力学设计。
附加上设计并安装了内藏式的头灯,车体看上去在那个时代可以说是独领风骚。
平整的车体和收藏在车围内的车轮更是加强了它的流线型外型。
引擎盖下面没有什么特别的。
一架143马力的克莱斯勒323.5立方英尺的八缸引擎配合克莱斯勒液压变速箱驱动着这架车。
底盘曾经用于1940年的皇家皇冠。
它的结构非常结实,从它没有A字型的支撑架就可见一斑。
现如今那六架原型车中只有4部被保存下来。
空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。
此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。
另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。
所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。
早在上世纪30年代,各大车厂已经开始致力于降低气流拉力,而对于浮升力的研究,各车厂大致要到60年代才开始关注。
FERRAR的赛车手RICHIE GINTHER于1961年发明了能产生下压力的车尾扰流器,他也因此闻名于世。
随后的FERRARI战车也都使用此项设计。
而第一部使用前扰流器(俗称气霸)的汽车应该是大名鼎鼎的FORD GT40 1964。
这部车在超越时速300KM/H时所产生的浮升力令其成为一部根本无法驾驭的汽车,据说在加装了前气霸之后,GT40在达到极速时前轮的下压力由原来的310磅激增至604磅!!!至于第一部使用尾翼的汽车我没有准确的资料,不过据说时道奇于60年代末生产的CHARGER DAYTONA PLYMOUTH SUPERBIRD。
在欧洲车厂方面,保时捷可以算首家兼顾扰流器的功能和美学设计的车厂。
1975的911 TUBRO 的一体式的气霸和鲸鱼尾式的扰流器大副降低了浮升力的产生,其效用高达90%。
于是在70年代末,气霸和扰流器更成为保时捷的标志。
当时有很多以高性能作为卖点的车厂也跟随保时捷的步伐以气霸和扰流器作为卖点。
(说到这里,我到想起了一些题外话。
其实车厂都要经过一个发展阶段才能走向成熟,其实日本车与欧洲车的差距就体现在日本车其实在走欧洲车曾经走过的一条道路,这条路每个车厂都必须经历。
如果以后中国真正的拥有自己的汽车工业的话,那么中国的车厂也必须走这条道路。
一般我认为欧洲车厂的空气动力学水平要较日本车厂来的高一点,就拿对空气动力学要求很高的F1赛事来说,所有空气动力学高手都是欧洲人,而这些欧洲人也无一例外的供职于欧洲车厂,英美车队在空气动力学方面的研究在它这几年来几乎没有进步,从这一点上面就可以看出欧洲车厂于日本车厂之间的差距。
不过,这些差距是由时间造成的,我想技术上的差距相对比较容易弥补。
而文化背景的不同才容易造成真正的差异,而这种差异如果产生不良性的发展,日本车厂就真正的危险了。
现在气霸和扰流器已经非常非常的普通了,几乎时速可以达到百余公里的汽车都使用这些东西。
其实如果你的车速并不高,这些东西并不起作用。
当车速介于60到80之间时,气流的拉力根本高不过车轮的运动阻力,如果要感受尾翼和扰流器在浮升力和下压力方面的明显作用,时速必须高于160KM。
其中的原因是因为气流的动力往往是车速的二次方,一部汽车从130KM/H加速至260KM/H,浮升力和空气拉力将会有四倍的增加。
同时,所有汽车所有的气霸,在降低气流拉力方面都具有一定的作用。
一般来说可以减少5~10%的整体气流拉力。
另一方面,气霸也有助于冷却引擎,亦方便了雾灯的安装。
不过仍然有为数不少的车厂认为尾翼和扰流器是为了美观而设的。
不过总体来说,这些空气动力部件都具有一定的实际作用,以上代凌志SC系列来说,加装原厂车尾扰流器之后,汽车的Cd数值(气流拉力)由原来的0.32降至0.31。
但是FORD ADVANCED DESIGN STUDIO的设计师GRANT GARRISON曾经说过:如果尾翼和扰流器不是那么受欢迎,我们是不会加在车身上的,但是我们可以用其它方法来把车辆设计得具有同样的空气动力学效果。
持相同观点的还有大名鼎鼎的FERRARI,众所周知FERRARI为了迁就车身设计的美感是很忌讳在车身上使用尾翼的,而即使以快跑作为最高目的的ENZO FERRARI也使用的是可升降的尾扰流板,其原因是FERRARI的主席认为一部静止的FERRARI不需要任何扰流器。