温度控制系统研究背景与现状
- 格式:doc
- 大小:23.50 KB
- 文档页数:5
温度控制系统设计开题报告温度控制系统设计开题报告一、研究背景随着科技的不断进步和人们生活水平的提高,温度控制系统在各个领域的应用越来越广泛。
无论是家庭、工业生产还是医疗设备,温度控制都是确保设备正常运行和人们舒适生活的关键因素。
因此,设计一套高效可靠的温度控制系统对于提高生产效率和生活品质具有重要意义。
二、研究目的本研究旨在设计一套温度控制系统,通过对环境温度进行实时监测和调节,实现温度的精确控制。
具体目标包括:1. 确定适用于不同环境的温度控制算法;2. 开发一套高效的温度传感器,能够准确快速地获取环境温度数据;3. 设计一个可靠的控制器,能够根据温度数据进行智能调节;4. 提供用户友好的界面,方便用户对温度控制系统进行操作和监测。
三、研究内容1. 温度控制算法本研究将探索不同的温度控制算法,包括PID控制算法、模糊控制算法和神经网络控制算法等。
通过比较不同算法的性能和适用范围,选择最合适的算法用于温度控制系统。
2. 温度传感器设计为了准确获取环境温度数据,本研究将设计一种高效的温度传感器。
传感器应具备高精度、快速响应和抗干扰能力,以确保温度数据的准确性。
3. 控制器设计基于所选的温度控制算法,本研究将设计一个可靠的控制器。
控制器应能够根据温度数据实时调节温度,同时具备稳定性和快速响应的特点。
4. 用户界面设计为了方便用户对温度控制系统的操作和监测,本研究将设计一个用户友好的界面。
界面应具备直观、简洁和易于操作的特点,使用户能够轻松地进行参数设置和实时监测。
四、研究方法本研究将采用实验研究和仿真模拟相结合的方法进行研究。
首先,通过实验测试不同温度控制算法的性能和适用范围。
然后,利用仿真软件对温度传感器和控制器进行设计和验证。
最后,搭建实际的温度控制系统原型,并进行实际操作和测试。
五、研究意义本研究的成果将具有以下意义:1. 提供一套高效可靠的温度控制系统,为各个领域的设备和生产提供重要支持;2. 提高生产效率和产品质量,减少能源消耗和资源浪费;3. 提升人们的生活品质,提供舒适的居住和工作环境;4. 推动温度控制技术的发展,为相关领域的研究提供参考和借鉴。
目录第一章设计背景及设计意义 (2)第二章系统方案设计 (3)第三章硬件 (5)3.1 温度检测和变送器 (5)3.2 温度控制电路 (6)3.3 A/D转换电路 (7)3.4 报警电路 (8)3.5 看门狗电路 (8)3.6 显示电路 (10)3.7 电源电路 (12)第四章软件设计 (14)4.1软件实现方法 (14)4.2总体程序流程图 (15)4.3程序清单 (19)第五章设计感想 (29)第六章参考文献 (30)第七章附录 (31)7.1硬件清单 (31)7.2硬件布线图 (31)第一章设计背景及研究意义机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。
现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。
随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。
自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。
采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。
基于PLC的恒温控制系统本科生毕业论文(设计)题目:基于PLC的恒温控制系统院系:专业:学生姓名:学号:指导教师:二〇一四年五月摘要在工业控制领域,基于运行稳定性考虑,要对生产过程中的各种物理量进行详细的检测和控制。
这在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。
其中温度控制又以其较为复杂的工艺过程而备受人们关注。
所以各种加热炉、热处理炉、反应炉等得到了广泛应用。
这些都对温度控制系统的设计提出了更高的要求。
本设计采用S7-200PLC对加热炉温度进行控制。
随着自动控制技术的迅速发展,PLC对温度的控制技术应用越来越广泛。
本文采用PLC对温度进行控制,通过合理的设计,提高温度控制水平,进而改善温度运行的稳定性,使其更加精确。
本文主要介绍了温度控制的PLC控制系统总体方案设计、设计过程、组成、梯形图,并给出了系统组成框图,分析流量逻辑关系,提出PLC的编程方法。
本系统分析了加热炉温度控制的PID控制原理,设计了系统的数学控制模型以及系统控制框图,用组态王软件组态配置工业控制监控系统,对数据进行实时监控。
通过对单回路控制系统的参数整定以及组态王的PID控制程序,实现了加热炉温度的精确控制。
通过对PLC程序的仿真调试以及对组态的系统仿真,验证了本加热炉温度控制系统的设计合理性,系统动态响应符合了最初的设计要求,也具有一定的实用价值。
关键词:温度控制,可编程控制器,PID,组态王目录第一章前言 01.1恒温控制的现状与意义 01.2系统设计要求 (1)1.3设计主要内容 (2)第二章恒温控制系统硬件设计 (4)2.1总体分析 (4)2.2PLC控制系统设计的基本原则和步骤 (5)2.2.1PLC控制系统设计的基本原则 (5)2.2.2PLC控制系统设计的一般步骤 (6)2.3PLC的选型与硬件配置 (7)2.3.1PLC型号的选择 (7)2.3.2S7-200 CPU的选择 (8)2.3.3EM231模拟量输入模块 (8)2.3.4热电偶温度传感器 (10)2.4I/O地址分配及电气连接图 (11)2.5PLC硬件接线图 (12)第三章PLC控制系统软件设计 (14)3.1PLC程序设计方法 (14)3.2编程软件STEP7--M ICRO/WIN概述 (15)3.2.1STEP7-Micro/WIN简单介绍 (15)3.2.2STEP7-Micro/WIN参数设置(通讯设置) (16)3.3基于S7200的PID控制 (18)3.3.1控制系统数学模型的建立 (18)3.3.2P ID在PLC中的回路指令 (19)3.4内存地址分配与PID指令回路表 (20)3.5程序设计梯形图 (23)3.5.1初次上电 (23)3.5.2启动/停止阶段 (24)3.5.3子程序0 (25)3.5.4中断程序、PID的计算 (26)第四章基于组态软件恒温监控系统设计 (28)4.1组态王软件介绍 (28)4.2组态软件开发过程 (29)4.2.1工程整体规划 (29)4.2.2工程建立 (29)4.2.3构造数据词典 (30)4.2.4组态用户窗口 (32)4.2.5组态王设备连接 (32)4.2.6组态王画面制作与动连接 (33)4.2.7PID控制脚本编写 (34)第五章系统运行结果及分析 (37)5.1PLC控制系统仿真测试 (37)5.2控制系统PID控制性能验证 (40)第六章总结 (43)参考文献 (44)致谢 (45)第一章前言1.1恒温控制的现状与意义温度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
温度控制系统的设计与实现汇报人:2023-12-26•引言•温度控制系统基础知识•温度控制系统设计目录•温度控制系统实现•温度控制系统应用与优化01引言目的和背景研究温度控制系统的设计和实现方法,以满足特定应用场景的需求。
随着工业自动化和智能制造的快速发展,温度控制系统的性能和稳定性对于产品质量、生产效率和能源消耗等方面具有重要影响。
03高效、节能的温度控制系统有助于降低生产成本、减少能源浪费,并提高企业的竞争力。
01温度是工业生产过程中最常见的参数之一,对产品的质量和性能具有关键作用。
02温度控制系统的稳定性、准确性和可靠性直接关系到生产过程的稳定性和产品质量。
温度控制系统的重要性02温度控制系统基础知识温度控制系统的性能指标包括控制精度、响应速度、稳定性和可靠性等,这些指标直接影响着系统的性能和效果。
温度控制原理是利用温度传感器检测当前温度,并将该信号传输到控制器。
控制器根据预设的温度值与实际温度值的差异,通过调节加热元件的功率来控制温度。
温度控制系统通常由温度传感器、控制器和加热元件组成,其中温度传感器负责检测温度,控制器负责控制加热元件的开关和功率,加热元件则是实现温度升高的设备。
温度控制原理温度传感器是温度控制系统中非常重要的组成部分,其工作原理是将温度信号转换为电信号或数字信号,以便控制器能够接收和处理。
常见的温度传感器有热敏电阻、热电偶、集成温度传感器等,它们具有不同的特点和适用范围。
选择合适的温度传感器对于温度控制系统的性能和稳定性至关重要。
温度传感器的工作原理加热元件的工作原理加热元件是温度控制系统中实现温度升高的设备,其工作原理是通过电流或电阻加热产生热量,从而升高环境温度。
常见的加热元件有电热丝、红外线灯等,它们具有不同的特点和适用范围。
选择合适的加热元件对于温度控制系统的性能和安全性至关重要。
控制算法是温度控制系统的核心部分,其作用是根据预设的温度值和实际温度值的差异,计算出加热元件的功率调节量,以实现温度的精确控制。
基于单片机的多点无线温度监控系统1. 引言1.1 研究背景在现代社会,温度监控系统在各个领域中发挥着重要作用,例如工业生产、环境监测、医疗保健等。
随着科技的不断发展,基于单片机的多点无线温度监控系统逐渐成为一种趋势。
研究背景部分将深入探讨这一领域的发展现状,以及存在的问题和挑战。
目前,传统的有线温度监控系统存在布线复杂、安装维护困难等问题,限制了其在一些特定场景下的应用。
而无线温度监控系统以其布线简便、实时监测等优势逐渐被广泛应用。
目前市面上的产品多数存在监测范围有限、数据传输不稳定等问题,迫切需要一种更为稳定、可靠的无线温度监控系统。
本文将基于单片机技术设计一种多点无线温度监控系统,旨在解决现有系统存在的问题,提高监测范围和数据传输稳定性。
通过对单片机、温度传感器、通信模块等关键部件的选择和设计,构建一套高性能的无线温度监控系统,为相关领域的应用提供更好的技术支持和解决方案。
1.2 研究意义无线温度监控系统的研究意义在于提高温度监控的效率和精度,实现对多个点位的远程管理和监控。
通过使用单片机技术,可以实现对多个温度传感器的同时监测和数据传输,使监控过程更加智能化和便捷化。
这对于各种需要严格控制温度的场合如实验室、制造业、医疗行业等具有重要意义。
无线温度监控系统的研究也有助于推动物联网技术的发展,为智能家居、智能城市等领域打下基础。
通过建立稳定、高效的多点无线温度监控系统,不仅可以提高生产效率,降低能耗,提升产品质量,还可以有效预防事故发生,保障人员安全。
研究基于单片机的多点无线温度监控系统具有重要的现实意义和应用前景。
1.3 研究目的本文旨在设计并实现基于单片机的多点无线温度监控系统,通过对温度传感器采集的数据进行处理和传输,实现对多个监测点的实时监控。
具体目的包括:1. 提高温度监控系统的便捷性和灵活性,使监控人员可以随时随地实时获取监测点的温度数据,为及时处理异常情况提供有力支持;2. 降低监控系统的成本,利用单片机和无线通信模块取代传统的有线连接方式,减少线缆布线成本和维护成本;3. 提升监控系统的稳定性和可靠性,通过精心选型与设计,以及合理的系统实现过程,确保系统能够持续稳定地运行,并提供准确可靠的数据;4. 探索未来监控系统的发展方向,从实际应用情况出发,进一步优化系统性能,并为未来无线温度监控系统的研究和应用奠定基础。
基于网络的温度控制系统设计与研究的开题报告一、研究背景目前,温控系统在工业生产、家庭等方面得到了广泛应用,随着互联网技术的不断发展,人们把温控系统与互联网技术结合起来,在远程控制、数据监测等方面取得了重要进展。
本论文旨在基于网络技术,设计一个高效、精确的远程温度控制系统。
二、研究目的本论文的主要目的是研究网络温度控制系统的设计与实现,具体目标包括:1. 设计一种网络温度控制系统,直接通过网络与目标温度控制设备进行通信控制,以实现精准的温度控制。
2. 利用网络技术,建立远程数据监测平台,实时获取温度控制设备发送的数据,并对数据进行处理分析。
3. 实现远程设备控制,用户可以通过网络随时随地对设备进行远程控制,从而达到智能化的温度控制效果。
三、研究内容本文主要研究内容包括:1. 网络温度控制系统的整体设计,包括系统的硬件和软件设计,采用各种传感器和智能控制器实现。
2. 设计网络温度控制设备的驱动程序,实现与传感器和控制器的通讯,并设计合理的控制策略。
3. 建立传感器数据采集平台,通过网络接口实现传感器数据的实时采集和存储,并进行有效的数据处理和分析。
4. 开发远程控制客户端应用程序,用户可以通过网络随时随地对设备进行远程控制,以实现智能化的温度控制。
5. 实验验证和性能评估,通过实验验证设计的网络温度控制系统的正确性和准确性,并评估系统的性能和稳定性。
四、研究方法1. 设计网络温度控制系统的整体架构,包括硬件、软件和网络架构。
2. 设计网络温度控制设备的驱动程序,实现与传感器和控制器的通讯,并设计合理的控制策略。
3. 建立传感器数据采集平台,通过网络接口实现传感器数据的实时采集和存储,并进行有效的数据处理和分析。
4. 开发远程控制客户端应用程序,用户可以通过网络随时随地对设备进行远程控制,以实现智能化的温度控制。
5. 利用实验数据验证和评估所设计的网络温度控制系统的正确性、准确性、稳定性等指标。
五、研究意义本论文的研究内容主要是在互联网技术和温控系统技术基础上进行研究,通过技术的改进和创新,有效地提高了温控系统的稳定性、精准度和远程掌控度,具有一定的实际意义和应用价值。
一个基于BP神经网络的PID温度控制系统的研究与实现的开题报告一、研究背景智能控制技术在工业控制、环境监测及自动化控制等领域得到广泛应用。
PID控制器是最常用的控制算法之一,它能够控制系统达到稳态沿及追踪目标。
然而,PID控制器的参数调整是一个复杂的问题,而且容易受到外部干扰的影响。
BP神经网络具有良好的非线性拟合能力,能够适应不同的控制任务。
因此,将BP神经网络应用于PID控制器中,能够实现自适应控制,提高控制精度和稳定性。
本文旨在研究基于BP神经网络的PID温度控制系统,并探讨其在工业实际应用中的可行性和效果。
二、研究内容和方法本研究的主要内容为基于BP神经网络的PID温度控制系统的研究与实现。
具体研究内容包括:1.总体设计和控制策略的制定;2.BP神经网络模型的建立和优化方法的研究;3.基于MATLAB/Simulink的控制系统仿真;4.控制系统在实际工业环境中的应用验证和效果评估。
本研究将采用如下的方法:1.查阅文献,了解PID控制器和BP神经网络的基本理论和应用;2.设计并实现基于BP神经网络的PID温度控制系统,模拟及实验验证;3.对实验数据进行分析和比较,评估BP神经网络PID控制算法在温度控制中的效果和优越性;4.对控制策略和算法进行优化和改进。
三、研究意义和预期成果本研究旨在将BP神经网络技术应用于PID温度控制器中,提高控制系统的自适应性、精度和稳定性,同时提高控制效率和能耗利用率,减少企业的生产成本。
预期成果包括:1.具有自主知识产权的基于BP神经网络的PID温度控制系统;2.控制系统的稳定性和精度优于传统PID控制系统;3.工业实际应用研究,验证控制系统的可行性和有效性。
四、研究进展目前,已完成了相关文献的调研及阅读,并对基于BP神经网络的PID温度控制系统的总体设计和控制策略进行了初步准备。
接下来,将进行BP神经网络模型的建立和优化方法的研究,以及基于MATLAB/Simulink的控制系统仿真。
本科生毕业论文(设计)目录第一章前言 (1)1。
1项目背景、意义 (1)1.2温控系统的现状 (2)1.3项目研究内容 (3)第二章PLC和HMI基础 (5)2.1可编程控制器基础 (5)2.1.1可编程控制器的产生和应用 (5)2.1。
2可编程控制器的组成和工作原理 (5)2.1.3可编程控制器的分类及特点 (8)2.2人机界面基础 (8)2.2.1人机界面的定义 (8)2.2.2人机界面产品的组成及工作原理 (9)2.2。
3人机界面产品的特点 (9)第三章PLC控制系统硬件设计 (10)3.1PLC控制系统设计的基本原则和步骤 (10)3。
1.1 ...................................................................................... PLC控制系统设计的基本原则103.1.2PLC控制系统设计的一般步骤 (11)3.2PLC的选型与硬件配置 (13)3.2。
1 ............................................................................................................. P LC型号的选择133。
2。
2..................................................................................................... S7—200 CPU的选择143。
2。
3................................................................................................. E M231模拟量输入模块143.2。
4热电式传感器 (16)3。
3I/O点分配及电气连接图 (17)3。
《化工反应釜温度控制系统的研究与设计》篇一一、引言在化工生产过程中,反应釜是关键的设备之一,而其温度控制系统的设计与实施则是确保生产过程顺利进行和产品质量的重要保障。
本文旨在研究并设计一套高效、稳定的化工反应釜温度控制系统,以提高生产效率和产品质量。
二、研究背景与意义随着化工行业的快速发展,对反应釜温度控制系统的要求也越来越高。
传统的温度控制系统往往存在响应速度慢、控制精度低等问题,导致生产效率低下和产品质量不稳定。
因此,研究并设计一套先进的化工反应釜温度控制系统,对于提高生产效率和产品质量具有重要意义。
三、系统设计1. 系统架构设计本系统采用分布式控制系统架构,主要由上位机监控系统和下位机控制系统组成。
上位机监控系统负责实时监测反应釜的温度、压力等参数,并通过人机界面展示给操作人员。
下位机控制系统则负责根据上位机的指令,控制加热、冷却等执行机构,以实现对反应釜温度的精确控制。
2. 温度传感器与执行机构选择温度传感器选用高精度的热电偶或热电阻传感器,具有响应速度快、精度高等特点。
执行机构包括加热器和冷却器,选用具有快速响应、稳定可靠的设备,以确保温度控制的准确性和稳定性。
3. 控制策略设计本系统采用模糊PID控制算法,结合专家系统,实现对反应釜温度的精确控制。
模糊PID控制算法能够根据实际温度与设定温度的偏差,自动调整PID参数,提高系统的响应速度和稳定性。
专家系统则根据历史数据和工艺要求,为控制策略提供参考依据。
四、系统实现1. 硬件实现硬件部分主要包括上位机监控系统和下位机控制系统。
上位机监控系统采用工业控制计算机或PLC(可编程逻辑控制器),具有强大的数据处理能力和友好的人机界面。
下位机控制系统则采用PLC或DCS(分布式控制系统)实现,具有高可靠性和稳定性。
2. 软件实现软件部分主要包括上位机监控软件和下位机控制软件。
上位机监控软件采用组态软件或自主开发的监控软件,具有实时数据采集、处理、存储和展示等功能。
温度控制系统研究背景与现状1 研究背景 (1)2 国内外现状 (1)2.1定值开关温度控制法 (1)2.2 PID线性温度控制法 (2)2.3智能温度控制法 (3)2.4 国内外实例 (4)1 研究背景温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。
自然界中任何物理、化学过程都紧密地与温度相联系。
在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。
自18世纪工业革命以来,工业过程离不开温度控制。
温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。
温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用,温度是锅炉生产质量的重要指标之一,也是保证锅炉设备安全的重要参数。
同时,温度是影响锅炉传热过程和设备效率的主要因素。
基于此,运用反馈控制理论对锅炉进行温度控制,满足了工业生产的需求,提高了生产力。
2 国内外现状温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。
动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。
在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等。
恒值温度控制的目的是使被控对象的温度恒定在某一数值上,且要求其波动幅度(即稳态误差)不能超过某一给定值。
从工业温度控制器的发展过程来看,温度控制技术大致可分以下几种:2.1定值开关温度控制法所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热源(或冷却装置)进行通断控制。
若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。
这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。
目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。
由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通电源,因而无法克服温度变化过程的滞后性,致使系统温度波动较大,控制精度低,完全不适用于高精度的温度控制。
2.2 PID线性温度控制法1922年美国的Minorsky在对船舶自动导航的研究中,提出了基于输出反馈的比例积分微分(PID,Proportional Integral Differential)控制器的设计方法[1],标志了PID控制的诞生。
随后,PID控制器就以其结构简单、对模型误差具有鲁棒性以及易于操作等特点,在大多数控制过程中能够获得满意的控制性能,到了20世纪40年代就已在过程控制中得到了广泛的应用。
20世纪30~40年代,经典的频域设计法得到了很快的发展。
较为重要的是Nyquist和Bode在稳定性理论上所取得的重要成就。
这种经典设计方法是设计一种反馈补偿器,以获得一定量的稳定裕度,重点考虑了模型的不确定性,并利用反馈来减少系统对干扰和模型误差的灵敏度。
补偿器的设计主要是采用由Nyquist稳定准则引申出来的图解法。
进入50年代以后,发展较快的是解析法,并且定义了一些瞬态性能指标。
借助于模拟计算机的帮助,能较为方便的检测时域响应指标。
然而,与此同时对控制系统的鲁棒性和灵敏度的关注有所降低。
20世纪50年代中期,随着数字计算机的出现,用差分方程来描述控制系统模型的方法得到了应用。
对人造地球卫星的控制促进了现代控制理论的发展,最优控制被用于去寻找非线性动态系统的最优轨迹。
20世纪60年代,基于最优化技术的控制器设计方法在解决各种不同设计问题上显示出了其优势。
现代控制理论开始应用于实际的过程控制,但这需要对过程对象建立精确的数学模型,所以实际上往往难以得到精确的数学模型。
因此进入七十年代以后,鲁棒性问题得到了人们更多的关注。
从20世纪80年代开始,在单回路PID控制器中引入了参数整定和自适应控制理论,PID控制理论从此进入了高速发展阶段。
由于PID控制算法简单、可靠性高等特点,在控制技术高速发展的今天,它在工业过程控制中仍然占有主导地位。
由于PID调节器模型中考虑了系统的误差,误差变化及误差积累三个因素,因此,其控制性能大大地优越于定值开关控温法。
其具体电路可以采用模拟电路或计算机软件方法来实现PID调节功能。
前者称为模拟PID调节器,后者称为数字PID调节器。
其中数字PID节器的参数可以在现场实现在线整定,因此具有较大的灵活性,可以得到较好的控制效果。
采用这种方法实现的温度控制器,其控制品质的好坏主要取决于三个PID参数(即比例值、积分值、微分值)。
只要PID参数选取的正确,对于一个确定的受控系统来说,其控制精度是比较令人满意的。
它对大多数工业控制对象都能达到较好的控制效果,但它有明显的缺点,比如依赖于对象模型,对于非线性、大滞后、时变系统控制效果不理想等。
而且随着生产的发展,对控制的实时性与精度要求越来越高,被控对象也越来越复杂,单纯采用常规PID控制器己不能满足系统的要求,因此出现了许多新的控制方法。
比如自适应控制、最优控制、智能控制、鲁棒控制、满意控制等,这些控制策略引入到PID控制系统的设计当中极大地提高了系统的控制性能。
其中,智能PID控制近几年引起了人们极大的研究兴趣。
将智能控制方法和常规PID控制方法融合在一起,形成了许多形式的智能PID控制器。
它吸收了智能控制与常规PID控制两者的优点。
首先,它具备自学习、自适应、自组织的能力,能够自动辨识被控过程参数、自动整定控制参数、能够适应被控过程参数的变化;其次,它又具有常规PID控制器结构简单、鲁棒性强、可靠性高、为现场工程设计人员所熟悉等特点。
2.3智能温度控制法1971年,著名的美籍华裔科学家傅京孙教授最早公开指出了一个崭新的研究领域,并提出了相应的概念,这就是智能控制系统(Intelligent Control Systems)。
1985年8月,IEEE在美国纽约召开了第一界智能控制学术讨论会,智能控制原理和智能控制系统结构这一提法成为这次会议的主要议题。
这次会议决定,在IEEE控制系统学会下设立一个IEEE智能控制专业委员会。
这标志着智能控制这一新兴学科研究领域的正式诞生。
智能控制作为一门独立的学科,已正式在国际上建立起来。
在过去的20多年里,智能控制理论发展迅猛,出现了大量新颖的控制理论。
智能控制系统是某些具有仿人智能的工程控制和信息处理系统,它与人工智能的发展紧密联系。
智能控制是一门新兴的交叉前沿学科,它具有非常广泛的应用领域。
智能可定义为:能有效的获取、传递、处理、再生和利用信息,从而在任意给定的环境下成功的达到目的的能力。
人工智能是应用除了数学式子以外的方法把人们的思维过程模型化,并利用计算机来模仿人的智能的学科。
它的应用范围远比控制理论广泛,如包括判断、理解、推理、预测、识别、规划、决策、学习和问题求解等,是高度脑力行为和体力行为的综合。
智能控制就是应用人工智能的理论与技术和运筹学的优化方法,并将其同控制理论方法与技术相结将智能控制与PID控制相结合,实现温度的智能控制。
智能控温法采用神经元网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。
其中应用较多的有模糊控制、神经网络控制以及专家系统等。
尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。
目前已出现一种高精度模糊控制器,可以更好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。
所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。
目前国内温控仪表的发展,相对国外而言在性能方面还存在一定的差距,它们之间最大的差别.主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度低,自适应性较差。
这种不足的原因是多方面造成的,如针对不同的温控对象,由于控制算法的不足而导致控制精度不稳定等。
2.4 国内外实例甘肃大学的赵紫静研究了一种基于PID温度控制技术的X射线发生器。
这种发生器需要将其精度控制在±0.5℃左右,才能保证器件输出的X射线波长不发生超出要求的飘移,否则,X射线波长的超范围飘移将使整个设备难以正常使用[7]。
在温控过程中,由于难以建立控制对象的精确数学模型,所以可以用PID技术根据预先设定好的控制规律不停地自动调节控制量以使被控系统朝着设定的平衡状态过渡,最后达到控制范围精度内的稳定动态平衡。
模糊温度控制是基于模糊逻辑描述的控制算法,主要嵌入操作人员的经验和直觉知识。
它适用于控制不易取得精确数学模型和数学模型不确定或经常变化的对象。
武汉科技大学信息科学与工程学院的贾静云等将模糊PID温度控制技术运用在烟气加热炉炉温控制系统中,使得烟气加热炉的运行状况和维护条件得到了明显的改善,提高了喷煤比和设备开机率,降低了能耗和设备故障次数,很大程度地提高了生产效率[8]。
中国内蒙古科技大学信息工程学院的董志学等研究了一种基于模糊PID温度控制系统的热分析仪控制策略,结合了模糊控制技术和PID控制技术,提高了对控制对象的适应能力,进而提高了温度控制的精度。
数字PID控制则是一种是以微处理器为基础,综合了计算机技术、控制技术、通讯技术等高新技术的智能控制。
海军航空工程学院基础实验部的李建海等设计了一种上位机监控采用组态软件,下位机采用西门子PLC的电路智能温度控制系统,实现了智能控制、闭环控制、多控制功能为一体的综合控制系统。
昆明理工大学信息工程与自动化学院的王清海等在锅炉温度控制研究中将神经网络PID与LabVIEW人及交互结合,实现对锅炉温度的数据采集、控制和现实,提高了锅炉温控系统的效率。
英国的Hamid等将PID控制器应用到冰箱的温度控制中,通过使用MATLAB/Simulink软件仿真和误差分析图的方式与传统的ON-OFF控制做了细致的比较。
结果表明,PID控制无论是在精度和控制性能方面都优于ON-OFF控制。
日本Komatsu Electronics公司的Kazuhiro Mimura对基于PID控制与现代控制理论相结合的离子化热水器温度控制开展了研究,结果证明这样的温度控制方法能够使用比传统控制系统更少的温度传感器,进而降低成本,提高了公司效益。