最新高电压技术基础知识
- 格式:doc
- 大小:23.50 KB
- 文档页数:6
高电压工程基础概念总结(5篇模版)第一篇:高电压工程基础概念总结第一章电介质的基本电气特性1、绝缘材料:即在高电压工程中所用的各种电介质,又称绝缘介质。
绝缘的作用:是将不同电位的导体以及导体与地之间分隔开来,从而保持各自的电位。
2、电介质的基本电气特性:极化特性,电导特性,损耗特性,击穿特性。
它们的基本参数分别是相对介电常数ε,电导率γ,介质损耗因数tgδ,击穿电场强度Eb。
3、电介质的极化:在外电场的作用下,电介质中的正、负电荷将沿着电场方向作有限的位移或者转向,从而形成电矩的现象。
4、极化的基本形式:电子式极化,离子式极化,偶极子式极化,空间电荷极化,夹层极化。
5、吸收现象:直流电压U加在固体电介质时,通过电介质中的电流将随着时间而衰减,最终达到某一稳定值的现象。
6、电介质的电导是离子式电导,其电导随着温度的上升而上升;金属的电导是电子式电导,其电导随着温度的上升而下降。
7、电介质的电导在工程实际中的意义:(1)在绝缘预防性试验中,通过测量绝缘电阻和泄露电流来反映绝缘的电导特性,以判断绝缘是否受潮或存在其他劣化现象。
(2)对于串联的多层电介质的绝缘结构,在直流电压下的稳态电压分布与各层介质的电导成反比。
(3)表面电阻对绝缘电阻的影响使人们注意到如何合理地利用表面电阻。
8、电介质的损耗:分电导损耗和极化损耗。
极性液体介质tgδ随温度和频率变化的曲线就从这两个损耗上说。
总趋势:先增大,后减小,最后再增大。
其中电导损耗一直增大,极化损耗先增大,最后一直减小。
第二章气体放电的基本理论1、气体中带电粒子产生和消失的形式:碰撞电离,光电离,热电离,表面电离。
2、气体去电离的基本形式:(1)带电粒子向电极定向运动并进入电极形成回路电流,从而减少了气体中的带电离子。
(2)带电粒子的扩散。
(3)带电粒子的复合。
(4)吸附效应。
将吸附效应也看做是一种去电离的因素是因为:吸附效应能有效地减少气体中的自由电子数目,从而对碰撞电离中最活跃的电子起到强烈的束缚作用,大大抑制了电离因素的发展。
高电压技术重点复习大纲一、引言高电压技术作为电气工程中的重要分支,涉及电力系统、电气设备以及电力传输等方面。
本文将针对高电压技术的重点知识进行复习梳理,帮助读者系统化地理解和掌握该领域的核心概念和理论。
二、高电压技术概述1. 高电压技术的定义和应用范围2. 高电压的基本概念和表示方法3. 高电压技术的主要问题和挑战三、高电压绝缘技术1. 绝缘材料的种类和特性2. 绝缘材料的选用和制备3. 绝缘破坏与击穿机理4. 绝缘水平的评定和试验方法四、高电压设备与技术1. 高电压断路器的结构和工作原理2. 高电压变压器的类型和特点3. 高电压绝缘子的种类和应用4. 高电压电缆的敷设和维护五、高电压输电与配电技术1. 高电压输电线路的设计和选型2. 高电压变电站的布置和运行方式3. 高电压配电系统的组成和保护措施4. 高电压输配电中的功率损耗和电压稳定性问题六、高电压安全与环境保护1. 高电压安全工作的重要性和基本原则2. 高电压事故的预防和应急处理3. 高电压对环境的影响及其治理方法七、高电压技术的新发展1. 高电压技术的新理论和方法2. 高电压技术在可再生能源中的应用3. 高电压技术与智能电网的融合八、总结与展望通过对高电压技术的重点知识的复习,我们可以对该领域的核心概念和理论有较为深入的理解。
面对未来高电压技术的发展,我们应不断学习创新,以推动电气工程的进步和发展。
以上为高电压技术重点复习大纲,通过对各个知识点的梳理和总结,旨在帮助读者更好地掌握和理解高电压技术的核心内容。
有关详细内容和具体的公式推导等细节,建议读者参考相关教材和资料进行进一步学习。
祝愿读者在高电压技术的学习中取得优异的成绩!。
高电压技术速记版专题1-6专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。
具有绝缘作用的材料称为电介质或绝缘材料。
2、电介质的分类:按状态分为气体、液体和固体三类。
3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。
4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。
(前三种极化均是在单一电介质中发生的。
但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于一切材料中。
6、离子式极化:离子式极化发生于离子结构的电介质中。
固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于离子结构物质中。
7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。
特点:时间较长,非弹性极化,有能量损耗。
[注]:存在于极性材料中。
8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。
[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。
9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望些好。
大些好。
用作其它设备的绝缘介质时,希望小11、电介质电导:电介质内部带点质点在电场作用下形成电流。
金属导体:温度升高,电阻增大,电导减小。
绝缘介质:温度升高,电阻减小,电导增大。
12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。
(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。
高电压技术复习资料
高电压技术是电力工程中的一个重要组成部分,具有广泛应用领域。
因此,对于高电压技术的学习和掌握是非常重要的。
本文将从几个方面对高电压技术的相关知识进行复习。
一、高电压的定义
高电压是指大于常见电压的电压等级,一般情况下指高于1000伏的电压。
高电压技术是指针对高电压的控制和运用所采用的一系列技术和方法。
二、高电压的产生和测量
高电压的产生可以采用变压器和电容器等方式,其中变压器的应用最为广泛。
在高电压测量中,主要采用的是电压表、电位差计和介质损耗测试仪等设备。
三、高电压的应用
高电压技术在电力工程中有许多应用,例如高压输电、变电站的建设以及工业生产中的电源、除尘器等方面。
此外,高电压在科学研究中也有很多用途,如核聚变实验、高温等离子体研究等领域。
四、高电压的危害和防护
高电压如不加控制和保护,可能会带来很大的危害。
高电压会导致电击和火灾等危险,需要采取相应的防护措施。
防护方法包括使用绝缘材料和可靠的接地装置等。
五、高电压技术的发展趋势
随着科技的不断发展和电力工程的不断改进,高电压技术也在不断发展。
未来,高电压技术将更加注重环保和节能,同时也会注重智能化和自动化的应用。
综上所述,高电压技术是电力工程中不可或缺的一部分,具有广泛的应用前景。
通过对高电压技术的复习,可以更好地理解和掌握该项技术,并在实际应用中起到更好的作用。
高电压技术基本原理高电压技术是一门研究如何产生、传输和应用高电压的学科,广泛应用于电力系统、电子设备、医学、科学研究等领域。
本文将介绍高电压技术的基本原理,包括高电压的定义、产生方式、传输和应用。
一、高电压的定义高电压是指电压高于常规电力系统工作电压的电压。
常见的低压、中压和高压分别指电压在1000伏以下、1000伏至35千伏和35千伏以上的范围。
超过1MV的电压称为超高压。
在高电压条件下,电场强度较大,电荷运动速度快,因此需要特殊的设备来处理和利用高电压。
二、高电压的产生方式高电压可以通过以下几种方式产生:1. 直流高电压发生器:直流高电压发生器可以产生稳定的直流高压。
常用的直流高电压发生器包括独立电源、充电式电源和瞬态电源等。
2. 交流高电压发生器:交流高电压发生器可以产生稳定的交流高压。
常用的交流高电压发生器包括变压器、谐振变压器和驱动发生器等。
3. 瞬态高电压发生器:瞬态高电压发生器可以产生短暂但较高幅值的高压脉冲。
常用的瞬态高电压发生器包括电容器放电系统、脉冲发生器和雷电仿真系统等。
三、高电压的传输高电压的传输需要采取一系列的防护和绝缘措施来保证安全和可靠性。
常见的高电压传输方式包括:1. 电线传输:使用绝缘电线或电缆进行高电压的传输。
绝缘材料能够有效地隔离电荷之间的电势差,避免电击和设备损坏。
2. 输电线路:输电线路采用特殊的绝缘塔、隔离子、绝缘子和绝缘线路来传输高电压。
这些设备能够有效地隔离电力系统和周围环境,保证电力系统的安全运行。
3. 隔离器件:隔离器件用于将高电压电路与低电压电路之间进行电气隔离。
常用的隔离器件包括变压器、继电器和隔离放大器等。
四、高电压的应用高电压技术在多个领域都有广泛的应用,包括:1. 电力系统:高电压技术被广泛应用于电力输配电、电力转换和电力传输等方面。
它能够提高输电效率、减少能量损耗,保证电力系统的稳定和安全运行。
2. 电子设备:高电压被用于电子设备的激发、测量和测试等方面。
《高电压与绝缘技术基础知识概述》一、引言高电压与绝缘技术是电气工程领域中的一个重要分支,它主要研究高电压下的电气绝缘和放电现象,以及如何设计、制造和维护高电压设备,以确保电力系统的安全可靠运行。
随着电力工业的不断发展和对电能质量要求的提高,高电压与绝缘技术的重要性日益凸显。
本文将对高电压与绝缘技术的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践和未来趋势。
二、基本概念1. 高电压高电压是指电压等级较高的电气量,通常在数千伏以上。
高电压的产生主要有以下几种方式:- 电力变压器升压:通过变压器将低电压升高到高电压,以满足远距离输电的需要。
- 静电感应:利用静电感应原理产生高电压,如静电起电机。
- 电磁感应:通过电磁感应原理产生高电压,如高压互感器。
2. 绝缘绝缘是指阻止电流通过的材料或结构。
在高电压环境下,绝缘材料的性能至关重要,它必须能够承受高电压的作用而不发生击穿或漏电现象。
绝缘材料主要分为以下几类:- 气体绝缘:如空气、六氟化硫等。
气体绝缘具有良好的绝缘性能和散热性能,但需要密封容器来保持其绝缘性能。
- 液体绝缘:如变压器油、电容器油等。
液体绝缘具有较好的绝缘性能和散热性能,但需要注意防火和防爆。
- 固体绝缘:如绝缘纸、绝缘橡胶、绝缘塑料等。
固体绝缘具有较高的机械强度和耐热性能,但绝缘性能相对较差。
3. 击穿击穿是指绝缘材料在高电压作用下失去绝缘性能,电流通过绝缘材料的现象。
击穿分为以下几种类型:- 电击穿:在强电场作用下,绝缘材料中的自由电子被加速,与分子发生碰撞,产生电离,导致绝缘材料失去绝缘性能。
- 热击穿:在高电压作用下,绝缘材料中的电流会产生热量,使绝缘材料温度升高。
如果热量不能及时散发,绝缘材料的温度会不断升高,最终导致绝缘材料失去绝缘性能。
- 电化学击穿:在高电压作用下,绝缘材料中的杂质会发生电离,产生电化学腐蚀,导致绝缘材料失去绝缘性能。
三、核心理论1. 电场理论电场理论是高电压与绝缘技术的基础理论之一。
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
1.电介质的极化:1.)电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化 有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体D=1 水D=81 蓖麻油 D=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。
5.电介质中的能量损耗:δωδωεCtg U V tg E pV P 22=== 6.tg δ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数 7.四种形式电离的产生:撞击电离 光电离 热电离 表面电离 8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强cr E 值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。
10.汤森德理论只是对较均匀电场和S •δ较小的情况下适用。
11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为1-de α这批正离子在阴极上造成的二次自由电子数(r 过程)应为:)1(-de r α如果它等于1就意味着那个初始电子有了一个后继电子从而使放电得以自持。
12.帕邢定律:在均匀电场中,击穿电压b U 与气体相对密度δ,极间距离S 并不具有单独的函数关系,而是仅与他们的积有函数关系,只要S ⋅δ的乘积不变,b U 也就不变。
13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。
高电压技术知识点总结升级版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高电压技术知识点总结(升级版)【补充】绪论《高电压技术》主要研究高电压(强电场)下的各种电器设备的物理问题。
高压(HV)High Voltage(10Kv、35kV、110kV、220kV)超高压(EHV)Extra high voltage(330kV、500kV、750kV)(直流超高压:±500kV)特高压(UHV)Ultra high voltage(1000kV及以上)(直流特高压:±800kV)高电压在其他领域中的应用举例:高压静电除尘、电火花加工、体外碎石技术、除菌及清鲜空气、污水处理、烟气处理、等离子体隐身、电磁炮和微波弹等。
一、名词解释1、极性效应:在不均匀电场中,气隙的击穿电压和气隙击穿的发展过程都随电压极性的不同而有所不同的现象。
2、耐雷水平:雷击线路时绝缘不发生闪络的最大雷电流的幅值,以kA为单位。
3.雷击跳闸率:每10km线路每年由雷击引起的跳闸次数称为“雷击跳闸率”,这是衡量线路防雷性能的综合指标。
4、爬电比距:外绝缘“相-地”之间的爬电距离(cm)与系统最高工作(线)电压(kV,有效值)之比5、等值盐密:表征绝缘子表面的污秽度,它指的是每平方匣米表面所沉积的等效NaCl毫克数。
6、直击雷过电压、感应雷过电压:输电线路上出现的大气过电压有两种:一种是雷直击于线路引起的,称为直击雷过电压:另一种是雷击线路附近地面,由于电磁感应引起的,称为感应雷过电压。
7、沿面放电:沿着气体与固体(或液体)介质的分界面上发展的放电现象。
8、闪络:沿面放电发展到贯穿两极,使整个气隙沿面击穿。
9、①自持放电: 当场强大于某一临界值时,电子崩可以仅由电场的作用而自行维持和发展不再依赖外界电离因素,这种放电称为自持放电②非自持放电:当场强小于某一临界值时,电子崩有赖于外界电离因素的原始电离才能持续和发展,如果外界电离因素消失,则这种电子崩也随之逐渐衰减以至消失,这种放电为非自持放电10、平均自由行程:单位行程中的碰撞次数Z的倒数λ.【补充】平均自由行程正比于温度,反比于气压。
高电压知识点汇总一、气体放电的基本概念。
1. 气体放电。
- 气体中流通电流的各种形式统称为气体放电。
在正常状态下,气体是良好的绝缘体,但在一定条件下(如高电压、强电场等),气体中会出现导电现象。
- 气体放电可分为自持放电和非自持放电。
非自持放电需要依靠外界电离因素(如紫外线、宇宙射线等)才能维持导电;自持放电一旦形成,即使外界电离因素消失,放电仍能持续。
2. 汤逊理论。
- 适用于低气压、短间隙均匀电场中的气体放电。
- 主要观点:电子崩和正离子撞击阴极产生二次电子发射是气体自持放电的主要机制。
- 汤逊第一电离系数α:表示一个电子在沿电场方向运动1cm的过程中与气体分子发生碰撞电离的次数。
- 汤逊第二电离系数β:表示一个正离子撞击阴极表面时产生的二次电子数。
- 根据汤逊理论,自持放电的条件为:e^α d=1+(α)/(β)(d为电极间距)。
3. 流注理论。
- 适用于高气压、长间隙、不均匀电场中的气体放电。
- 主要观点:电子崩发展到足够强时,电子崩中的空间电荷会使电场发生畸变,产生局部强电场,从而引发光电离,形成流注。
流注不断发展贯穿两极间的间隙,导致气体击穿。
- 与汤逊理论的区别:汤逊理论没有考虑空间电荷对电场的畸变作用,而流注理论强调了空间电荷和光电离在放电过程中的重要性。
二、液体和固体介质的电气特性。
1. 液体介质的电气特性。
- 极化。
- 液体介质在电场作用下会发生极化现象。
极化类型主要有电子式极化、离子式极化和偶极子极化。
- 电子式极化:电子云相对于原子核的位移产生的极化,其特点是极化建立时间极短(10^-15sim10^-16s),极化过程中不消耗能量。
- 离子式极化:离子晶体中正负离子在电场作用下的相对位移产生的极化,建立时间约为10^-13s,极化过程中也基本不消耗能量。
- 偶极子极化:极性分子在电场作用下沿电场方向取向产生的极化,建立时间较长(10^-10sim10^-2s),极化过程中消耗能量。
高电压技术知识第一篇电介质的电气强度第1章气体的绝缘特性与介质的电气强度1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围击穿电压与气体相对密度和极间距离乘积之间的关系。
两者乘积大于0.26cm 时,不再适用5、流注理论考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。
7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。
10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用第2章液体和固体介质的绝缘的电气强度1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。
介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。
极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。
由中性分子构成的电介质。
极化的基本形式电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导:离子电导和电泳电导固体的电导:离子电导和电子电导3、电介质的损耗介质损耗针对的是交流电压作用下介质的有功功率损耗电介质的并联与串联等效回路介质损耗一般用介损角的正切值来表示气体、液体和固体电介质的损耗液体电介质损耗和温度、频率之间的关系4、液体电介质的击穿纯净液体介质的电击穿理论纯净液体介质的气泡击穿理论工程用变压器油的击穿理论5、影响液体电介质击穿的因素油品质、温度、电压作用时间、电场均匀程度、压力6、提高液体电介质击穿电压的措施提高油品质,采用覆盖、绝缘层、极屏障等措施7、固体电介质的击穿电击穿、热击穿、电化学击穿的击穿机理及特点8、影响固体电介质击穿电压的主要因素电压作用时间温度电场均匀程度受潮累积效应机械负荷9、组合绝缘的电气强度“油-屏障”式绝缘油纸绝缘第二篇电气设备绝缘试验第3章绝缘的预防性试验1、绝缘电阻与吸收比的测量用兆欧表来测量电气设备的绝缘电阻吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。
高电压技术知识点总结
高电压技术概述
高电压技术是研究电压等级在数千伏以上电力系统及其设备的技术科学。
它涉及电力的产生、传输、分配与使用,以及与此相关的设备和安全措施。
基本概念
- 电压等级:表示电气系统中使用的电压范围。
常见的高电压等级包括10kV、35kV、110kV等。
- 绝缘:指用于隔离导电部分,防止电流泄漏的材料或结构。
- 接地:将电气设备的非载流金属部分与大地相连,以确保人员安全和设备保护。
高压设备
- 变压器:用于升高或降低交流电压的设备,核心部件为铁心和线圈。
- 断路器:能在正常或故障条件下断开电路的开关设备。
- 绝缘子:支撑导体并实现其对地绝缘的器件,有悬垂式和支柱式两种。
高电压测试
- 介电强度测试:检查材料或设备在高电压作用下的绝缘性能。
- 局部放电测试:检测和评估设备在高电压下局部放电活动,以预防潜在故障。
安全措施
- 防护距离:根据电压等级设定的安全距离,以防电击事故。
- 个人防护装备:包括绝缘手套、绝缘鞋、护目镜等,用于保护操作人员。
- 警示标识:明确标示高压危险区域,提醒人员注意安全。
高电压应用
- 输电线路:远距离高效传输电能的重要途径。
- 电力变压器:连接不同电压级别网络的关键设备。
- 电力系统保护:确保电网稳定运行和设备安全的技术和装置。
通过上述内容的学习和理解,可以对高电压技术有一个基础而全面的认识。
务必牢记安全第一,正确使用和维护高电压设备,确保电力系统的稳定和可靠运行。
高电压技术知识点总结一、填空和概念解释1、电介质:电气设备中作为绝缘使用的绝缘材料。
2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。
3、击穿电压:击穿时对应的电压。
4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压。
5、耐电强度:电介质在单位长度上或厚度所承受的最大安全电压。
6、游离:电介质中带电质点增加的过程。
7、去游离:电介质中带电质点减少的过程。
8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。
9、光游离:中性分子接收光能产生的游离。
10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。
11、强场发射:电场力直接把电极中的电荷加入电介质产生的游离。
12、二次电子发射:具有足够能量的质点撞击阴极放出电子。
13、电晕放电:气体中稳定的局部放电。
14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻。
16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最后产生主放电的过程时间。
17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。
18、沿面放电:沿着固体表面的气体放电。
19、湿闪电压:绝缘介质在淋湿时的闪络电压。
20、污闪电压:绝缘介质由污秽引起的闪络电压。
21、爬距:绝缘子表面闪络的距离。
22、极化:电介质在电场的作用下对外呈现电极性的过程。
23、电导:电介质在电场作用下导电的过程。
24、损耗:由电导和有损极化引起的功率损耗。
25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。
26、吸收比:t=60s和t=15s时的绝缘电阻的比值。
27、过电压:电力系统承受的超过正常电压的。
28、冲击电晕:输电线路中由冲击电流产生的电晕。
29、雷暴日:一年中听见雷声或者看见闪电的天数。
30、雷暴小时:一年中能听到雷声的小时数。
高电压技术基础知识1高电压技术与绝缘绝缘配合:综合考虑电气设备在电力系统中可能承受的各种电压、保护装置的特性和设备绝缘对各种作用电压的耐受特性,合理地确定设备必要的绝缘水平,以使设备的造价、维修费用和设备绝缘故障引起的事故损失,达到在经济上和安全运行上效益最高的目的。
220kV 以下的电网,电气设备的绝缘水平主要由大气过电压决定。
330kV 及以上的超高压绝缘配合中,操作过电压将起主导作用。
特高压电网的绝缘水平可能由工频过电压及长时间工作电压决定。
除型式试验外,一般电气设备出厂试验只做lmin工频耐压试验。
这不仅是为了试验的方便,也是考虑到在某种程度上雷电冲击对绝缘的作用可用工频电压来等价的缘故。
绝缘配合的方法首先确定设备上可能出现的最危险的过电压,然后根据运行经验乘上一个考虑各种因素的影响和一定裕度的系数,从而决定绝缘应耐受的电压水平。
统计法是根据过电压幅值和绝缘的耐受强度的概率分布,用计算的方法求出绝缘放电的概率和线路故障率,在技术经济比较的基础上,正确地确定绝缘水平在简化统计法中,对过电压和绝缘特性两条概率曲线的形状,作出一些通常认为合理的假定,并已知其标准偏差。
在此基础上可以计算绝缘的故障率。
绝缘材料的研制和开发的水平是影响制约电工技术发展的关键之一。
从今后趋势来看,要求发展耐高压、耐热绝缘,耐冲击,环保绝缘,复合绝缘,耐腐蚀、耐水、耐油、耐深冷、耐辐照及阻燃材料,研发环保节能材料。
重点是发展用于高压大容量发电机的环氧云母绝缘体系,如FR5,金云母等;中小型电机用的F、H级绝缘系列,如不饱和聚酯树脂玻璃毡板等;高压输变电设备用的六氟化硫气态介质;取代氯化联苯的新型无毒合成介质;高性能绝缘油;合成纸复合绝缘;阻燃性橡塑材料和表面防护材料等,同时要积极推动传统电工设备绝缘材料的更新换代。
不同污秽地区最小泄漏比距2电介质电工中一般认为电阻率超过10欧/厘米的物质便归于电介质。
电介质的带电粒子是被原子、分子的内力或分子间的力紧密束缚着,因此这些粒子的电荷为束缚电荷。
1、35KV及以下的输电线路为什么一般不采用全线架设避雷线的措施?
答:35kv及以下电压等级的输电系统一般都为中性点不接地系统,当发生由雷电引起的冲击闪络后,随后出现的工频闪络电流很小,不能形成稳定的工频电弧,因此,不会引起线路跳闸,所以,当一相由于雷击而引起闪络后,仍能正常工作,这样虽不装设避雷线,雷击引起的闪络概率增大,但这种闪络不会导致线路跳闸而影响正常供电。
故35kv及以下输电线路一般不架设避雷线,一相闪络后,再出现第二相闪络,形成相间短路,出现打的短路电流,才能引起线路跳闸,只有雷电流很大时才会出现这种情况。
2、说明变电所进线保护段的作用及对它的要求?
答:变电所进线保护段的作用有两个:其一是限制雷电侵入波电压作用下流过避雷器的电流;其二是降低最终进入变电所雷电侵入波的波头陡度。
对进线保护段的要求:其应具有比线路更高的耐雷水平,这段线路的避雷线应具有更小的对导线的保护角,而全线无避雷线线路则当然在这段线路上架设避雷线。
3、避雷针的保护原理:当雷云放电时,使地面电场畸变,在避雷针的顶端形成局部场强集中的空间以影响雷云闪光先导放电的发展方向,使雷闪对避雷针的放电,再经过接地装置将雷电引入大地,从而使被保护物体免遭雷击。
4、输电线路的防雷措施:架设避雷线、降低塔杆接地电阻、架设耦合地线、采用不平衡绝缘方式、装设自动重合闸、采用消弧线圈接地方式、装设避雷器、加大绝缘。
5、为什么在低压侧装设避雷器?
答:为了防止正、反变换过程出现的过电压,应在变压器的低压侧加装一组避雷器,完善变压器的防雷保护。
如果只在高压侧装设避雷器,当雷击高压侧线路时,避雷器动作,雷击电流流过接地电阻,并在接地电阻上产生电压降,低压侧此时没有避雷器,这一电压值低于低压侧中性点,而低压侧出现相当于经线路波阻抗接地,这一电压降绝大部分降作用于变压器低压绕组产生电流,通过电磁耦合作用,在高压侧感应出电动势的过程叫做反变换;
如果变压器低压侧落雷,作用于低压侧的冲击电压按照变比关系感应到高压侧,使高压绕组上出现过电压,而高压侧的绝缘裕度较低压侧小,可能引起高压侧首先击穿,这个过程叫正变换;
6、简述绝缘污闪:户外绝缘子在污秽状态下发射管的沿面放电闪络成为绝缘子的污闪。
误会绝缘子的闪络往往发生在大气湿度很高等不利的气候条件下,此时闪络电压大大降低,可能在工作电压下发生闪络,从而加剧了事故的严重性。
措施:清除污秽层、提高绝缘子的表面耐潮性和憎水性、采用半导体釉绝缘子。
7、什么是介质损耗?为什么能用tanδ代替介质损耗?
答:在交流电压下,介质的有功功率损耗为介质损耗。
当外加电压和频率一定时,P与戒指的物理电容C 成正比,对一定结构的试品而言,电容C 是定值,P与tanδ成正比,故对同类试品绝缘的优劣,可直接用tanδ代替介质损耗。
8、累积效应:随着施加冲击或工频试验电压次数增多,固体介质的击穿电压降下降的现象,称为累积效应。
9、非破坏性试验:是指在较低电压下,用不损伤设备绝缘的办法来判断绝缘缺陷的试验;(这类试验对发现缺陷有一定的作用和有效性,但是由于试验电压较低,发现缺陷的灵敏性不高)
破坏性试验:是用较高的电压来考验设备的绝缘水平。
易于发现设备的集中性缺陷,考验设备绝缘水平,但由于电压较高,可能给被试品造成损伤。
10、接地装置:是包括引线在内的埋设在地中的一个或一组金属体,或由金属导体组成的金属网,其功能是用来泄放故障电流。
雷电或其它冲击电流,稳定电位。
10.气体放电形式:辉光放电、电晕放电、火花放电、刷状放电和电弧放电。
11、电介质的极化形势:电子式位移极化、离子式位移极化、偶极子极化、空间电荷极化。
12气体的放电现象包括:击穿和闪络
13绝缘油的气相色谱分析方法:特征气体法、依据气体含量的注意值和产气率、三比值法。
14、输电线路感应过电压的形式分为:放电起始阶段和主放电。
15.建弧率:将冲击闪络转化为稳定的工频电弧的概率。
1、35KV及以下的输电线路为什么一般不采用全线架设避雷线的措施?
答:35kv及以下电压等级的输电系统一般都为中性点不接地系统,当发生由雷电引起的冲击闪络后,随后出现的工频闪络电流很小,不能形成稳定的工频电弧,因此,不会引起线路跳闸,所以,当一相由于雷击而引起闪络后,仍能正常工作,这样虽不装设避雷线,雷击引起的闪络概率增大,但这种闪络不会导致线路跳闸而影响正常供电。
故35kv及以下输电线路一般不架设避雷线,一相闪络后,再出现第二相闪络,形成相间短路,出现打的短路电流,才能引起线路跳闸,只有雷电流很大时才会出现这种情况。
10、说明变电所进线保护段的作用及对它的要求?
答:变电所进线保护段的作用有两个:其一是限制雷电侵入波电压作用下流过避雷器的电流;其二是降低最终进入变电所雷电侵入波的波头陡度。
对进线保护段的要求:其应具有比线路更高的耐雷水平,这段线路的避雷线应具有更小的对导线的保护角,而全线无避雷线线路则当然
在这段线路上架设避雷线。
11、避雷针的保护原理:当雷云放电时,使地面电场畸变,在避雷针的顶端形成局部场强集中的空间以影响雷云闪光先导放电的发展方向,使雷闪对避雷针的放电,再经过接地装置将雷电引入大地,从而使被保护物体免遭雷击。
12、输电线路的防雷措施:架设避雷线、降低塔杆接地电阻、架设耦合地线、采用不平衡绝缘方式、装设自动重合闸、采用消弧线圈接地方式、装设避雷器、加大绝缘。
13、为什么在低压侧装设避雷器?
答:为了防止正、反变换过程出现的过电压,应在变压器的低压侧加装一组避雷器,完善变压器的防雷保护。
如果只在高压侧装设避雷器,当雷击高压侧线路时,避雷器动作,雷击电流流过接地电阻,并在接地电阻上产生电压降,低压侧此时没有避雷器,这一电压值低于低压侧中性点,而低压侧出现相当于经线路波阻抗接地,这一电压降绝大部分降作用于变压器低压绕组产生电流,通过电磁耦合作用,在高压侧感应出电动势的过程叫做反变换;
如果变压器低压侧落雷,作用于低压侧的冲击电压按照变比关系感应到高压侧,使高压绕组上出现过电压,而高压侧的绝缘裕度较低压侧小,可能引起高压侧首先击穿,这个过程叫正变换;
14、简述绝缘污闪:户外绝缘子在污秽状态下发射管的沿面放电闪络成为绝缘子的污闪。
误会绝缘子的闪络往往发生在大气湿度很高等不利的气候条件下,此时闪络电压大大降低,可能在工作电压下发生闪络,从而加剧了事故的严重性。
措施:清除污秽层、提高绝缘子的表面耐潮性和憎水性、采用半导体釉绝缘子。
15、
16、什么是介质损耗?为什么能用tanδ代替介质损耗?
答:在交流电压下,介质的有功功率损耗为介质损耗。
当外加电压和频率一定时,P与戒指的物理电容C 成正比,对一定结构的试品而言,电容C 是定值,P与tanδ成正比,故对同类试品绝缘的优劣,可直接用tanδ代替介质损耗。
17、累积效应:随着施加冲击或工频试验电压次数增多,固体介质的击穿电压降下降的现象,称为累积效应。
18、非破坏性试验:是指在较低电压下,用不损伤设备绝缘的办法来判断绝缘缺陷的试验;(这类试验对发现缺陷有一定的作用和有效性,但是由于试验电压较低,发现缺陷的灵敏性不高)
破坏性试验:是用较高的电压来考验设备的绝缘水平。
易于发现设备的集中性缺陷,考验设备绝缘水平,但由于电压较高,可能给被试品造成损伤。
10、接地装置:是包括引线在内的埋设在地中的一个或一组金属体,或由金属导体组成的金属网,其功能是用来泄放故障电流。
雷电或其它冲击电流,稳定电位。
11.气体放电形式:辉光放电、电晕放电、火花放电、刷状放电和电弧放电。
电介质的极化形势:电子式位移极化、离子式位移极化、偶极子极化、空间电荷极化。
12气体的放电现象包括:击穿和闪络
13绝缘油的气相色谱分析方法:特征气体法、依据气体含量的注意值和产气率、三比值法。
14、输电线路感应过电压的形式分为:放电起始阶段和主放电。
15.建弧率:将冲击闪络转化为稳定的工频电弧的概率。