MATLAB神经网络工具箱中的函数属性及其参数定义
- 格式:ppt
- 大小:13.07 MB
- 文档页数:9
Matlab工具箱中的BP与RBF函数Matlab神经网络工具箱中的函数非常丰富,给网络设置适宜的属性,可以加快网络的学习速度,缩短网络的学习进程。
限于篇幅,仅对本章所用到的函数进展介绍,其它的函数与其用法请读者参考联机文档和帮助。
1 BP与RBF网络创建函数在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。
表 1 神经网络创建函数(1) newff函数功能:创建一个前馈BP神经网络。
调用格式:net = newff(PR,[S1S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF)参数说明:•PR - R个输入的最小、最大值构成的R×2矩阵;•S i–S NI层网络第i层的神经元个数;•TF i - 第i层的传递函数,可以是任意可导函数,默认为 'tansig',可设置为logsig,purelin等;•BTF -反向传播网络训练函数,默认为 'trainlm',可设置为trainbfg,trainrp,traingd等;•BLF -反向传播权值、阈值学习函数,默认为 'learngdm';•PF -功能函数,默认为'mse';(2) newcf函数功能:创建一个N层的层叠(cascade)BP网络调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)参数同函数newff。
(3) newrb函数功能:创建一个径向基神经网络。
径向基网络可以用来对一个函数进展逼近。
newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。
在网络的隐层添加神经元,直到网络满足指定的均方误差要求。
调用格式:net = newrb(P,T,GOAL,SPREAD)参数说明:•P:Q个输入向量构成的R×Q矩阵;•T:Q个期望输出向量构成的S×Q矩阵;•GOAL:均方误差要求,默认为0。
matlab myneuralnetworkfunction整理成公式【原创实用版】目录1.MATLAB 与神经网络简介2.MATLAB 中的神经网络函数3.将 MATLAB 神经网络函数整理成公式正文1.MATLAB 与神经网络简介MATLAB 是一款广泛应用于科学计算、数据分析和可视化的编程语言。
在机器学习和深度学习领域,神经网络是一种重要的算法。
MATLAB 为神经网络的构建、训练和模拟提供了丰富的函数和工具箱。
2.MATLAB 中的神经网络函数在 MATLAB 中,我们可以使用神经网络工具箱(Neural Network Toolbox)中的函数来构建、训练和模拟神经网络。
常用的神经网络函数有:- create:创建神经网络对象- train:训练神经网络- simulate:模拟神经网络- 网络结构参数设置:如输入层神经元个数、隐藏层神经元个数等- 激活函数:如 sigmoid、tanh 等- 学习算法:如梯度下降、牛顿法等3.将 MATLAB 神经网络函数整理成公式为了方便理解和使用神经网络,我们可以将 MATLAB 神经网络函数整理成公式。
以一个简单的前馈神经网络为例:假设输入层神经元个数为 n,隐藏层神经元个数为 h,输出层神经元个数为 m,激活函数为 f(x),学习算法为梯度下降法,则可以得到以下公式:- 输入层到隐藏层:隐藏层神经元的输出值为输入层各神经元输出值的加权和,再经过激活函数 f(x) 处理,即:z_i = ∑w_ij * x_j + b_i,其中 w_ij 为权重,b_i 为偏置。
- 隐藏层到输出层:输出层神经元的输出值为隐藏层各神经元输出值的加权和,再经过激活函数 f(x) 处理,即:y_j = ∑w_hj * z_i + b_j,其中 w_hj 为权重,b_j 为偏置。
- 学习算法:权重 w 和偏置 b 的更新公式为:w_ij = w_ij - α * (z_i - y_j) * x_j,b_i = b_i - α * (z_i - y_j),其中α为学习率。
Matlab里的神经网络参数设置Matlab里的神经网络参数设置训练函数训练方法traingd 梯度下降法traingdm 有动量的梯度下降法traingda 自适应lr梯度下降法traingdx 自适应lr动量梯度下降法trainrp 弹性梯度下降法traincgf Fletcher-Reeves共轭梯度法traincgp Ploak-Ribiere共轭梯度法traincgb Powell-Beale共轭梯度法trainscg 量化共轭梯度法trainbfg 拟牛顿算法trainoss 一步正割算法trainlm Levenberg-Marquardt传递函数名:函数名函数解释compet 竞争型传递函数hardlim 阈值型传递函数hardlims 对称阈值型传输函数logsig S型传输函数poslin 正线性传输函数purelin 线性传输函数radbas 径向基传输函数satlin 饱和线性传输函数satlins 饱和对称线性传输函数softmax 柔性最大值传输函数tansig 双曲正切S型传输函数tribas 三角形径向基传输函数训练设置:参数名称解释适用方法net.trainParam.epochs 最大训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.goal 训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.lr 学习率(缺省为0.01) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail 最大失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.min_grad 最小梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.show 显示训练迭代过程(NaN表示不显示,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time 最大训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.mc 动量因子(缺省0.9) traingdm、traingdx net.trainParam.lr_inc 学习率lr增长比(缺省为1.05) traingda、traingdxnet.trainParam.lr_dec 学习率lr下降比(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省为1.04) traingda、traingdxnet.trainParam.delt_inc 权值变化增加量(缺省为1.2) trainrp net.trainParam.delt_dec 权值变化减小量(缺省为0.5) trainrp net.trainParam.delt0 初始权值变化(缺省为0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为50.0)trainrpnet.trainParam.searchFcn 一维线性搜索方法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainossnet.trainParam.sigma 因为二次求导对权值调整的影响参数(缺省值5.0e-5) trainscg/doc/9f16135255.html,mbda Hessian 矩阵不确定性调节参数(缺省为5.0e-7) trainscgnet.trainParam.men_reduc 控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1) trainlmnet.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1) trainlmnet.trainParam.mu_inc 的增长率(缺省为10) trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)。
matlab神经网络工具箱简介MATLAB软件中包含MATLAB神经网络工具箱,工具箱以人工神经网络为基础,只要根据自己需要调用相关函数,就可以完成网络设计、权值初始化、网络训练等,MATLAB神经网络工具箱包括的网络有感知器、线性网络、BP神经网络、径向基网络、自组织网络和回归网络,BP神经网络工具箱主要包括newff,sim和train三个神经网络函数各函数的解释如下:1 newff::::BP神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数神经网络参数设置函数函数功能:构建一个BP神经网络。
函数形式:net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)P:输入数据矩阵T:输出数据矩阵S:隐含层节点数TF:节点传递函数,包括硬限幅传递函数hardlim,对称硬限幅传递函数hardlims,线性传递函数purelin,正切S型传递函数tansig,对数S型传递函数logsigBTF:训练函数,包括梯度下降BP算法训练函数traingd,动量反传的梯度下降BP算法训练函数traingdm,动态自适应学习率的梯度下降BP算法训练函数traingda,动量反传和动态自适应学习率的梯度下降BP算法训练函数traingdx,Levenberg_Marquardt 的BP算法训练函数trainlmBLF:网络学习函数,包括BP学习规则learngd,带动量项的BP 学习规则learngdmPF:性能分析函数,包括均值绝对误差性能分析函数mae,均方差性能分析函数mse IPF:输入处理函数OPF:输出处理函数DDF:验证数据划分函数一般在使用过程中设置前六个参数,后四个参数采用系统默认参数。
2 train::::BP神经网络训练函数神经网络训练函数神经网络训练函数神经网络训练函数函数功能:用训练数据训练BP神经网络。
函数形式:[net,tr] = train(NET,X,T,Pi,Ai)NET:待训练网络X:输入数据矩阵T:输出数据矩阵Pi:初始化输入层条件Ai:初始化输出层条件net:训练好的网络tr:训练过程记录一般在使用过程中设置前三个参数,后两个参数采用系统默认参数。
Matlab中的神经网络工具箱介绍与使用神经网络是一种模拟人脑思维方式的计算模型,它通过由多个神经元组成的网络,学习数据的特征和规律。
在计算机科学领域,神经网络被广泛应用于模式识别、数据挖掘、图像处理等诸多领域。
Matlab作为一种功能强大的科学计算软件,提供了专门用于神经网络设计和实现的工具箱。
本文将介绍Matlab中的神经网络工具箱,并探讨其使用方法。
一、神经网络工具箱的概述Matlab中的神经网络工具箱(Neural Network Toolbox)是一款用于构建和训练神经网络的软件包。
它提供了丰富的函数和工具,可用于创建不同类型的神经网络结构,如前向神经网络、反向传播神经网络、径向基函数神经网络等。
神经网络工具箱还包括了各种训练算法和性能函数,帮助用户对神经网络进行优化和评估。
二、神经网络的构建与训练在使用神经网络工具箱前,我们需要先了解神经网络的基本结构和原理。
神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元。
输入层接受外部输入数据,通过权重和偏置项传递给隐藏层,最终输出到输出层,形成网络的输出结果。
构建神经网络的第一步是定义网络的结构,可以使用神经网络工具箱中的函数创建不同层和神经元的结构。
例如,使用feedforwardnet函数可以创建一个前向神经网络,输入参数指定了每个隐藏层的神经元数量。
然后,可以使用train函数对神经网络进行训练。
train函数可以选择不同的训练算法,如标准反向传播算法、Levenberg-Marquardt算法等。
通过设置训练参数,例如训练迭代次数和学习速率等,可以对网络进行优化。
三、神经网络的应用案例神经网络在许多领域都有广泛的应用,下面以图像分类为例,介绍如何使用神经网络工具箱来训练一个图像分类器。
首先,我们需要准备训练数据和测试数据。
训练数据通常包含一组已经标记好的图像和相应的标签。
为了方便处理,我们可以将图像转化为一维向量,并将标签转化为二进制编码。
MATLAB神经网络训练参数解释
MATLAB中的神经网络训练参数是针对通用反向传播算法而言的。
这
种算法是用来训练神经网络的基本算法,它是持续改善网络输出的结果,
以实现基于训练数据的最佳准确性。
MATLAB中的神经网络训练参数可以
提高网络的收敛速度,减少训练时间,并获得最佳性能。
神经网络训练参数包括:学习率、衰减系数、动量、网络反馈延迟、
网络拟合度、权重初始化、训练最大次数、隐藏层单元数以及最小残差等。
学习率是指神经网络的学习速度,它决定了神经网络训练时权重如何
更新。
其值越大,更新步骤越大,但同时也会增加训练的风险,容易导致
网络过拟合和网络收敛速度减慢。
衰减系数是指学习率在训练过程中的减少情况。
一般来说,随着训练
次数增加,学习率也会随之减少,以避免网络过拟合,因此需要设置衰减
系数来控制学习率。
动量是指在学习过程中梯度下降的速度,动量可以提高学习效率,以
便更快地拟合训练数据,并且可以有效降低震荡现象的发生。
网络反馈延迟是指在网络中的输入、输出和控制回路的延迟时间。
Matlab工具箱中的BP与RBF函数Matlab神经网络工具箱中的函数非常丰富,给网络设置合适的属性,可以加快网络的学习速度,缩短网络的学习进程。
限于篇幅,仅对本章所用到的函数进行介绍,其它的函数及其用法请读者参考联机文档和帮助。
1 BP与RBF网络创建函数在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。
表 1 神经网络创建函数(1) newff函数功能:创建一个前馈BP神经网络。
调用格式:net = newff(PR,[S1 S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF) 参数说明:•PR - R个输入的最小、最大值构成的R×2矩阵;•S i–S NI层网络第i层的神经元个数;•TF i - 第i层的传递函数,可以是任意可导函数,默认为'tansig',可设置为logsig,purelin等;•BTF -反向传播网络训练函数,默认为'trainlm',可设置为trainbfg,trainrp,traingd等;•BLF -反向传播权值、阈值学习函数,默认为'learngdm';•PF -功能函数,默认为'mse';(2) newcf函数功能:创建一个N层的层叠(cascade)BP网络调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 参数同函数newff。
(3) newrb函数功能:创建一个径向基神经网络。
径向基网络可以用来对一个函数进行逼近。
newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。
在网络的隐层添加神经元,直到网络满足指定的均方误差要求。
调用格式:net = newrb(P,T,GOAL,SPREAD)参数说明:•P:Q个输入向量构成的R×Q矩阵;•T:Q个期望输出向量构成的S×Q矩阵;•GOAL:均方误差要求,默认为0。