随机森林
- 格式:ppt
- 大小:171.00 KB
- 文档页数:21
随机森林通俗理解
随机森林通俗理解:
随机森林(Random Forests)是一种分类和回归的机器学习方法,它是对决策树的扩展,由多个决策树组成,它们具有强大的泛化能力,可以处理非线性问题。
这种方法可以帮助我们更好地理解数据,并有效地预测未来结果。
随机森林最早由Breiman于2001年提出,其核心思想是基于多个决策树的集成方法,即将多个决策树结合起来,以期得到更准确的预测结果。
随机森林的优势在于,它不仅可以提供准确的预测,而且还可以衡量特征的相关性,从而发现数据中的模式。
随机森林的工作原理如下:
1、首先,从原始数据集中抽取N个子数据集,每个子数据集包含M个特征,每个特征都有K个不同的值;
2、然后,使用每个子数据集训练一棵决策树,每棵树都可以根据训练数据生成一组预测结果;
3、最后,将每棵树的预测结果汇总,用来预测新的数据。
因此,随机森林的工作原理就是在训练数据上训练多个决策树,然后将它们的预测结果汇总,从而提高预测精度。
随机森林的优势如下:
1、随机森林的泛化能力很强:它比单个决策树的泛化能力要强,降低了过拟合的风险;
2、随机森林能够处理非线性问题;
3、随机森林可以检测特征之间的相关性,从而发现数据中的隐藏模式;
4、随机森林运行效率较高,可以解决大数据集的问题。
总之,随机森林是一种强大的机器学习方法,它可以有效地处理大型数据集,改善模型的泛化能力,还可以检测特征之间的相关性,从而发现数据中的隐藏模式。
随机森林的原理及分析结果
随机森林(Random Forest)是一种集成学习算法,它将多个决策树组合在一起,形成一个森林。
每个决策树都是从数据样本中随机选择特征来进行划分,这样可以降低模型的方差和泛化误差。
随机森林还使用袋装法(Bagging)来从样本中进行有放回抽样,以产生多个训练集来进行模型的训练。
随机森林的主要优点是可以处理高维数据、具有较高的准确性、可以处理缺失数据和异常值等。
随机森林的分析结果主要包括以下方面:
1. 特征重要性分析:随机森林通过测量每个特征的重要性程度来评估它们对模型的贡献。
特征重要性可以衡量每个特征对预测结果的贡献程度,可以用于特征选择和预测模型的解释。
2. 模型的性能指标:与其他机器学习模型一样,随机森林的性能可以使用诸如准确率、精确率、召回率、F1值和ROC曲线等指标进行评估。
3. 可解释性分析:与其他集成算法相比,随机森林的结果更容易解释。
通过查看决策树的规则、特征的重要性和不同特征的组合,可以更好地理解模型是如何做出预测的。
4. 超参数调优结果:随机森林算法的性能很大程度上取决于其超参数的选择,如决策树数量、决策树深度、特征选择和最小叶节点数等。
通过分析调优结果,可以得出在特定数据集和任务上最优的超参数组合。
0. 引言随机森林是现在比较流行的一个算法。
对于回归和分类问题有很好的效果。
大家有可能有过这样的经历,辛辛苦苦搭好神经网络,最后预测的准确率还不如随机森林。
既然随机森林这么好用,那它的内在的机理到底是什么呢?接下来将会用通俗易懂的方式讲一讲随机森林。
1. 什么是随机森林随机森林分解开来就是“随机”和“森林”。
“随机”的含义我们之后讲,我们先说“森林”,森林是由很多棵树组成的,因此随机森林的结果是依赖于多棵决策树的结果,这是一种集成学习的思想。
森林里新来了一只动物,森林举办森林大会,判断这到底是什么动物,每棵树都必须发表意见,票数最多的结果将是最终的结果。
随机森林最终的模型见下图示:森林中的每棵树是怎么构建出来的,是不是每棵树都是判断正确的树,这是我们需要考虑的一些问题。
接下来我们就来看一看森林中的每棵树是怎么来的?怎么选出“优秀”的树?2. 如何构建一棵树假设共有N个样本,M个特征。
这里我们讲“随机”的含义。
对于每棵树都有放回的随机抽取训练样本,这里抽取随机抽取的样本作为训练集,再有放回的随机选取m个特征作为这棵树的分枝的依据,这里要注意。
这就是“随机”两层含义,一个是随机选取样本,一个是随机选取特征。
这样就构建出了一棵树,需要注意的是这里生成的树都是完全生长的树(关于为什么是要完全生长的树,我认为的原因是便于计算每个特征的重要程度,剪枝的话将无法进行计算)。
一棵树的构建方式如下图所示:按照这种方法,可以构建出很多棵树,那么这么多棵树综合评判的结果可以作为最后的结果吗?当然不是的,随机森林真正厉害的地方不在于它通过多棵树进行综合得出最终结果,而是在于通过迭代使得森林中的树不断变得优秀(森林中的树选用更好的特征进行分枝)。
上面的一个森林相当于第一次迭代得到的森林。
那么随机森林是怎么往后迭代的呢?3. 如何选出优秀的特征随机森林的思想是构建出优秀的树,优秀的树需要优秀的特征。
那我们需要知道各个特征的重要程度。
随机森林定义:随机森林是一个分类器,它有一系列的单株树决策器{h (X,,θk );k=1,......}来组成,其中{θk }是独立同分布的随机变量。
再输入X 时,每一棵树只投一票给它认为最合适的类。
在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定,构成随机森林的基础分类器称为决策树。
Leo Breiman 和Adele Cutler 发展出推论出随机森林的算法。
这个术语是1995年由贝尔实验室的Tin Kam Ho 所提出的随机决策森林(random decision forests )而来的。
这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"" 以建造决策树的集合。
随机森林是一个组合分类器,构成随机森林的基础分类器是决策树。
决策树算法决策树可以视为一个树状预测模型,它是由结点和有向边组成的层次结构。
树中包含3个节点:根节点。
内部节点,终节点(叶子节点)。
决策树只有一个根节点,是全体训练集的结合。
树中的每个内部节点都是一个分裂问题,它将到达该节点的样本按某个特定的属性进行分割,可以将数据集合分割成2块或若干块。
每个终结点(叶子节点)是带有分裂标签的数据集合,从决策树的根节点到叶子节点的每一条路径都形成一个类;决策树的算法很多,例如ID3算法,CART 算法等。
这些算法均采用自上而下的贪婪的算法,每个内部节点选择分类效果最好的属性进行分裂节点,可以分为两个或若干个子节点,继续此过程到这可决策树能够将全部训练数据准确的分类,或所有属性都被用到为止。
具体步骤如下:1)假设T 为训练样本集。
2)选择一个最能区分T 中样本的一个属性。
3)创建一个数的节点,它的值是所选择的属性,创建此节点的子节点,每个子链代表所选属性的唯一值,适用子链的值进一步将样本细分为子类。
随机森林(RandomForest)1.什么是随机森林简述随机森林是⼀个⾼度灵活的机器学习⽅法,拥有⼴泛的应⽤前景,从市场营销到医疗保健保险。
既可以⽤来做市场营销模拟的建模,统计客户来源,保留和流失。
也可⽤来预测疾病的风险和病患者的易感性。
随机森林是⼀个可做能够回归和分类。
它具备处理⼤数据的特性,⽽且它有助于估计或变量是⾮常重要的基础数据建模。
随机森林是⼏乎任何预测问题 (甚⾄⾮直线部分) 的固有选择。
它是⼀个相对较新的机器学习的策略(在90 年代产⽣于贝尔实验室 ) 和它可以⼏乎⽤于任何⽅⾯。
思想随机森林就是通过集成学习的思想将多棵树集成的⼀种算法,它的基本单元是决策树,⽽它的本质属于机器学习的⼀⼤分⽀——集成学习(Ensemble Learning)⽅法。
随机森林的名称中有两个关键词,⼀个是“随机”,⼀个就是“森林”。
“森林”我们很好理解,⼀棵叫做树,那么成百上千棵就可以叫做森林了,这样的⽐喻还是很贴切的,其实这也是随机森林的主要思想--集成思想的体现。
“随机”的含义我们会在下边部分讲到。
其实从直观⾓度来解释,每棵决策树都是⼀个分类器(假设现在针对的是分类问题),那么对于⼀个输⼊样本,N棵树会有N个分类结果。
⽽随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是⼀种最简单的 Bagging 思想。
2.相关知识集成学习集成学习通过建⽴⼏个模型组合的来解决单⼀预测问题。
它的⼯作原理是⽣成多个分类器/模型,各⾃独⽴地学习和作出预测。
这些预测最后结合成单预测,因此优于任何⼀个单分类的做出预测。
随机森林是集成学习的⼀个⼦类,由于它依靠于策率树的合并。
信息、熵以及信息增益的概念这三个基本概念是决策树的根本,是决策树利⽤特征来分类时,确定特征选取顺序的依据。
理解了它们,决策树你也就了解了⼤概。
引⽤⾹农的话来说,信息是⽤来消除随机不确定性的东西。
当然这句话虽然经典,但是还是很难去搞明⽩这种东西到底是个什么样,可能在不同的地⽅来说,指的东西⼜不⼀样。
随机森林的原理随机森林是一种集成学习算法,通过组合多个决策树来进行分类和回归任务。
它的原理基于决策树和随机抽样的思想,具有一定的鲁棒性和预测能力。
本文将详细介绍随机森林的原理和应用,并探讨其优缺点及改进方法。
一、随机森林的原理随机森林由多个决策树组成,每个决策树都是一个分类器。
在随机森林中,每个决策树的生成过程都是独立的,首先从样本集中通过有放回抽样(bootstrap)的方式抽取出n个样本,然后对每个样本随机选择k个特征,构建决策树。
这里的k是一个常数,通常取总特征数的平方根。
每个决策树都对应着一个子样本集和一个特征子集,通过递归地选择最优特征进行划分,直到满足某个停止条件(如节点样本数小于阈值或深度达到预定值)。
在决策树的生成过程中,每个节点通过计算一个评价指标(如信息增益或基尼指数)来选择最优特征进行划分。
决策树的划分过程会不断减少样本的纯度,直到达到叶节点。
叶节点的类别由该节点中样本的多数类确定。
每个决策树都会对新样本进行分类,最终通过投票的方式确定随机森林的预测结果。
二、随机森林的优点1. 随机森林能够处理高维数据和大规模数据集,具有较强的泛化能力。
2. 随机森林能够处理缺失值和不平衡数据集,并且对异常值具有较好的鲁棒性。
3. 随机森林能够评估特征的重要性,可以用于特征选择和特征工程。
4. 随机森林可以并行计算,提高了训练速度。
三、随机森林的应用1. 随机森林广泛应用于分类问题,如垃圾邮件过滤、疾病诊断等。
通过训练多个决策树,随机森林可以提高分类的准确度和鲁棒性。
2. 随机森林可以用于回归问题,如房价预测、股票走势预测等。
通过训练多个决策树,随机森林可以提供更加准确的预测结果。
3. 随机森林还可以用于异常检测、聚类分析等领域。
通过利用随机森林的特征选择和异常检测能力,可以有效地发现异常样本或聚类相似样本。
四、随机森林的改进方法尽管随机森林具有很多优点,但也存在一些缺点。
比如,随机森林在处理高维数据时容易过拟合,而且对噪声数据敏感。
随机森林算法综述随机森林算法是一种强大的集成学习方法,它结合了决策树的预测能力和随机性的优点,被广泛应用于分类和回归问题中。
本文将对随机森林算法进行综述,包括其原理、优缺点、应用领域和发展趋势等方面的内容。
1. 随机森林算法原理随机森林算法是基于决策树的集成学习方法。
它通过构建多棵决策树,并将它们的结果进行集成来实现预测。
具体来说,随机森林算法随机选择样本和特征来构建每棵决策树,然后通过投票或取平均值的方式来决定最终的预测结果。
这种随机性的引入可以有效降低过拟合的风险,提高模型的泛化能力。
2. 随机森林算法优缺点随机森林算法的优点包括:(1)对缺失值和异常值具有较好的鲁棒性;(2)能够处理高维度的数据集;(3)具有较高的准确率和泛化能力;(4)能够评估特征的重要性。
随机森林算法的缺点包括:(1)模型的可解释性较差;(2)需要较大的计算资源和训练时间;(3)可能在处理噪声较大的数据集时性能下降。
3. 随机森林算法应用领域随机森林算法在各个领域都有广泛的应用,包括但不限于:(1)金融领域:用于信用评分、风险管理等;(2)医疗领域:用于疾病预测、诊断等;(3)电商领域:用于推荐系统、用户行为分析等;(4)工业领域:用于故障诊断、质量控制等。
4. 随机森林算法发展趋势随机森林算法作为一种经典的集成学习方法,一直在不断发展和完善。
未来随机森林算法的发展趋势包括但不限于:(1)提高算法的效率和性能,减少模型的计算成本;(2)进一步提升模型的泛化能力和鲁棒性;(3)结合深度学习等新技术,实现更强大的模型集成;(4)探索在大规模数据集和高维数据下的应用场景。
综上所述,随机森林算法作为一种强大的集成学习方法,具有广泛的应用前景和发展空间。
通过不断的研究和优化,随机森林算法将在各个领域发挥重要的作用,为解决实际问题提供有效的解决方案。
随机森林的名词解释随机森林(Random Forest)是一种常用的机器学习算法,被广泛应用于分类和回归等问题的解决中。
随机森林属于集成学习(Ensemble Learning)的一种,它通过构建多个决策树(Decision Tree)并进行组合,来改善模型的预测性能。
1. 决策树决策树是一种常见的机器学习模型,它以树状结构表示决策规则。
决策树由一系列节点(Node)和分支(Branch)构成,每个节点代表一个特征(Feature)的判断,而每个分支代表条件判断的结果。
从根节点(Root Node)开始,通过不断根据特征进行判断,最终到达叶节点(Leaf Node),叶节点即为决策的结果。
2. 集成学习集成学习是一种将多个学习器进行集成的机器学习方法。
通过将多个学习器的预测结果进行组合,可以获得更加准确和稳定的预测结果。
随机森林便是一种典型的集成学习算法。
3. 随机性随机森林中的随机性体现在两个方面:随机选择特征和随机选择样本。
在决策树的构建过程中,随机森林会在每个节点的特征选择上引入随机因素。
每次构建节点时,从所有特征中随机选择一部分特征用于判断,这样可以减少特征之间的相关性,提高每棵决策树的独立性。
此外,在随机森林的训练过程中,每棵决策树所使用的样本集也是随机选择的,即通过有放回地从原始样本集中抽样。
这样可以保证每棵决策树的训练集是不同的,增加模型的多样性。
4. Bagging算法随机森林采用Bagging(Bootstrap Aggregating)算法作为决策树的集成方法。
Bagging算法通过有放回地从原始样本集中抽取多个子训练集,并用这些子训练集来训练多个独立的决策树。
最终,通过对每棵决策树的预测结果进行投票或取平均值等方式,得到最终的预测结果。
5. 特征重要性评估随机森林可以对特征的重要性进行评估,根据这些评估结果可以帮助我们理解数据中各个特征的贡献度,并进行特征选择。
随机森林通过基于袋外误差(Out-of-Bag Error)的方法,计算每个特征对模型预测性能的影响程度,进而给出每个特征的重要性指标。
机器学习中的随机森林算法详解随机森林是一种常用的机器学习算法,它是通过集成多个决策树来进行预测和分类任务的。
该算法具有高准确率、有效避免过拟合以及对大规模数据集具有良好的可扩展性等优点。
本文将详细介绍随机森林算法的原理、步骤以及应用场景。
1. 随机森林算法原理随机森林算法基于集成学习的思想,通过构建多个决策树模型,并将它们组合形成一个随机森林。
每个决策树都是通过随机选择特征子集和样本子集来生成的,从而降低了模型之间的相关性。
最终的预测结果是由所有决策树的预测结果通过投票或平均得到。
2. 随机森林算法步骤随机森林算法的主要步骤包括特征选择、随机样本选择、决策树的构建和组合等。
(1)特征选择:从训练数据集的特征集合中随机选择一定数量的特征子集,通常可以使用自助采样法(bootstrap sampling)进行选择。
这一步的目的是保留一部分相关特征,并减少决策树之间的相关性。
(2)随机样本选择:从训练数据集中随机选择一部分样本进行训练。
这一步的目的是减少决策树的训练样本数量,同时增加样本之间的差异性。
(3)决策树的构建:对于每个样本子集,使用决策树算法(如CART)来构建决策树模型。
决策树的构建过程通常是通过递归地选择最佳特征和划分点进行的,直到达到停止条件(如节点样本数量小于阈值或深度达到最大值)。
(4)组合决策树:将所有构建好的决策树组合成一个随机森林模型。
对于分类任务,可以通过投票来确定最终的预测结果;对于回归任务,可以通过平均或加权平均来预测输出。
3. 随机森林算法的优点随机森林算法具有以下几个优点:(1)准确率高:随机森林能够通过集成多个决策树的预测结果来提高模型的准确率。
(2)有效避免过拟合:随机森林通过特征选择和样本选择的随机性来降低模型的方差,有效避免过拟合的问题。
(3)对于大规模数据集具有良好的可扩展性:随机森林能够有效处理高维数据和大规模数据集,具有较好的计算效率。
(4)能够评估特征的重要性:随机森林能够通过特征选择的过程来评估特征的重要性,从而对数据集进行特征筛选。
随机森林为了克服决策树容易过度拟合的缺点,Breiman(2001)提出了一种新的组合分类器算法——随机森林算法(Random Forests , RF)。
他把分类决策树组合成随即森林,即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。
随机森林在运算量没有显著提高的前提下提高了预测精度,对多元共线性不敏感,可以很好地预测多达几千个解释变量的作用,被称为当前最好的算法之一。
基本原理1.随机森林的定义随机森林是一个由决策树分类器集合{}θ构成的组合分类器模x,2,1kh(=),,k型,其中参数集{}θ是独立同分布的随机向量,x是输入向量。
当给定输入向量k时每个决策树有一票投票权来选择最优分类结果。
每一个决策树是由分类回归树(CART)算法构建的未剪枝的决策树。
因此与CART相对应,随机森林也分为随机分类森林和随机回归森林。
目前,随机分类森林的应用较为普遍,它的最终结果是单棵树分类结果的简单多数投票。
而随机回归森林的最终结果是单棵树输出结果的简单平均。
2.随机森林的基本思想随机森林是通过自助法(Bootstrap)重复采样技术,从原始训练样本集N 中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本生成k决策树组成的随机森林。
其实质是对决策树算法的一种改进,将多个决策树合并在一起,每棵树的建立依赖一个独立抽取的样本,森林中的每棵树具有相同的分布,分类误差取决于每一棵树的分类能力和它之间的相关性。
3.随机森林的生成过程根据随机森林的原理和基本思想,随机森林的生成主要包括以下三个步骤:首先,通过Bootstrap方法在原始样本集S中抽取k个训练样本集,一般情况下每个训练集的样本容量与S一致;其次,对k个训练集进行学习,以此生成k个决策树模型。
在决策树生成过程中,假设共有M个输入变量,从M个变量中随机抽取F个变量,各个内部节点均是利用这F个特征变量上最优的分裂方式来分裂,且F值在随机森林模型的形成过程中为恒定常数;最后,将k个决策树的结果进行组合,形成最终结果。