(完整版)角的和差倍分专项训练题2
- 格式:doc
- 大小:78.51 KB
- 文档页数:2
成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。
1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。
精心整理和差倍练习题21、果篮里共有苹果和梨共21个,如果把3个苹果换成3个梨,苹果还是比梨多1个.问:苹果原来有多少个?2、动物园里共有老虎、狮子和猎豹共有100只,其中老虎比狮子多3只,狮子比猎豹多2只,那么动物里有老虎多少只?3、学校举办跳绳比赛,第一名跳的个数是第二名的2倍,第二名跳的个数又是第三名的3倍,前三名一共跳了1000个,那么第一名跳了多少个?4、三个火枪手共有子弹64发,小个火枪手的子弹数目比中个火枪手的2倍多4颗,中个火枪手的子5、200元的话,6、,问每桶7等,8、6厘米.910111222枚.13,结果长14920克.1516件的317,只有25厘米.它们吃面条的速度相同,过了一段时间后,长面条的长度是短面条的2倍.那么此时短面条还剩多少厘米?18、一满瓶水可以装7杯水,如果从中倒出5杯水,剩下的水和瓶子共重520克;如果倒出3杯水,那么剩下的水和瓶子共重880克.请问:空瓶重多少克?19、卡莉娅和萱萱都在织围巾,现在两人已经织好的围巾长度相同,但萱萱织得比较快.在接下来的两个月里,萱萱可以织120厘米,而卡莉娅只能织45厘米,因此两个月后,萱萱围巾的长度将会是卡莉娅的2倍.那么现在卡莉娅的围巾有多长?20、墨莫想买一台电脑,有高端和低端两种选择,高端电脑的价格比低端的2倍少1300元,低端电脑的价格则要比高端电脑的2倍少7300元.请问:低端电脑的价格是多少?21、有甲、乙两个仓库,原来甲仓库存有65吨货物,乙仓库存有25吨货物.请问:从甲仓库调运多少精心整理吨货物到乙仓库,才能使得乙仓库的库存量变为甲仓库的2倍?22、有两支粗细、材料都相同的蜡烛,长的能烧100分钟,短的能烧70分钟.同时点燃这两支蜡烛,过多少时间后,长蜡烛长度是短蜡烛的3倍?23、在饭盒里装鸡蛋,如果放入3个鸡蛋,那么连盒共重250克;如果放入7个鸡蛋,则连盒共重470克.请问:一个鸡蛋有多重?(假设每个鸡蛋重量相同)24、萱萱送给小山羊和卡莉娅两人一样多的饼干.小山羊比较贪吃,过了几天,小山羊已经吃了39块饼干,而卡莉娅只吃了17块.此时卡莉娅剩下的饼干数量是小山羊的3倍,请问:卡莉娅原来有多少饼干?25、一次考试,墨莫的得分比卡莉娅的2倍少30分,而卡莉娅的得分比墨莫的2倍少120分,那么卡莉娅考了多少分?1,。
, :两角和与差及其二倍角公式知识点及典例2,22 2 2知识要点:1、两角和与差的正弦、余弦、正切公式 C(α - β ): cos(α - β )= ; C(α + β ): cos(α + β )= ; S(α + β): sin(α +β )= ; S(α - β ): sin(α - β )=;T( α+ β ): tan( α + β )= ; T( α- β ): tan( α - β )=;例 2 设 cos α- β=- 1 2 9 α 2- β= 2 ,其中 α∈ 3 π 2,π, β∈ 0 π,求 cos(α+β). 2 2、二倍角的正弦、余弦、正切公式 变式 2: 已知 0π 3 ππ,cos( )3,sin( 3 π5), 求 sin( α+β ) 的值. S 2 :sin2α = ; T 2 :tan2α = ; 4 4 45 413C 2 :cos2α= ==;3、在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题 :如公式的正用、逆用和变形用等。
如 T( α± β)可变形为 : tan α± tan β= ; tan αtan β==.考点自测:题型 3 给值求角已知三角函数值求角,一般可分以下三个步骤:(1) 确定角所在的范围; (2) 求角的某一个三角函数值( 要求该三角函数应在角的范围内严格单调 ) ;( 3) 求出角。
1、已知 tan α = 4,tan β= 3,则 tan( α + β) = ()例 3 已知 α, β∈(0, π),且 tan(α- β)= 1 , tan β=- 1,求 2α-β的值. 7 7C 7 72 7A 、B 、-1111、 D 、-13132、已知 cos α-π+ sin α= 43,则 sin α+7π的值是 ( ) 6 A .- 2 3 5 B.2 3 6 C .- 4D.4变式 3: 已知 tan α = 1, tan β = 1,并且 α , β 均为锐角 , 求 α +2β 的值 .5 5 55 733、在△ ABC 中,若 cosA = 4, cosB = 5,则 cosC 的值是 ( ) 5 16 56 A. B. 13 C.16或5616D .-65 65 65 65 65 题型 4 辅助角公式的应用4、若 cos2θ+ cos θ= 0,则 sin2θ+ sin θ的值等于 ( )A . 0B . ± 3C . 0 或 3D . 0 或± 3asin x bcosxa2b 2sin x(其中 角所在的象限由 a, b 的符号确定, 角的值由2cos55 -° 3sin5 °b 5、三角式 3 cos5 °值为 ( )tan确定 ) 在求最值、化简时起着重要作用。
板块一、差倍问题【例1】李爷爷家养的鸭比鹅多18只,鸭的只数是鹅的3倍,你知道李爷爷家养的鸭和鹅各有多少只吗?【巩固】两个书架,甲书架存书相当于乙书架存书量的5倍,甲书架比乙书架存书多120本,则乙书架存书多少本?【巩固】某小学原来参加室外活动的人数比参加室内活动的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内人数的5倍,则参加室内、室外活动的共有多少人?【例2】有两根铁丝,第一根长18米,第二根长10米,两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,两根铁丝各剩下多少米?【巩固】有两条纸带,一条长21厘米,一条长13厘米,两条纸带都剪下同样的一段后,长纸带剩下的长度是短纸带剩下的3倍,问剪下的一段有多长?【巩固】二⑴班的图书角里有故事书和连环画共47本,如果故事书拿走7本后,故事书的本数就是连环画的4倍.原有连环画和故事书各有多少本?【例3】有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3【巩固】有甲、乙两艘货船,甲船所载货物是乙船的3倍.若甲船增加货物1200吨,乙船增加货物900吨,则甲船所载货物是乙船的2倍.甲船原载货物多少吨?【例4】某迎春茶话会上,买来苹果4箱,已知每箱苹果取出24千克后,剩余的各箱苹果总和等于原来一箱苹果的重量,问原来一箱苹果多重?【巩固】菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?【例5】有大小两个桶原来水一样多,如果从小桶倒8千克水到大桶,则大桶中水是小桶的3倍,求原来大桶有水多少千克?【巩固】某校五年级比六年级人数少154人,若六年级学生再转来46人,则六年级学生是五年级学生的3倍,问五、六年级各有多少人?【巩固】小云比小雨少20本书,后来小云丢了5本书,小雨新买了11本书,这时小雨的书比小云的书多2倍.问:原来两人各有多少本书?【例6】甲、乙俩人存款若干元,甲存款是乙存款的3倍.如果甲取出80元,乙存入20元,甲、乙的存款正好相等.问甲、乙俩人原来各存款多少元?【巩固】甲、乙各有若干本书,若甲给乙45本,则二人的书相等,若乙给甲45本则甲的本数是乙的4倍,甲、乙各有书多少本?【例7】(2008年第八届“春蕾杯”小学数学邀请赛初赛)兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这时兄妹俩人剩下的钱正好相等,哥哥带了________元钱,妹妹带了________元钱.【巩固】食堂里有94千克面粉,138千克大米,每天用掉面粉和大米各9千克,几天后剩下的大米是面粉的3倍?【例8】幼儿园大班每人发17张画片,小班每人发13张画片,小班人数是大班人数的2倍,小班比大班多发126张画片,那么小班有多少人?【巩固】实验小学一校区人数比实验小学二校区人数少540人,因为第三校区建成,从两个校区各调走200人,这时实验小学二校区人数恰好是实验小学一校区人数的4倍,那么实验小学一校区和实验小学二校区原来各有多少人?【例9】有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同;如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍.第一盘有苹果多少个?【巩固】小青和小红每人都有一些水彩笔,如果小青给小红1支,两人就一样多,如果小红给小青1支,小青的水彩笔就是小红的2倍,那么小青和小红各有多少支水彩笔?【巩固】小明和小刚各有玻璃弹球若干个.小明对小刚说:“我若给你两个,我们的玻璃弹球一样多.”小刚说:“我若给你两个,你的弹球数量将是我的3倍.”小明和小刚共有玻璃弹球多少个?【例10】小新家有大小两个书架,大书架上的书的本数是小书架的3倍,如果从大书架上取走150本放到小书架上,那么两个书架上的书一样多,大小书架上原来各有多少本书?【巩固】甲、乙两桶油重量相等,甲桶取走16千克油,乙桶加入14千克油后,乙桶油的重量是甲桶油的重量的4倍.甲桶原来有油多少千克?【巩固】两根绳,第一根长64米,第二根长52米,剪去同样长后,第一根是第二根的3倍,求每根绳减去几米?【巩固】两个筐中各有苹果若干千克,第一个筐中的苹果是第二筐中的苹果的4倍,如果从第一个筐中取出26千克苹果,从第二个筐中取出2千克苹果,则两筐苹果的重量相等.你知道这两个筐中原来各有苹果多少千克吗?【巩固】两块同样长的花布,第一块卖出31米,第二块卖出19米后,第二块是第一块的4倍,求每块花布原有多少米?【例11】学而思学校买来白粉笔比彩色粉笔多15箱,白粉笔的箱数比彩色笔的4倍还多3箱,学而思学校买来白粉笔和彩色粉笔各多少箱?【巩固】学而思学校买来白粉笔比彩色粉笔多15箱,白粉笔的箱数比彩色笔的4倍少3箱,学而思学校买来白粉笔和彩色粉笔各多少箱?【例12】甲、乙、丙三所小学学生人数的总和为1999,已知甲校学生人数的2倍,乙校学生人数减3,丙校学生人数加4都是相等的,问:甲、乙、丙各校的人数是多少?【巩固】红旗小学三年级有甲、乙、丙三个班,一共有学生162人.如果从甲班转出2个人到乙班,则甲、乙两班人数相同.如果这时再从丙班转出3个人到乙班,则乙、丙两班人数相同.请问:甲班原来有多少人?【例13】小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?【巩固】甲、乙、丙三数的和是78,甲比乙的2倍多4,乙比丙的3倍少2.求这三个数.【例14】小丸子家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只,白鸡的只数是黄鸡2倍,白鸡、黄鸡、黑鸡一共多少只?【例15】某养殖厂养鸡、鸭、鹅共1462只,鸡的只数比鸭的4倍多132只,鹅的只数比鸭的2倍少70只.这个养殖厂养的鸡、鸭、鹅各有多少只?【例16】甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么甲、乙两个小朋友共有多少粒糖?【巩固】在一次考试中,甲、乙两人考试结果如下:甲答错了全部试题的13,乙答错了7道题,甲、乙都答错的题目占全部试题的15,则甲、乙两人都答对的题目最少多少道?【例17】在期末考试中,哥哥的数学成绩比语文高7分,弟弟的数学成绩是语文的67.又知道弟弟的数学成绩比哥哥的数学成绩的56高4分,总成绩比哥哥低3分,那么弟弟的语文成绩是多少分?【例18】一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用14座的旅游车,则两校共需租用这种车72辆;若两校都租用19座的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?板块二、年龄问题的和差与差倍【例19】爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?【例20】爸爸妈妈现在的年龄和是72岁;六年后,爸爸比妈妈大4岁.今年爸爸妈妈二人各多少岁?【巩固】爸爸今年38岁,佳佳今年2岁,问:几年后,父亲的年龄是佳佳的5倍?【例21】姐姐今年13岁,弟弟今年9岁,几年后姐弟俩岁数和是40岁?姐姐到时多少岁了?【例22】新老运动员把话谈,手拉手儿笑微微.老将说:“我比你大10岁.”新手说:“上次你比我大一倍.”运动会四年开一次,两人年龄各几岁?【例23】兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半.问:哥哥今年几岁?【巩固】哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁.问:哥哥现在多少岁?【巩固】妈妈的年龄是小红的5倍,奶奶的年龄比小红大9倍,已知奶奶比妈妈大35岁,求三人年龄各多少岁?。
:两角和与差及其二倍角公式知识点及典例知识要点:1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式2S α:sin2α= ; 2T α:tan2α= ;2C α:cos2α= = = ;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为:tan α±tan β=___________________; tan αtan β= = . 考点自测:1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、 711B 、- 713C 、 713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C .-45 D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或 3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B.3 C .2 D .1 题型训练题型1 给角求值一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角例1求[2sin50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒- 题型2给值求值三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。
差倍问题已知两个数的差与它们的倍数关系,求两个数各是多少,这一类题称为“差倍问题”。
解答方法是:两个数的差÷倍数的差=1倍数,然后根据差或倍求另一个数。
例1.小明到市场去买水果,他买的苹果个数是梨的3倍,苹果比梨多18个。
小明买苹果和梨各多少个?例2.两个书架所存书的本数相等,如果从第一个书架里取出200本书,而第二个书架再放入40本书,那么第二个书架的本数是第一个书架的3倍。
问两个书架原来各存书多少本?例3.甲乙两人分别带了150元和70元去买东西,两人买了同样的东西之后,剩下的钱甲是乙的5倍。
甲乙两人各剩下多少钱?每人花了多少钱?例4.小明的爸爸办了一个养鸡场,今年比去年多养了4000只小鸡,且今年的小鸡数比去年的3倍少2000只。
今年、去年各养了多少只?例5.被除数比除数大252,商是7,被除数、除数各是多少?例6.有甲、乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重;如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍。
甲、乙两桶原来各有色拉油多少千克?例7.两个数相除,商是4,被除数、除数、商的和是124。
被除数和除数各是多少?例8.育红小学买了一些足球、排球和篮球,已知足球比排球多7只,排球比篮球多11只,足球的只数是篮球的3倍。
足球、排球和篮球各买了多少只?姓名得分1.学校合唱组,女同学人数是男同学的4倍,女同学比男同学多42人。
合唱组有男、女同学各多少人?2.一件皮衣价钱是一件羽绒服价钱的5倍,又已知一件皮衣比一件羽绒服贵960元。
皮衣与羽绒服各多少元?3.哥哥种的树是弟弟的3倍,哥哥比弟弟多种了26棵树。
兄弟两人各种了多少棵树?4.两个仓库所存粮食重量相等,如果从第一个仓库里取出200千克,而第二个仓库再存入40千克,那么第二个仓库的粮食重量就是第一个仓库的7倍。
两个仓库原来各存粮食多少千克?5.小红和小明的铅笔枝数相等,如果奶奶再给小红16枝铅笔,给小明2枝铅笔,那么小红的铅笔枝数就是小明的3倍。
7.5画角的和、差、倍(分层练习)【夯实基础】一、填空题1.(2020春·六年级校考单元测试)已知∠AOB =78°,射线OE 是∠AOB 的平分线,∠AOE =_____.2.(2021春·上海浦东新·七年级上海民办建平远翔学校校考期末)如图,射线OA 与射线OB 的夹角为40°,将射线OC 绕点O 顺时针旋转一周,若射线OA 、OB 、OC 中恰有一条射线平分另两条射线的夹角时,则∠AOC 的度数为______.3.(2022秋·上海奉贤·七年级统考期中)如图,点O 与量角器中心重合,OA 与零刻度线叠合,OB 与量角器刻度线叠合,OD 是BOC Ð的角平分线,那么BOD Ð=______.4.(2021春·上海浦东新·六年级校考期末)如图,OB 为∠AOD 的角平分线,:2:3BOC COD ÐÐ=,∠BOC =20°,则∠AOB =______.5.(2021春·上海长宁·六年级上海市延安初级中学校考期末)如图,O 为直线DA 上一点,120AOB Ð=°,OE 为AOB Ð的平分线,90COB Ð=°,则EOC Ð的度数是_______.6.(2021春·上海浦东新·六年级上海市进才中学北校校考期末)如图,已知AOB Ð是直角,60BOC Ð=°,OE 平分AOC Ð,OF 平分BOC Ð,那么EOF Ð=______°.7.(2022春·上海·六年级校考期末)如图,∠AOB =84°,∠BOC =44°.OD 平分∠AOC ,则∠COD =_____.8.(2021春·上海金山·六年级校考期末)如图,将一张长方形纸按照如图所示的方法对折,两条虚线为折痕,这两条折痕构成的角的度数是__________.9.(2020春·六年级校考单元测试)如图:根据图形填空∠BOC =∠AOD -_____-_____=_____-∠AOB =_____-∠DOC ;∠BOD =∠AOD -_____=∠DOC +_____.10.(2021春·上海浦东新·六年级校联考期末)∠AOB =60°,OC 平分∠AOB ,以OC 为一边作∠COP =15°,则∠BOP 的度数为__________.11.(2021春·上海普陀·六年级期末)如图,OP 、OQ 分别是∠AOB 、∠BOC 的平分线,如果∠POQ =28°,那么∠AOC =____°.12.(2021·上海·六年级期末)如图,85AOB Ð=°,45BOC Ð=°.OD 平分AOC Ð,则AOD Ð=_______.13.(2021春·上海闵行·六年级统考期末)如图,∠AOB =62°,OC 平分∠AOB ,∠COD =90°,则∠AOD =_____度.14.(2021春·上海静安·六年级上海市民办扬波中学校考期末)如图,OP 、OQ 分别是AOB Ð,BOC Ð的平分线,如果5226POQ ¢Ð=°,那么AOC Ð=______.(结果用度、分、秒表示)15.(2021春·上海长宁·六年级华东政法大学附属中学校考期末)如图所示,已知OB 是AOC Ð的角平分线90BOD Ð=°,120AOC Ð=°,那么COD Ð=______.16.(2022春·七年级单元测试)如图,直线,AB CD 相交于O ,OE 平分,Ð^AOC OF OE ,若46BOD Ð=°,则DOF ∠的度数为______°.17.(2021春·上海浦东新·六年级上海市浦东模范中学东校校考期末)已知140AOB Ð=°,OC 是AOB Ð的角平分线,射线OD 在AOB Ð的内部,50AOD Ð=°,那么DOC Ð=______.二、解答题18.(2022春·上海·七年级专题练习)如图,直线AB 、CD 相交于点O ,OE 平分∠AOB ,OB 平分∠DOF ,若∠DOE =50°,求∠DOF 的度数.19.(2022春·上海·七年级期末)(1)已知:如图1,P 是直角三角板ABC 斜边AB 上的一个动点,CD 、CE分别是∠ACP和∠BCP的平分线,试探究:当点P在斜边AB上移动时,∠DCE的大小是否会发生变化,请说明你的理由.(2)把直角三角板的直角顶点C放在直尺的一边MN上,点A和点B在直线MN的上方(如图2),此时∠ACM与∠BCN的数量关系是∠ACM+∠BCN=;当把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图3),∠ACM与∠BCN的数量关系是;当把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图4),∠ACM与∠BCN的数量关系是.20.(2020春·六年级校考单元测试)如图已知点O为直线AC上一点,OE平分∠AOB,∠DOB:∠DOC=1:3,∠EOD=65°,求∠DOC的度数?21.(2020春·六年级校考单元测试)已知∠α、∠β,用量角器画出∠AOB=∠α+∠β.(不写作法,标明字母)22.(2020春·六年级校考单元测试)已知∠α、∠β,用尺规画出∠AOB=∠α+2∠β.(不写作法,标明字母)【能力提升】一、填空题1.(2022春·上海闵行·六年级校考期末)如图,OP 、OQ 分别是AOB Ð、BOC Ð的平分线,如果5226POQ Ð=°¢,那么AOC Ð=______.2.(2021春·上海松江·六年级统考期末)已知:如图,OC 和OD 为∠AOB 内的射线,OE 平分∠AOC ,OF 平分∠DOB ,若∠EOF =60°,∠COD =20°,则∠AOB 的度数为 _______.3.(2021春·上海·六年级上海同济大学附属存志学校校考期末)如图,OM 平分AOB Ð,2MON BON Ð=Ð,AON Ð与BON Ð的差为80°,则AOB Ð=__________.4.(2021春·上海·六年级上海市西南模范中学校考期末)已知80AOB Ð=°,30AOC Ð=°,OD 平分BOC Ð,则BOD Ð的大小为___________.二、解答题5.(2021春·上海松江·六年级校考期末)如图,点A 、O 、C 在一直线上,AOB Ð比BOC Ð大20°,OE 是BOC Ð的平分线,90EOF Ð=°.(1)求BOC Ð的度数.(2)求DOF ∠的度数.6.(2020春·六年级校考单元测试)如图,作∠A 、∠B 的平分线,并作出它们的交点O ,再连接OC ,用量角器度量比较∠ACO 、∠BCO 的大小.(不写作法,保留作图痕迹)7.(2022春·上海·七年级专题练习)如图,直线AB,CD相交于点O,OE⊥AB,OF⊥CD.(1)若OC恰好是∠AOE的平分线,则OA是∠COF的平分线吗?请说明理由;(2)若∠EOF=5∠BOD,求∠COE的度数.8.(2022春·上海·七年级专题练习)(1)已知:如图1,P是直角三角板ABC斜边AB上的一个动点,CD、CE分别是∠ACP和∠BCP的平分线.当点P在斜边AB上移动时,∠DCE= °;(2)把直角三角板的直角顶点C放在直尺的一边MN上:①点A和点B在直线MN的上方(如图2),此时∠ACM与∠BCN的数量关系是∠ACM+∠BCN= ;②当把这把直角三角板绕顶点C旋转到点A在直线MN的下方、点B仍然在直线MN的上方时(如图3),∠ACM与∠BCN的数量关系是 ;③当把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图4),∠ACM与∠BCN的数量关系是 .。
角的和差倍分专项训练题11.如图, OC平分∠ AOD,OE是∠ BOD的平分线,如果∠ AOB=130o,那么∠ COE是多少度?2.如图所示,点 O是直线 AB上一点, OE,OF分别平分∠ AOC和∠ BOC,若∠ AOC= 68°,则∠ BOF和∠ EOF是多少度?3. 如图 , 点 O在直线 AB 上 ,OD 是∠ AOC的平分线 ,OE 是∠ COB的平分线 .(1)求∠ DOE的度数,(2)如果∠ AOD=51°17′ , 求∠ BOE的度数4.如图,直线 AB 上有一点 O,∠ AOD= 440,∠ BOC= 320,∠ EOD= 900, OF平分∠ COD,求∠ FOD与∠ EOB的度数5. 如图,从点O引出 6 条射线 OA, OB, OC, OD, OE, OF,且∠ AOB= 1000,OF平分∠ BOC,∠ AOE=∠ DOE,∠ EOF =1400,求∠ COD的度数6. 如图,∠ AOD=80°, ∠ AOB=30°,OB 是∠ AOC的平分线,求∠AOC及∠ COD的度数7. 已知∠ AOB =3∠ BOC,若∠ BOC= 30 .求∠ AOC的度数8. 如图,∠ BAE =750,∠ DAE= 150, AC 是∠ BAD 的平分线,求∠ CAD 的度数9. 如图, BD 平分∠ ABC , BE 分∠ ABC 为 2: 5 两部分,∠ DBE=24,求∠ ABE 的度数0 0 10. 如图,∠ AOC+∠ AOB=180,OM 、 ON 分别是∠ BOC 、∠ AOB 的平分线,∠MON=60,求∠ AOC 和∠ AOB 的度数11. 已知∠ AOB ,过 O 点作射线 0OC ,若∠ AOC=0.5∠AOB ,且∠ AOC=22,求∠ BOC 的度数 12. 0 0 DOE 的度数已知∠ AOB=60,∠ BOC=120, OD 平分∠ AOB , OE 是∠ BOC 的一条三等分线,求∠13. 如图,已知∠ 0 0AOC=90,∠ DOC 比∠ DOA 大 28 , OB 是∠ AOC 的平分线,求∠ BOD 的度数0 14. 如图,已知∠ AOC=150, OB 是∠ AOC 的平分线, OE , OF 分别是∠ AOB ,∠ BOC 的平分线 , 求∠ EOF 的度数15. 直线 AB 、 CD 相交于点 0 0 与∠ 3 的度数 O , OE 平分∠ AOD ,∠ FOC=90,∠ 1=40 ,求∠ 2。
两角和与差的三角函数及倍角公式练习及答案一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<=则的值是A .2B .-2C .211D .-2112、如果sin cos ,sin cos x x x x =3那么·的值是A .16B .15C .29D .3103、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-=+A .1318B .322C .1322D .-13184、若f x x f (sin )cos ,=⎛⎝⎫⎭⎪232则等于A .-12B .-32C .12D .325、在∆ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形C .直角三角形D .等腰三角形二、填空题:6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+=;8、已知=+-=⎪⎭⎫⎝⎛+θθθθθπsin 2cos cos sin 234cot ,则 ;12、的值。
,求已知)tan 1)(tan 1(43βαπβα--=+ 两角和与差练习题一、选择题:2.已知)2,0(πα∈,sin(6πα+)=53,则cos α的值为( )A .-10334+ B .10343- C .10334- D .10334+7.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 ( )A .-235 B.235 C .-45 D.458.f(x)=sinx cosx1+sinx +cosx 的值域为( )A .(―3―1,―1) ∪(―1, 3―1)B .[-2-12,―1] ∪(―1, 2-12)C .(-3-12,3-12)D .[-2-12,2-12]解析:令t =sin x +cos x =2sin(x +π4)∈[―2,―1]∪(―1, 2). 则f(x)=t 2-121+t =t -12∈[-2-12,―1]∪(―1, 2-12).B9 .sin()cos()cos()θθθ+︒++︒-+︒7545315的值等于( ) A. ±1B. 1C. -1D. 010.等式sin α+3cos α=4m -64-m有意义,则m 的取值范围是( ) A .(-1,73)B .[-1,73]C .[-1,73]D .[―73,―1]11、已知αβγ,,均为锐角,且1tan 2α=,1tan 5β=,1tan 8γ=,则αβγ++的值( ) A.π6B.π4C.π3D.5π412.已知α,β是锐角,sin α=x,cos β=y,cos(α+β)=-53,则y 与x 的函数关系式为( ) A .y=-5321x -+54x (53<x<1) B .y=-5321x -+54x (0<x<1)C .y=-5321x --54x (0<x<53)D .y=-5321x --54x (0<x<1)13、若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为( )A .1B .2 C1 D2 15. 设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=016.若()1cos 3A B -=, 则()()22cos cos sin sin B A B A +++的值是( )A. 83-B . 83 C. 73D. 5317. 若()()17tan 411tan 4=-+βα,则()βα-tan 的值为( ) A. 14 B. 12C . 4 D. 1218. 已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是 ( )A .412--a aB .-412--a aC .214a a --±D .412--±a a19.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21B .22C .22-D .22±21.已知tan α,tan β是方程x 2+4=0的两根,且2π-<α<2π,2π-<β<2π,则α+β等于 ( )A .23π- B .3π C .3π或23π- D .-3π或23π22.如果sin()sin()m n αβαβ+=-,那么tan tan βα等于( )A.m n m n -+ B.m nm n+- C.n mn m-+ D.n mn m+-23.在△ABC 中,已知2sinAcosB =sinC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形24.在ABC ∆中,若3tan =C , 且()B B B A sin 120cos cos sin 0-=,则ABC ∆的形状是( )A. 等腰三角形B.等腰但非直角三角形C. 等腰直角三角形 D . 等边三角形25.若A B ,为锐角三角形的两个锐角,则tan tan A B 的值( ) A.不大于1 B.小于1 C.等于1 D.大于126.在ABC △中,90C >,sin E C =,sin sin F A B =+,cos cos G A B =+,则E F G ,,之间的大小关系为( ) A.G F E >> B.E F G >>C.F E G >> D.F G E >>27.ABC ∆中,若135cos ,53in ==B A s ,则C cos 的值是( ) A。
两角和差练习题一、选择题1. 已知角A = 30°,角B = 45°,则角A + 角B 的度数是:A. 50°B. 75°C. 60°D. 75°2. 已知角X = 110°,角Y = 40°,则角X - 角Y 的度数是:A. 70°B. 80°C. 50°D. 90°3. 若角M + 角N = 135°,角M - 角N = 45°,则角M 和角N 的度数分别是:A. 40°和55°B. 80°和55°C. 90°和45°D. 90°和80°4. 将角P用两个锐角表示,则这两个锐角的大小分别是:A. 45°和90°B. 60°和90°C. 60°和80°D. 45°和80°二、填空题1. 已知角A = 80°,角B = 120°,则角A + 角B 的度数是__________。
2. 已知角X = 90°,角Y = 30°,则角X - 角Y 的度数是__________。
3. 若角M + 角N = 180°,角M - 角N = 60°,则角M 和角N 的度数分别是__________。
4. 将角P用两个锐角表示,这两个锐角的大小分别是__________。
三、解答题1. 推导过程: 已知角D = 70°,角E = 45°,求角D + 角E 的度数。
解:根据角度和差公式:角D + 角E = 70° + 45° = 115°。
2. 推导过程: 已知角F = 140°,角G = 30°,求角F - 角G 的度数。
和差、和倍、差倍专项训练题姓名:一、和差问题练习1、张先生投资股票,2006 年和2007 年一共盈利40 万元,其中2006 年比2007 年少盈利14 万元.张先生2007年盈利多少万元?(★)2、甲、乙两位火炬手负责把火炬从A 地传递到B 地.先由甲从A 地出发,并在途中将火炬传递给乙;乙接过火炬后继续慢跑前往B 地.已知A ,B 两地相距2400 米,并且甲比乙多跑了600 米.请问:甲跑了多少米?(★)3、两筐水果共重150 千克,第一筐比第二筐多8 千克,两筐水果各多少千克?(☆)4、果园里有桃树和梨树共150 棵,桃树比梨树多20 棵,两种果树各有多少棵?(☆)5、用锡和铝制成500 千克的合金,铝的重量比锡多100 千克,锡和铝各是多少千克?(☆)6、甲、乙两个学校共有学生1245 人,如果从甲校调20 人去乙校后,甲校比乙校还多5 人,两校原有学生各多少人?(☆☆)7、甲、乙两个工程队共有1980 人,甲队为了支援乙队,抽出285 人加入乙队,这时乙队人数还比甲队少24人,求甲、乙两队原有工人多少人?(☆☆)8、甲乙两校共有学生864 人,为了照顾学生就近入学,从甲校调入乙校32 名同学,这样甲校学生还比乙校多48 人,问甲、乙两校原来各有学生多少人?(☆☆)9、某工厂去年与今年的平均产值为96 万元,今年比去年多10 万元,今年与去年的产值各是多少万元?(☆☆)二、和差倍综合练习1、费叔叔买来三箱水果,总重100 千克.其中前两箱重量相差11 千克,且前两箱的总重量是第三箱的3倍.请问:这三箱水果中最重的那箱重多少千克?(★★)2、甲、乙、丙三个物体的总重量是93 千克,甲物体比乙、丙两个物体的重量之和轻1 千克,乙物体比丙物体重量的2 倍还重2 千克,那么甲、乙、丙各重多少千克?(★★★)3、四年级有3 个班,如果把甲班的1 名学生调整到乙班,两班人数相等;如果把乙班1 名学生调到丙班,丙班比乙班多2 人,问甲班和丙班哪班人数多?多几人?(☆☆☆)4、育才小学三年级有3 个班,一共有学生126 人.如果一班比二班多4 人,二班比三班多4 人,那么这三个班分别有多少人?(★★)5、三国时期,魏国、蜀国、吴国三国交战.已知吴国军队比蜀国军队多20 万人;魏国军队人数是吴国的 2 倍,又是蜀国的3 倍.魏国军队有多少人?(★★★)6、甲、乙两个人一起去商店买东西,两人一共带了80 元钱.甲用自己带的钱的一半买了一本漫画书,乙花10 元钱买了一盘磁带.这时甲的钱恰好是乙的3 倍.开始时乙带了多少元钱?(★★★)7、姐妹俩一起做数学、语文两科作业.姐姐花在数学作业上的时间比妹妹多10 分钟;而妹妹花在语文作业上的时间比姐姐多4 分钟.已知姐姐一共花了88 分钟做完作业,妹妹做数学作业的时间比语文作业少12 分钟.请问:妹妹做语文作业花了多少分钟?(★★★)8、游泳池里男生的人数比女生的6 倍少11 人,比女生的4 倍多13 人,那么男生有多少人?(★★★)9、红旗小学三年级有甲、乙、丙三个班,一共有学生162 人.如果从甲班转出2 个人到乙班,则甲、乙两班人数相同.如果这时再从丙班转出3 个人到乙班,则乙、丙两班人数相同.请问:甲班原来有多少人?(★★★)三、和倍练习题1、甲班和乙班共有图书160本。
和差倍问题专项测习题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]和差倍练习题21、果篮里共有苹果和梨共21个,如果把3个苹果换成3个梨,苹果还是比梨多1个.问:苹果原来有多少个2、动物园里共有老虎、狮子和猎豹共有100只,其中老虎比狮子多3只,狮子比猎豹多2只,那么动物里有老虎多少只3、学校举办跳绳比赛,第一名跳的个数是第二名的2倍,第二名跳的个数又是第三名的3倍,前三名一共跳了1000个,那么第一名跳了多少个4、三个火枪手共有子弹64发,小个火枪手的子弹数目比中个火枪手的2倍多4颗,中个火枪手的子弹是大个火枪手的3倍,那么小个火枪手有多少发子弹5、商场里大电视机和小电视机的售价之和为3000元,而如果大电视机降价400元,小电视机提价200元的话,两种电视机的售价就相同了,那么小电视机的售价是多少元6、两个桶里共盛水30斤,如果把第一桶里的水倒6斤到第二个桶里,两个桶里的水就一样多,问每桶各有多少斤水?7、甲仓所存面粉是乙仓的3倍,如从甲仓运出850公斤,从乙仓运出50公斤,则两仓所在了的面粉相等,两仓原有面粉多少公斤?8、卡莉娅、萱萱和墨莫的身高之和恰好是400厘米,卡莉娅比墨莫矮5厘米,而萱萱比墨莫高6厘米.请问:萱萱身高多少厘米9、小高、墨莫和卡莉娅帮老师搬书,一共搬了352本,小高搬的书比墨莫的2倍多2本,而墨莫搬的书是卡莉娅的2倍,那么卡莉娅搬了几本书10、纺织厂有职工480人,其中女职工人数是男职工人数的3倍.请问:男、女职工各有几人?11、12、学校合唱团成员中,女生人数是男生的3倍,而且女生比男生多80人.合唱团里男生和女生各有多少人?13、14、小悦和冬冬玩游戏,每玩一局,输的就要给赢的1枚棋子.一开始小悦有18枚棋子,冬冬则有22枚.玩了若干局之后,小悦反而比冬冬多了10枚棋子.请问:此时小悦有多少枚棋子15、16、阿奇家有两根绳子,长的那根有163米,短的只有97米,他把两根绳子剪去同样长的一段,结果长绳所剩长度比短绳所剩长度的7倍还多6米.那么两根绳子都剪去了多少米17、18、用杯子往一个空瓶里倒水,如果倒进6杯水,连瓶共重680克,如果倒进9杯水,连瓶共重920克.求空瓶的重量.19、有两根粗细不同但长度相同的蜡烛,把它们同时点燃,1小时后细蜡烛缩短了15厘米,而粗蜡烛只缩短了3厘米,此时粗蜡烛长度正是细蜡烛的3倍.请问:粗蜡烛还能烧多久20、21、拍卖行卖出了两件艺术品,第一件的拍卖价格比第二件的3倍多3万元,而第二件的价钱比第一件的3倍少73万元.请问:这两件艺术品一共卖了多少万元22、23、两只老鼠“叽叽”和“喳喳”在吃面条,“叽叽”吃的面条比较长,有40厘米;“喳喳”吃的比较短,只有25厘米.它们吃面条的速度相同,过了一段时间后,长面条的长度是短面条的2倍.那么此时短面条还剩多少厘米24、25、一满瓶水可以装7杯水,如果从中倒出5杯水,剩下的水和瓶子共重520克;如果倒出3杯水,那么剩下的水和瓶子共重880克.请问:空瓶重多少克26、27、卡莉娅和萱萱都在织围巾,现在两人已经织好的围巾长度相同,但萱萱织得比较快.在接下来的两个月里,萱萱可以织120厘米,而卡莉娅只能织45厘米,因此两个月后,萱萱围巾的长度将会是卡莉娅的2倍.那么现在卡莉娅的围巾有多长28、29、墨莫想买一台电脑,有高端和低端两种选择,高端电脑的价格比低端的2倍少1300元,低端电脑的价格则要比高端电脑的2倍少7300元.请问:低端电脑的价格是多少30、31、有甲、乙两个仓库,原来甲仓库存有65吨货物,乙仓库存有25吨货物.请问:从甲仓库调运多少吨货物到乙仓库,才能使得乙仓库的库存量变为甲仓库的2倍32、33、有两支粗细、材料都相同的蜡烛,长的能烧100分钟,短的能烧70分钟.同时点燃这两支蜡烛,过多少时间后,长蜡烛长度是短蜡烛的3倍34、35、在饭盒里装鸡蛋,如果放入3个鸡蛋,那么连盒共重250克;如果放入7个鸡蛋,则连盒共重470克.请问:一个鸡蛋有多重(假设每个鸡蛋重量相同)36、萱萱送给小山羊和卡莉娅两人一样多的饼干.小山羊比较贪吃,过了几天,小山羊已经吃了39块饼干,而卡莉娅只吃了17块.此时卡莉娅剩下的饼干数量是小山羊的3倍,请问:卡莉娅原来有多少饼干37、38、一次考试,墨莫的得分比卡莉娅的2倍少30分,而卡莉娅的得分比墨莫的2倍少120分,那么卡莉娅考了多少分39、思考题:1、一条鱼分为鱼头、鱼身、鱼尾三段.如果鱼尾重4千克,鱼头重量等于鱼身的一半加上鱼尾的重量,鱼身重量等于鱼头加鱼尾的重量.请问:这条鱼有多重。
练习15 两角和与差的三角函数与二倍角公式1.sin 22cos82cos22sin82︒︒︒︒-的值是( )A.12B.12-C.2D.2答案:D【详解】由题意,()()sin 22cos82cos 22sin82sin 2282sin 60︒︒-︒︒=︒-︒=-︒=2. 已知tan 3β=,()tan 5αβ-=,则tan α的值为( )A.47-B.47 C .18 D.18- 答案:A【详解】()()()tan tan 534tan tan 1tan tan 1537αββααββαββ-++=-+===-⎡⎤⎣⎦---⨯.3. 在ABC △中,34cos ,cos 55A B ==,则()cos A B -=( )A.725-B.0C.925D.2425答案:D【详解】在ABC 中, ()0A B π∈、,.因为34cos ,cos 45A B ==,所以4sin 5A ===,3sin 5===B ,所以()344324cos cos cos sin sin 555525A B A B A B -=+=⨯+⨯=. 4. 函数cos22sin y x x =+的值域为( )A.[]1,3B.[]3,1-C.31,2⎡⎤⎢⎥⎣⎦D.33,2⎡⎤-⎢⎥⎣⎦答案:D【详解】2cos22sin 12sin 2sin y x x x x =+=-+,令sin [1,1]t x =∈-,则22132212()22y t t t =-++=--+,有12t =时,max 32y =,1t =-时,min 3y =-,函数cos22sin y x x =+的值域为33,2⎡⎤-⎢⎥⎣⎦.5. 已知等腰三角形顶角的余弦值等于45,则这个三角形底角的正弦值为( )A. 10B.C. 10D.-10答案:C【详解】底角为锐角,()4cos 205πθ-=>,即24cos 212sin ,sin 5θθθ=-=-=6. 已知α,β均为锐角,且sin α=cos β=,则αβ-的值为( )A .π4B .π4- C .3π4D .3π4-【答案】B【详解】∵α,β均为锐角,且sin α,cos β=∴cos α==,sin β==∴()sin sin cos cos sin αβαβαβ-=-==. 又∵α,β均为锐角 ∴ππ22αβ-<-<. ∴π4αβ-=-.故选:B.7. 已知ππ,,tan 242αα⎡⎤∈=⎢⎥⎣⎦,则22πsin 2cos 14αα⎛⎫--+ ⎪⎝⎭的值为___________. 答案:710【详解】因为ππ,42α⎡⎤∈⎢⎥⎣⎦,所以π2,π2α⎡⎤∈⎢⎥⎣⎦,因为tan 2α=,所以2222sin cos 2tan 4sin 22sin cos sin cos 1tan 5ααααααααα====++ 22222222cos sin 1tan 143cos 2cos sin cos sin 1tan 145ααααααααα---=-====-+++,22π1cos 2π2sin 2cos 1cos 242αααα⎛⎫-- ⎪⎛⎫⎝⎭--+=- ⎪⎝⎭411sin 2375cos 222510αα--⎛⎫=-=--= ⎪⎝⎭ 8. 函数()cos2cos sin 2sin f x x x x x =-的最小正周期为________. 答案:23π【详解】()()cos 2cos sin 2sin cos 2cos3f x x x x x x x x =⋅-⋅=+=,所以最小正周期为23π 9. 已知353sin(),cos()41345αβππ+=-=,且3044αβπ<<<<π,则()sin αβ+的值是________.答案:5665【详解】因35sin()413πα+=,即5sin[()]2413ππα++=,则5cos()413πα+=又04πα<<,即442πππα<+<,则12sin()413πα+==, 而3cos()45πβ-=,344πβπ<<,即042ππβ<-<,4sin()45πβ-=,则有s i n ()s i n [()(44444πππππαβαβαβ+=++-=+-123545613513565=⋅+⋅=. 10. 已知3sin 45x π⎛⎫-= ⎪⎝⎭,则sin 2x =__________.答案:725【详解】因为3sin 45x π⎛⎫-= ⎪⎝⎭,所以sin 2cos 2cos 224x x x ππ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭223712sin 124525x π⎛⎫⎛⎫=--=-⨯=⎪ ⎪⎝⎭⎝⎭. 11. 设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=_________. 答案:【详解】f (x )=sin x -2cos xx x ⎫⎪⎪⎝⎭x -φ),其中sin φcos φ=x -φ=2kπ+2π (k ∈Z)时,函数f (x )取得最大值,即θ=2kπ+2π+φ时,函数f (x )取到最大值,所以cos θ=-sin φ12.函数()2sin()sin()44f x x x ππ=+-的图象的对称轴方程为_________________.【答案】π,2k x k =∈Z 【详解】因为ππsin()cos 44x x ⎛⎫+=- ⎪⎝⎭所以πππππ2sin sin =2sin cos sin 22cos 244444x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⋅---=-⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故()f x 对称轴为π2π=2k x k x k =⇒∈Z ,.故答案为:,2k x k π=∈Z。
和差倍角1.在△ABC 中,已知2sinAcosB =sinC ,则△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形2.2cos10°-sin20°sin70°的值是( ) A .12B .32C . 3D . 23.f(x)=sinx cosx1+sinx +cosx 的值域为( )A .(―3―1,―1) ∪(―1, 3―1)B .[-2-12,―1] ∪(―1, 2-12)C .(-3-12,3-12)D .[-2-12,2-12]4.已知x ∈(-π2,0),cosx =45,则tan2x 等于( ) A .724B .-724C .247D .-2475.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( )A .tan θ2<cot θ2,B .tan θ2>cot θ2,C .sin θ2<cos θ2,D .sin θ2>cos θ2.6.已知0<α<π2,tan α2+cot α2=52,则sin(α-π3)的值为( )A .4+3310B .4-3310C .33-410D .-4+33107.等式sin α+3cos α=4m -64-m 有意义,则m 的取值范围是( )A .(-1,73)B .[-1,73]C .[-1,73]D .[―73,―1]8.在△ABC 中,tanA tanB >1是△ABC 为锐角三角形的 ( ) A .充要条件B .仅充分条件 C .仅必要条件D .非充分非必要条件 9.已知α.β是锐角,sin α=x ,cos β=y ,cos(α+β)=-35,则y 与x 的函数关系式为( )A .y =―351―x 2+45x (35<x <1) B .y =―351―x 2+45x (0<x <1) C .y =―351―x 2―45x (0<x <35= D .y =―351―x 2―45x (0<x <1=10.已知α∈(0,π),且sin α+cos α=15,则tan α的值为( )A .-43B .-43 或-34C .-34D .43 或-3411.在△ABC 中,已知tan A +B2=sinC ,则以下四个命题中正确的是( )(1)tanA ·cotB =1.(2)1<sinA +sinB ≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C . A .①③ B .②④ C .①④ D .②③二、填空题:13.若x =π3是方程2cos(x +α)=1的解,α∈(0,2π),则α=___________14.已知cos θ+cos 2θ=1,则sin 2θ+sin 6θ+sin 8θ=___________ 15.函数y =5sin(x +20°)-5sin(x +80°)的最大值是___________16.若圆内接四边形的四个顶点A 、B 、C 、D 把圆周分成AB ︵∶BC ︵∶CD ︵∶DA ︵=4∶3∶8∶5,则四边形四个内角A 、B 、C 、D 的弧度数为___________三、解答题17.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos (α+β).18.已知f(x)=2asin 2x -22asinx +a +b 的定义域是[0, π2],值域是[-5,1],求a 、b 的值.19.已知6sin 2α+sin αcos α-2cos 2α=0,α∈[π2,π],求sin(2α+π3)的值.20.在△ABC 中,sinA +cosA =22,AC =2,AB =3,求tanA 的值和△ABC 的面积.21.在矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使得AB +BP =PD ,求tan ∠APD 的值.22.是否存在锐角α和β,使α+2β=2π3①,且tan α2tan β=2-3②,同时成立?若存在,求出α和β的值;若不存在,请说明理由.参考答案:1.B 由2sinAcosB =sin(A +B)⇒sin(B -A)=0⇒B =A .2.C 原式=2cos(30°―20°)―sin20°cos20°=3cos20°cos20°=3.3.B 令t =sin x +cos x =2sin(x +π4)∈[―2,―1]∪(―1, 2).则f(x)=t 2-121+t=t -12∈[-2-12,―1]∪(―1, 2-12).4.D .5.B ∵sin θ>0,cos θ<0,tan θ2-cot θ2=sinθ2cos θ2-cos θ2sinθ2=-2cos θsin θ>0.∴tanθ2>cot θ2.6.B tanα2+cot α2=2sin α=52.∴sin α=45.cos α=35. sin(α-π3)=12sin α-32cos α=4-3310. 7.C 8.A9.A y =cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =―351―x 2+45x >0⇒4x >31―x 2⇒35<x <1.10.A 解:当α∈(0,π2)时,sin α+cos α=2sin(α+π4)>1.故α∈(π2,π). ∴sin α>0,cos α<0.且|sin α|>|cos α|∴|tan α|>1. 由(sin α+cos α)2=125⇒sin2α=-2425⇒2tan α1+tan 2α=-2425⇒tan α=-43或tan α=-34(舍). 11.B 解:由tan A +B 2=1-cos(A +B)sin(A +B)=1+cosC sinC =sinC 。
角的和差倍分专项训练题21.如图,已知OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOE=140°,∠BOC比∠COD的2倍还多10°,那么∠AOB是多少度?2.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=160°,∠COD=30°,那么∠AOB是多少度?3.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.∠DOE= -(1)∠AOC= +;∠BOD= +;∠DOE= -;∠AOB= -;(2)如果∠AOB=400,∠DOE=300,那么∠BOD是多少度?(3)如果∠AOE=1400,∠COD=300,那么∠AOB是多少度?4.如图,已知∠AOC:∠BOC=1:3,∠AOD:∠BOD=5:7,若∠COD=150,求∠AOB的度数5.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起.(1)如果∠DCE=36°,则∠ACB的度数为;(2)写出图中相等的角.如果∠DCE≠36°,它们还会相等吗?(3)若∠DCE变小,∠ACB如何变化?(4)在下图中利用能够画直角的工具再画一个与∠DCB相等的角6.如图,将两块直角三角尺的直角顶点O叠放在一起.(1)若∠BOC=400,试求∠AOD的度数.(2)若∠AOD=1350,试求∠BOC的度数.(3)若∠BOC=α,∠AOD=β,请写出α与β的大小关系式,并说明理由7.如图,将一副三角尺的两个直角顶点O重合在一起,在同一平面内旋转其中一个三角尺.(1)如图1,若∠BOC=700,则∠AOD= ;(2)如图2,若∠BOC=500,则∠AOD= ;(3)如图1,请猜想∠BOC与∠AOD 的关系,并写出理由8.如图所示,将两块三角尺的直角顶点重合,(1)写出以C为顶点的相等的角;(2)若∠A=1500,求∠DCE的度数;(3)写出∠ACB与∠DCE之间所具有的数量关系;(4)当三角尺ACD不动,将三角尺ECB的EC边与AC边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠ACE(00<∠ACE <900)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度的所有可能值,不用说明理由。
六年级角的和差练习题一、填空题1. 一个角的补角是120°,这个角的度数是______°。
2. 两个角的和是180°,其中一个角是30°,另一个角是______°。
3. 若一个角是100°,则它的余角是______°。
4. 两个锐角的和是______°。
5. 一个直角和一个钝角的和是______°。
二、选择题1. 下列哪个角的补角是它本身?A. 45°B. 90°C. 180°D. 0°2. 两个角的和是360°,那么这两个角可能是:A. 两个锐角B. 一个锐角和一个直角C. 一个锐角和一个钝角D. 两个钝角3. 一个角的补角比它的余角大______°。
A. 45°B. 90°C. 135°D. 180°4. 下列哪个角的和是一个直角?A. 30°和60°B. 45°和45°C. 60°和60°D. 70°和20°三、判断题1. 两个角的和是180°,则这两个角互为补角。
()2. 一个角的补角比它的余角大90°。
()3. 两个锐角的和一定小于180°。
()4. 一个钝角和一个锐角的和一定大于180°。
()四、计算题1. 已知一个角的补角是130°,求这个角的度数。
2. 两个角的和是255°,其中一个角是125°,求另一个角的度数。
3. 一个角的补角比它的余角大75°,求这个角的度数。
4. 已知三个角的和是360°,其中第一个角是90°,第二个角是120°,求第三个角的度数。
5. 一个角的补角和它的余角的和是180°,求这个角的度数。
两角和与差、二倍角的三角函数公式课时作业1.若tan α=3,tan β=3,则tan(α-β)等于( )A .-3B .-13 C .32.求值:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( )A .-32 B .-123.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则tan ⎝ ⎛⎭⎪⎫α+π4等于( )B .7C .-17D .-74.已知sin(α-β)cos α-cos(α-β)sin α=35,那么cos 2β的值为( )C .-725D .-18255.已知0<α<π,sin α+cos α=12,则cos 2α的值为( )B .-74C .±74 D .-346.已知α,β为锐角且cos α=110,cos β=15,则α+β的值等于________.7已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35, sin ⎝ ⎛⎭⎪⎫β-π4=1213,则cos ⎝ ⎛⎭⎪⎫α+π4=________.8已知α,β均为锐角,且sin α-sin β=-12,cos α-cos β=13,则cos(α-β)=________.年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如右图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于________.10已知cos ()α+β=45,cos ()α-β=-45,且32π<α+β<2π, π2<α-β<π,分别求cos 2α和cos 2β的值.11已知函数f (x )=sin x +sin(x +π2),x ∈R .(1)求f (x )的最小正周期;(2)求f (x )的最大值和最小值,并求出取得最值时的x 的值; (3)若f (α)=34,求sin 2α的值.12设f (x )=6cos 2x -3sin 2x . (1)求f (x )的最大值及最小正周期;(2)若锐角α满足f (α)=3-23,求tan 45α的值.参考答案1.D 7,-5665,8..59729.解析:图中小正方形的面积为1,大正方形的面积为25,∴ 每一个直角三角形的面积是6,设直角三角形的两条直角边长分别为a ,b ,则⎩⎪⎨⎪⎧a 2+b 2=2512ab =6 ,∴ 两条直角边的长分别为3,4,直角三角形中较小的锐角为θ,cos θ=45,cos 2θ=2cos 2θ-1=725. 答案:72510.cos 2α=-725,cos 2β=-111.(1)2π (2)当x =π4+2k π,k ∈Z 时,f (x )max =2当x =-3π4+2k π,k ∈Z 时,f (x )min =-2(3)-71612.(1)f (x )的最大值为23+3;最小正周期为T =π. (2)3。
角的和差倍分专项训练题2
1.如图,已知OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOE=140°,∠BOC比∠COD的2倍还多10°,那么∠AOB是多少度?
2.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=160°,∠COD=30°,那么∠AOB是多少度?
3.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.∠DOE= -(1)∠AOC= +;∠BOD= +;∠DOE= -;∠AOB= -;(2)如果∠AOB=400,∠DOE=300,那么∠BOD是多少度?(3)如果∠AOE=1400,∠COD=300,那么∠AOB是多少度?
4.如图,已知∠AOC:∠BOC=1:3,∠AOD:∠BOD=5:7,若∠COD=150,求∠AOB的度数
5.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起.(1)如果∠DCE=36°,则∠ACB的度数为;(2)写出图中相等的角.如果∠DCE≠36°,它们还会相等吗?(3)若∠DCE变小,∠ACB如何变化?(4)在下图中利用能够画直角的工具再画一个与∠DCB相等的角
6.如图,将两块直角三角尺的直角顶点O叠放在一起.(1)若∠BOC=400,试求∠AOD的度数.(2)若∠AOD=1350,试求∠BOC的度数.(3)若∠BOC=α,∠AOD=β,请写出α与β的大小关系式,并说明理由
7.如图,将一副三角尺的两个直角顶点O重合在一起,在同一平面内旋转其中一个三角尺.(1)如图1,若∠BOC=700,则∠AOD= ;(2)如图2,若∠BOC=500,则∠AOD= ;(3)如图1,请猜想∠BOC与∠AOD 的关系,并写出理由
8.如图所示,将两块三角尺的直角顶点重合,(1)写出以C为顶点的相等的角;(2)若∠A=1500,求∠DCE的度数;(3)写出∠ACB与∠DCE之间所具有的数量关系;(4)当三角尺ACD不动,将三角尺ECB的EC边与AC边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠ACE(00<∠ACE <900)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度的所有可能值,不用说明理由。