北京大学高等数学考题期末考试题考试试题复习_A卷
- 格式:pdf
- 大小:995.88 KB
- 文档页数:26
北京 2023年历年真题考试:高等数学(一)历年真题汇编(共62题)1、下列函数中在点x=0处导数不存在的是:(单选题)A. y=sinxB. y=tanxC. y=x<sup>1/3</sup>D. y=2<sup>x</sup>试题答案:C2、(单选题)A. AB. BC. CD. D试题答案:D3、微分方程sinxdx+cosydy=0的通解为:(单选题)A. cosy+sinx=CB. cosy-sinx=CC. siny+cosx=CD. siny-cosx=C试题答案:D4、函数y=2x+1的反函数是:(单选题)A. y=x/2+1/2B. y=x/2-1/2C. y=x/2+1D. y=x/2-1试题答案:B5、(单选题)A. AB. BC. CD. D试题答案:C6、函数的定义域是:(单选题)A. (-∞,-1]B. [1,+∞)C. [-1,1]D. (-∞,-1]U[1,+∞)试题答案:D7、下列函数中在点x=0处导数不存在的是:(单选题)A. y=sinxB. y=tanxC. y=x<sup>1/3</sup>D. y=2<sup>x</sup>试题答案:C8、当x→0时,下列变量中与tan(x2)等价的无穷小量是:(单选题)A. xB. 2xC. x</span><sup>2D. 2x<sup>2</sup><br />试题答案:C9、下列函数中为奇函数的是:(单选题)A. (1+x²)/(1-x²)B. sin(x²)C. (e<sup>x</sup>-e<sup>-x</sup>)/2D. |x|试题答案:C10、(单选题)A. AB. BC. CD. D试题答案:D11、(单选题)A. AB. BC. CD. D试题答案:B12、微分方程2ydy-dx=0的通解为:(单选题)A.B.C. y²=-x+CD. y²=x+C试题答案:D13、设∫f(x)dx=sin2x+C,则f(0)=(单选题)A. 2B. 1/2C. -1/2D. -2试题答案:A14、设函数f(x,y)=y1nx+x2,则¶f/¶x|(2,-2)=(单选题)A. 0B. 1C. 2D. 3试题答案:D15、函数y=2x+1的反函数是:(单选题)A. y=x/2+1/2B. y=x/2-1/2C. y=x/2+1D. y=x/2-1试题答案:B16、设函数z=sin(2x+3y),则全微分dz|(0,0)=(单选题)A. dx+dyB. 2dx+2dyC. 3dx+2dyD. 2dx+3dy试题答案:D17、(单选题)A. AB. BC. CD. D试题答案:B18、设函数f(x)在区间[a,b]上连续,则下列等式正确的是: (单选题)A.B.C.D.试题答案:A19、设函数z=ln(x+y2), 则全微分dz=(单选题)A. 1/(x+y<sup>2</sup>) (dx+2ydy)B. 1/(x+y<sup>2</sup>) (2dx+dy)C. 1/(x+y<sup>2</sup>) (2xdx+dy)D. 1/(x+y<sup>2</sup>) (dx+2dy)试题答案:A20、设函数z=sin(2x+3y),则全微分dz|(0,0)=(单选题)A. dx+dyB. 2dx+2dyC. 3dx+2dyD. 2dx+3dy试题答案:D21、设∫f(x)dx=sin2x+C,则f(0)=(单选题)A. 2B. 1/2C. -1/2D. -2试题答案:A22、不定积分∫(x2cosx)'dx=(单选题)A. 2xcosx-x<sup>2</sup>sinx+C<br />B. 2xcosx-x<sup>2</sup>sinx<br />C. x<sup>2</sup>cosx+C<br />D. x<sup>2</sup>cosx<br />试题答案:C23、下列各式中正确的是:(单选题)A.B.C.D.试题答案:D24、已知x=0是函数y=asinx+1/3sin3x的驻点,则常数a=(单选题)A. -2B. -1C. 0D. 1试题答案:B25、设函数f(x)在区间[a,b]上可导,且f'(x)<0,>0,则在[a,b]上:(单选题)A. f(x)>0B. f(x)<0C. f(x)=0D. f(x)的值有正有负试题答案:A26、方程x²+x-6=0的根是:(单选题)A. x=-2, x=3B. x=2, x=-3C. x=2, x=3D. x=-2, x=-3试题答案:B27、设函数f(x,y)=y1nx+x2,则¶f/¶x|(2,-2)=(单选题)A. 0B. 1C. 2D. 3试题答案:D28、(单选题)A. cos(ax²+b)B. cos(at²+b)C. sin(ax²+b)D. sin(at²+b)试题答案:C29、若f'(x)=x1/2,则f(x)=(单选题)A. 2/3x<sup>2/3</sup>+CB. 3/2x<sup>2/3</sup>+CC. 2/3x<sup>3/2</sup>+CD. 3/2x<sup>3/2</sup>+C试题答案:C30、设函数f(x)=x2,g(x)=tanx,则当x→0时,(单选题)A. f(x)是比g(x)高阶的无穷小量B. f(x)是比g(x)低阶的无穷小量C. f(x)是比g(x)是同阶无穷小量,但不是等价无穷小量D. f(x)是比g(x)是等价无穷小量试题答案:A31、(单选题)A. AB. BC. CD. D试题答案:A32、若极限,则常数k=(单选题)A. 1B. 2C. 3D. 4试题答案:B33、设函数y=x2+e2x,则二阶导数y"=2+2e2x(单选题)A. 2+2e<sup>2</sup><sup>x</sup>B. 2+4e<sup>2</sup><sup>x</sup>C. 2x+2e<sup>2</sup><sup>x</sup>D. 2x+4e<sup>2</sup><sup>x</sup>试题答案:B34、设函数f(x)在区间[a,b]上连续,则下列等式正确的是:(单选题)A.B.C.D.试题答案:A35、下列无穷限反常积分收敛的是:(单选题)A.B.C.D.试题答案:A36、某产品的成本函数C(Q)=20+2Q+1/2Q²,则Q=298时的边际成本为:(单选题)A. 100B. 200C. 300D. 400试题答案:C37、某产品的成本函数C(Q)=20+2Q+1/2Q²,则Q=298时的边际成本为:(单选题)A. 100B. 200C. 300D. 400试题答案:C38、方程x²+x-6=0的根是:(单选题)A. x=-2, x=3B. x=2, x=-3C. x=2, x=3D. x=-2, x=-3试题答案:B39、若曲线y=x-e x在点(x0,y0)处的切线斜率为0,则切点(x0,y0)是:(单选题)A. (1,1-e)B. (-1,-1-e<sup>-1</sup>)<br />C. (0,1)D. (0,-1)试题答案:D40、函数y=2x2 -4x +1的单调增加区间是:(单选题)A. (-∞,-1]B. (-∞,1]C. [-1,+∞)D. [1,+∞)试题答案:D41、微分方程sinxdx+cosydy=0的通解为:(单选题)A. cosy+sinx=CB. cosy-sinx=CC. siny+cosx=CD. siny-cosx=C试题答案:D42、若f'(x)=x1/2,则f(x)=(单选题)A. 2/3x<sup>2/3</sup>+CB. 3/2x<sup>2/3</sup>+CC. 2/3x<sup>3/2</sup>+CD. 3/2x<sup>3/2</sup>+C试题答案:C43、函数y=x5+1在定义域内:(单选题)A. 单调增加B. 单调减少C. 不增不减D. 有增有减试题答案:A44、(单选题)A. AB. BC. CD. D试题答案:C45、函数的定义域是:(单选题)A. (-∞,-1]B. [1,+∞)C. [-1,1]D. (-∞,-1]U[1,+∞)试题答案:D46、曲线y=xe x+1在点(0,1)处的切线方程为(单选题)A. y=1B. y=xC. y=x+1D. y=x-1试题答案:C47、函数y=2x2 -4x +1的单调增加区间是:(单选题)A. (-∞,-1]B. (-∞,1]C. [-1,+∞)D. [1,+∞)试题答案:D48、(单选题)A. cos(ax²+b)B. cos(at²+b)C. sin(ax²+b)D. sin(at²+b)试题答案:C49、函数y=(x-2)/(x2-3x+2)的间断点是:(单选题)A. x=1,x=-2B. x=-1,x=2C. x=-1,x=-2D. x=1,x=2试题答案:D50、极限=(单选题)A. 0B. 1C. eD. +∞试题答案:B51、曲线y=xe x+1在点(0,1)处的切线方程为(单选题)A. y=1B. y=xC. y=x+1D. y=x-1试题答案:C52、若曲线y=x-e x在点(x0,y0)处的切线斜率为0,则切点(x0,y0)是:(单选题)A. (1,1-e)B. (-1,-1-e<sup>-1</sup>)<br />C. (0,1)D. (0,-1)试题答案:D53、设函数z=ln(x+y2), 则全微分dz=(单选题)A. 1/(x+y<sup>2</sup>) (dx+2ydy)B. 1/(x+y<sup>2</sup>) (2dx+dy)C. 1/(x+y<sup>2</sup>) (2xdx+dy)D. 1/(x+y<sup>2</sup>) (dx+2dy)试题答案:A54、下列函数中为奇函数的是:(单选题)A. (1+x²)/(1-x²)B. sin(x²)C. (e<sup>x</sup>-e<sup>-x</sup>)/2D. |x|试题答案:C55、函数y=x5+1在定义域内:(单选题)A. 单调增加B. 单调减少C. 不增不减D. 有增有减试题答案:A56、(单选题)A. AB. BC. CD. D试题答案:A57、设函数f(x)在区间[a,b]上可导,且f'(x)<0,>0,则在[a,b]上:(单选题)A. f(x)>0B. f(x)<0C. f(x)=0D. f(x)的值有正有负试题答案:A58、下列各式中正确的是:(单选题)A.B.C.D.试题答案:D59、当x→0时,下列变量中与tan(x2)等价的无穷小量是:(单选题)A. xB. 2xC. x</span><sup>2D. 2x<sup>2</sup><br />试题答案:C60、若极限,则常数k=(单选题)A. 1B. 2C. 3D. 4试题答案:B61、不定积分∫(x2cosx)'dx=(单选题)A. 2xcosx-x<sup>2</sup>sinx+C<br />B. 2xcosx-x<sup>2</sup>sinx<br />C. x<sup>2</sup>cosx+C<br />D. x<sup>2</sup>cosx<br />试题答案:C62、设函数f(x)=x2,g(x)=tanx,则当x→0时,(单选题)A. f(x)是比g(x)高阶的无穷小量B. f(x)是比g(x)低阶的无穷小量C. f(x)是比g(x)是同阶无穷小量,但不是等价无穷小量D. f(x)是比g(x)是等价无穷小量试题答案:A。
北语高等数学试题及答案一、选择题(每题2分,共10分)1. 函数f(x) = x^2 - 4x + 4的最小值是:A. 0B. 1C. 4D. 8答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. 2答案:B3. 以下哪个选项是函数y = e^x的反函数?A. y = ln(x)B. y = e^(-x)C. y = x^eD. y = e^x答案:A4. 曲线y = x^3 - 3x^2 + 2在x = 1处的切线斜率是:A. -1B. 2C. 4D. -4答案:B5. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + ...D. 1/2 + 1/4 + 1/8 + ...答案:D二、填空题(每题3分,共15分)6. 函数f(x) = 2x - 3的反函数是________。
答案:f^(-1)(x) = (x + 3)/27. 函数y = ln(x)的定义域是________。
答案:(0, +∞)8. 函数f(x) = x^2 + 2x + 1的极小值点是x = ________。
答案:-19. 曲线y = x^2在x = 2处的切线方程是y = 4x - 4或4x - y - 4 = 0。
答案:4x - y - 4 = 010. 函数f(x) = sin(x) + cos(x)的周期是________。
答案:2π三、解答题(每题10分,共40分)11. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
解:首先求导数f'(x) = 3x^2 - 12x + 11,令f'(x) = 0,解得x = 1或x = 11/3。
再求二阶导数f''(x) = 6x - 12,代入x = 1和x = 11/3,得到f''(1) = -6 < 0,f''(11/3) = 2 > 0,因此x = 1是极大值点,x = 11/3是极小值点。
北京大学高等数学A 期末考试试卷2016~2017学年第2学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号姓名年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为。
2.设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ=。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为。
4.设yz u x =,则du =。
5.级数11(1)npn n ∞=-∑,当p 满足条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是()A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →=()A .14B .12-C .14-D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是() A .直线L 平行于平面πB .直线L 在平面π上 C .直线L 垂直于平面πD .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ=()A .33()2b a π-B .332()3b a π-C .334()3b a π-D .333()2b a π-5.下列级数收敛的是()A .11(1)(4)n n n ∞=++∑B .2111n n n ∞=++∑C .1121n n ∞=-∑D.n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 微分方程'x y y e +=满足初始条件0x =,2y =的特解。
1.求2.计算二重积分22Dx ydxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。
北京大学数学科学学院期末试题考试科目 高等代数I 考试时间 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001.1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010 . 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0I rQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010*********, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A.{}11x x -≤< B.{}3x x >-C.{}|34x x -<< D.{}4x x <2.已知1i iz=--,则z =().A.1i --B.1i -+C.1i- D.1i+3.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A. B.2 C.3 D.4.在(4x -的展开式中,3x 的系数为()A .6B.6- C.12D.12-5.设a ,b 是向量,则“()()·0a b a b +-= ”是“a b =- 或a b = ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=()A.1B.2C.3D.47.生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A.2132N N =B.2123N N =C.2321N N = D.3221N N =8.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A.12122log 22y y x x ++< B.12122log 22y y x x ++>C.12212log 2y y x x +<+ D.12212log 2y y x x +>+10.已知()(){}2,|,12,01M x y y x t xx x t ==+-≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则()A.3d =,1S <B.3d =,1S >C.d =,1S < D.d =,1S >第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.抛物线216y x =的焦点坐标为________.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为________.13.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为________.14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为______mm ,升量器的高为________mm .15.设与是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若与均为等差数列,则M 中最多有1个元素;②若与均为等比数列,则M 中最多有2个元素;③若为等差数列,为等比数列,则M 中最多有3个元素;④若为递增数列,为递减数列,则M 中最多有1个元素.其中正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.17.如图,在四棱锥P ABCD -中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.18.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)19.已知椭圆E :()222210+=>>x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线.(1)当1k =-时,求()f x 的单调区间.(2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACO S 与ABOS 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21.已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A.{}11x x -≤< B.{}3x x >-C.{}|34x x -<< D.{}4x x <【答案】C 【解析】【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.已知1i iz=--,则z =().A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】直接根据复数乘法即可得到答案.【详解】由题意得()i 1i i 1z =--=-.故选:C.3.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A.B.2C.3D.【答案】D 【解析】【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+==故选:D.4.在(4x -的展开式中,3x 的系数为()A.6B.6- C.12D.12-【答案】A 【解析】【分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T xxr --+==-=,令432r-=,解得2r =,故所求即为()224C 16-=.故选:A.5.设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量数量积分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件分析判断.【详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b =,即()()0a b a b +⋅-= ,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.6.设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=()A .1B.2C.3D.4【答案】B 【解析】【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:1x 为()f x 的最小值点,2x 为()f x 的最大值点,则12minπ22T x x -==,即πT =,且0ω>,所以2π2Tω==.故选:B.7.生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A.2132N N =B.2123N N =C.2321N N = D.3221N N =【答案】D 【解析】【分析】根据题意分析可得12112.1,3.15ln ln S S N N --==,消去S 即可求解.【详解】由题意得12112.1, 3.15ln ln S S N N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =.故选:D.8.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.【答案】D 【解析】【分析】取点作辅助线,根据题意分析可知平面PEF ⊥平面ABCD ,可知⊥PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====,分别取,AB CD 的中点,E F ,连接,,PF EF ,则,PE AB EF AB ⊥⊥,且PE EF E ⋂=,,PE EF ⊂平面PEF ,可知AB ⊥平面PEF ,且AB ⊂平面ABCD ,所以平面PEF ⊥平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ⊥,由平面PEF 平面ABCD EF =,PO ⊂平面PEF ,所以⊥PO 平面ABCD ,由题意可得:2,4PE PF EF ===,则222PE PF EF +=,即PE PF ⊥,则1122PE PF PO EF ⋅=⋅,可得PE PF PO EF⋅==,当相对的棱长相等时,不妨设4PA PC ==,PB PD ==,因为BD PB PD ==+,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A.12122log 22y y x x ++< B.12122log 22y y x x ++>C.12212log 2y y x x +<+ D.12212log 2y y x x +>+【答案】B 【解析】【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误;对于选项C :例如121,x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误,故选:B.10.已知()(){}2,|,12,01M x y y x t xx x t ==+-≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则()A.3d =,1S <B.3d =,1S >C.d =,1S <D.d =,1S >【答案】C 【解析】【分析】先以t 为变量,分析可知所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩,结合图形分析求解即可.【详解】对任意给定[]1,2x ∈,则()210xx x x -=-≥,且[]0,1t ∈,可知()222x x t x x x x x x ≤+-≤+-=,即2x y x ≤≤,再结合x 的任意性,所以所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩,如图阴影部分所示,其中()()()1,1,2,2,2,4A B C,可知任意两点间距离最大值d AC ==;阴影部分面积11212ABC S S <=⨯⨯△.故选:C.【点睛】方法点睛:数形结合的重点是“以形助数”,在解题时要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维.使用数形结合法的前提是题目中的条件有明确的几何意义,解题时要准确把握条件、结论与几何图形的对应关系,准确利用几何图形中的相关结论求解.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.抛物线216y x =的焦点坐标为________.【答案】()4,0【解析】【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,由此即可得解.【详解】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为________.【答案】12-##0.5-【解析】【分析】首先得出π2π,Z k k βα=++∈,结合三角函数单调性即可求解最值.【详解】由题意π2π,Z k k βα=++∈,从而()cos cos π2πcos k βαα=++=-,因为ππ,63α⎡⎤∈⎢⎥⎣⎦,所以cos α的取值范围是1,22⎡⎢⎣⎦,cos β的取值范围是1,22⎡⎤--⎢⎥⎣⎦,当且仅当π3α=,即4π2π,Z 3k k β=+∈时,cos β取得最大值,且最大值为12-.故答案为:12-.13.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为________.【答案】12(或12-,答案不唯一)【解析】【分析】联立直线方程与双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12(或12-,答案不唯一).14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为______mm ,升量器的高为________mm .【答案】①.23②.57.5##1152【解析】【分析】根据体积为公比为10的等比数列可得关于高度的方程组,求出其解后可得前两个圆柱的高度.【详解】设升量器的高为1h ,斗量器的高为2h (单位都是mm ),则2222212325325ππ230221065325ππ22h h h ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,故223mm h =,1115mm 2h =.故答案为:11523mm,mm 2.15.设与是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若与均为等差数列,则M 中最多有1个元素;②若与均为等比数列,则中最多有2个元素;③若为等差数列,为等比数列,则M 中最多有3个元素;④若为递增数列,为递减数列,则M 中最多有1个元素.其中正确结论的序号是______.【答案】①③④【解析】【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.【详解】对于①,因为{}{},n n a b 均为等差数列,故它们的散点图分布在直线上,而两条直线至多有一个公共点,故M 中至多一个元素,故①正确.对于②,取()112,2,n n n n a b --==--则{}{},n n a b 均为等比数列,但当n 为偶数时,有()1122n n n n a b --===--,此时M 中有无穷多个元素,故②错误.对于③,设()0,1nn b AqAq q =≠≠±,()0n a kn b k =+≠,若M 中至少四个元素,则关于n 的方程n Aq kn b =+至少有4个不同的正数解,若0,1q q >≠,则由n y Aq =和y kn b =+的散点图可得关于n 的方程n Aq kn b =+至多有两个不同的解,矛盾;若0,1q q <≠±,考虑关于n 的方程n Aq kn b =+奇数解的个数和偶数解的个数,当n Aq kn b =+有偶数解,此方程即为nA q kn b =+,方程至多有两个偶数解,且有两个偶数解时ln 0Ak q >,否则ln 0Ak q <,因,ny A q y kn b ==+单调性相反,方程nA q kn b =+至多一个偶数解,当n Aq kn b =+有奇数解,此方程即为nA q kn b -=+,方程至多有两个奇数解,且有两个奇数解时ln 0Ak q ->即ln 0Ak q <否则ln 0Ak q >,因,ny A q y kn b =-=+单调性相反,方程nA q kn b =+至多一个奇数解,因为ln 0Ak q >,ln 0Ak q <不可能同时成立,故n Aq kn b =+不可能有4个不同的整数解,即M 中最多有3个元素,故③正确.对于④,因为{}n a 为递增数列,{}n b 为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)2π3A =;(2)选择①无解;选择②和③△ABC 面积均为1534.【解析】【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出33sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sinC ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【小问1详解】由题意得32sin cos cos 7B B B =,因为A 为钝角,则cos 0B ≠,则32sin 7B b =,则7sin sin sin 37b a BA A ===,解得3sin 2A =,因为A 为钝角,则2π3A =.【小问2详解】选择①7b =,则sin 714142B b ==⨯=,因为2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则33sin 14B ==,则代入32sin 7B b =得3332147b ⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭13121421414⎛⎫=⨯+-⨯=⎪⎝⎭,则11sin 7322144ABC S ab C ==⨯⨯⨯=.选择③sin c A =2c ⨯=,解得5c =,则由正弦定理得sin sin a c A C =5sin 32C =,解得53sin 14C =,因为C 为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+ ⎪⎝⎭3111533321421414⎛⎫=⨯+-⨯=⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯=△17.如图,在四棱锥P ABCD -中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.【答案】(1)证明见解析(2)3030【解析】【分析】(1)取PD 的中点为S ,接,SF SC ,可证四边形SFBC 为平行四边形,由线面平行的判定定理可得//BF 平面PCD .(2)建立如图所示的空间直角坐标系,求出平面APB 和平面PCD 的法向量后可求夹角的余弦值.【小问1详解】取PD 的中点为S ,接,SF SC ,则1//,12SF ED SF ED ==,而//,2ED BC ED BC =,故//,SF BC SF BC =,故四边形SFBC 为平行四边形,故//BF SC ,而BF ⊄平面PCD ,SC ⊂平面PCD ,所以//BF 平面PCD .【小问2详解】因为2ED =,故1AE =,故//,=AE BC AE BC ,故四边形AECB 为平行四边形,故//CE AB ,所以CE ⊥平面PAD ,而,PE ED ⊂平面PAD ,故,CE PE CE ED ⊥⊥,而PE ED ⊥,故建立如图所示的空间直角坐标系,则()()()()()0,1,0,1,1,0,1,0,0,0,2,0,0,0,2A B C D P --,则()()()()0,1,2,1,1,2,1,0,2,0,2,2,PA PB PC PD =--=--=-=-设平面PAB 的法向量为(),,m x y z =,则由0m PA m PB ⎧⋅=⎪⎨⋅=⎪⎩可得2020y z x y z --=⎧⎨--=⎩,取()0,2,1m =- ,设平面PCD 的法向量为(),,n a b c =,则由0n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩可得20220a b b c -=⎧⎨-=⎩,取()2,1,1n = ,故cos ,30m n ==-,故平面PAB 与平面PCD 夹角的余弦值为303018.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)【答案】(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中()E X 估计值【解析】【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求ξ的分布列及数学期望,从而可求()E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求()E Y ,从而即可比较大小得解.【小问1详解】设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得()603010180010060301010P A ++==++++.【小问2详解】(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题设中的统计数据可得()()800410010,0.810005100010P P ξξ======,603( 1.6)100050P ξ===,303( 2.4)1000100P ξ===,101(3)1000100P ξ===,故()4133100.8 1.6 2.430.27851050100100E ξ=⨯+⨯+⨯+⨯+⨯=故()0.40.2780.122E X =-=(万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255⨯⨯+⨯⨯=,故()0.1220.40320.40.1252E Y =+-=(万元),从而()()E X E Y <.19.已知椭圆E :()222210+=>>x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)221,422x y e +==(2)2t =【解析】【分析】(1)由题意得b c ==,进一步得a ,由此即可得解;(2)设(:,0,AB y kx t k t =+≠>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k --+==++,而()121112:y y AD y x x y x x -=-++,令0x =,即可得解.【小问1详解】由题意b c ===,从而2a ==,所以椭圆方程为22142x y +=,离心率为2e =;【小问2详解】直线AB 斜率不为0,否则直线AB与椭圆无交点,矛盾,从而设(:,0,AB y kx t k t =+≠>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++-=,由题意()()()222222Δ1682128420k t k t k t=-+-=+->,即,k t 应满足22420kt +->,所以2121222424,1221kt t x x x x k k --+==++,若直线BD 斜率为0,由椭圆的对称性可设()22,D x y -,所以()121112:y y AD y x x y x x -=-++,在直线AD 方程中令0x =,得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t-++++++====+==+++-,所以2t =,此时k 应满足222424200k t k k ⎧+-=->⎨≠⎩,即k 应满足22k <-或22k >,综上所述,2t =满足题意,此时22k <-或22k >.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线.(1)当1k =-时,求()f x 的单调区间.(2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACO S 与ABOS 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)【答案】(1)单调递减区间为(1,0)-,单调递增区间为(0,)+∞.(2)证明见解析(3)2【解析】【分析】(1)直接代入1k =-,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭,将(0,0)代入再设新函数()ln(1)1tF t t t=+-+,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S = 得到13ln(1)21501tt t t+--=+,再设新函数15()13ln(1)2(0)1th t t t t t=+-->+研究其零点即可.【小问1详解】1()ln(1),()1(1)11x f x x x f x x x x'=-+=-=>-++,当()1,0x ∈-时,′<0;当∈0,+∞,′>0;()f x ∴在(1,0)-上单调递减,在(0,)+∞上单调递增.则()f x 的单调递减区间为(1,0)-,单调递增区间为(0,)+∞.【小问2详解】()11k f x x '=++,切线l 的斜率为11k t++,则切线方程为()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭,将(0,0)代入则()1,()111k k f t t f t t t t ⎛⎫⎛⎫-=-+=+ ⎪ ⎪++⎝⎭⎝⎭,即ln(1)1k t k t t tt ++=++,则ln(1)1t t t +=+,ln(1)01tt t +-=+,令()ln(1)1tF t t t=+-+,假设l 过(0,0),则()F t 在(0,)t ∈+∞存在零点.2211()01(1)(1)t t t F t t t t +-'=-=>+++,()F t ∴在(0,)+∞上单调递增,()(0)0F t F >=,()F t ∴在(0,)+∞无零点,∴与假设矛盾,故直线l 不过(0,0).【小问3详解】1k =时,12()ln(1),()1011x f x x x f x x x+'=++=+=>++.1()2ACO S tf t = ,设l 与y 轴交点B 为(0,)q ,0t >时,若0q <,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q ≠.所以0q >,则切线l 的方程为()()1ln 111y t t x t t ⎛⎫--+=+- ⎪+⎝⎭,令0x =,则ln(1)1t y q y t t ===+-+.215ACO ABO S S = ,则2()15ln(1)1t tf t t t t ⎡⎤=+-⎢⎥+⎣⎦,13ln(1)21501t t t t ∴+--=+,记15()13ln(1)2(0)1th t t t t t=+-->+,∴满足条件的A 有几个即()h t 有几个零点.()()()()()()()()2222221313221152141315294211111t t t t t t t h t t t t t t +-++--+--+-=--=++'==+++,当10,2t ⎛⎫∈ ⎪⎝⎭时,()0h t '<,此时()h t 单调递减;当1,42t ⎛⎫∈⎪⎝⎭时,()0h t '>,此时()h t 单调递增;当()4,t ∞∈+时,()0h t '<,此时()h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h ⎛⎫==-⨯-=> ⎪⎝⎭,15247272(24)13ln 254826ln 548261.614820.5402555h ⨯=--=--<⨯--=-<,所以由零点存在性定理及()h t 的单调性,()h t 在1,42⎛⎫⎪⎝⎭上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S =的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.21.已知集合()}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.【答案】(1)():3,4,4,5,8,4,3,10A Ω(2)不存在符合条件的Ω,理由见解析(3)证明见解析【解析】【分析】(1)直接按照()ΩA 的定义写出()ΩA 即可;(2)解法一:利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列Ω共有8项,可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验即可;(3)解法一:分充分性和必要性两方面论证;解法二:若12345678a a a a a a a a +=+=+=+,分类讨论1357,,,a a a a 相等得个数,结合题意证明即可;若存在序列Ω,使得()ΩA 为常数列,结合定义分析证明即可.【小问1详解】因为数列:1,3,2,4,6,3,1,9A ,由序列()11,3,5,7T 可得()1:2,3,3,4,7,3,2,9T A ;由序列()22,4,6,8T 可得()21:2,4,3,5,7,4,2,10T T A ;由序列()31,3,5,7T 可得(321:3,4,4,5,8,4,3,10T T T A ;所以()Ω:3,4,4,5,8,4,3,10A .【小问2详解】解法一:假设存在符合条件的Ω,可知()ΩA 的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++,则()()()()121234342642a a a a sa a a a s⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立,故不存在符合条件的Ω;解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4,假设存在符合条件的Ω,且()128Ω:,,,A b b b ⋅⋅⋅,因为2642824484+++++++=,即序列Ω共有8项,由题意可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验可知:当2,3n =时,上式不成立,即假设不成立,所以不存在符合条件的Ω.【小问3详解】解法一:我们设序列()21...s T T T A 为{}(),18s n a n ≤≤,特别规定()0,18nn aa n =≤≤.必要性:若存在序列12:,,s T T T Ω ,使得()ΩA 的各项都相等.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+.根据()21...s T T T A 的定义,显然有,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.所以不断使用该式就得到12345678,1,2s s a a a a a a a a a a s +=+=+=+=+-,必要性得证.充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()ΩA 中,使得,1,2,3,4,5,7,8s s s s s s s s a a a a a a a a -+-+--最小的一个.上面已经说明,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,812s s s s s s s s a a a a a a a a a a s +=+=+=+=++.同时,由于t t t t i j k w +++总是偶数,所以,1,3,5,7t t t t a a a a +++和,2,4,6,8t t t t a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数.下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a -≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+->,不妨设,3,40s s a a ->.情况2-1:如果,3,41s s a a -≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2-2:如果,4,31s s a a -≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,7,8s s s s s s s s a a a a a a a a -+-+--的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a --≤.假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a --≤可知必有{}{},21,2,,1s j s j a a N N -=+.而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j k w 之和为偶数,对该数列进行一次变换(),,,i j k w ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j --==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),Ωs na A =是常数列,充分性得证.解法二:由题意可知:Ω中序列的顺序不影响()ΩA 的结果,且()()()()12345678,,,,,,,a a a a a a a a 相对于序列也是无序的,(ⅰ)若12345678a a a a a a a a +=+=+=+,不妨设1357a a a a ≤≤≤,则2468a a a a ≥≥≥,①当1357a a a a ===,则8642a a a a ===,分别执行1a 个序列()2,4,6,8、2a 个序列()1,3,5,7,可得1212121212121212,,,,,,,a a a a a a a a a a a a a a a a ++++++++,为常数列,符合题意;②当1357,,,a a a a 中有且仅有三个数相等,不妨设135a a a ==,则246a a a ==,即12121278,,,,,,,a a a a a a a a ,分别执行2a 个序列()1,3,5,7、7a 个序列()2,4,6,8可得122712212272778,,,,,,,a a a a a a a a a a a a a a a a ++++++++,即1227122712272712,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1357a a a a +++为偶数,即173a a +为偶数,可知17,a a 的奇偶性相同,则*712a a -∈N ,分别执行712a a -个序列()1,3,5,7,()1,3,6,8,()2,3,5,8,()1,4,5,8,可得72172172172172172172173232323232323232,,,,,,,22222222a a a a a a a a a a a a a a a a a a a a a a a+-+-+-+-+-+-+-+,为常数列,符合题意;③若1357a a a a =<=,则2468a a a a =>=,即12125656,,,,,,,a a a a a a a a ,分别执行5a 个()1,3,6,8、1a 个()2,4,5,7,可得1512151215561556,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1256a a a a +=+,可得1512151215121512,,,,,,,a a a a a a a a a a a a a a a a ++++++++,即转为①,可知符合题意;④当1357,,,a a a a 中有且仅有两个数相等,不妨设13a a =,则24a a =,即12125678,,,,,,,a a a a a a a a ,分别执行1a 个()2,4,5,7、5a 个()1,3,6,8,可得1512151215561758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1256a a a a +=+,可得1512151215121758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为13571572a a a a a a a +++=++为偶数,可知57,a a 的奇偶性相同,则()()()()1515151715743a a a a a a a a a a a +++++++=++为偶数,且15151517a a a a a a a a +=+=+<+,即转为②,可知符合题意;⑤若1357a a a a <<<,则2468a a a a >>>,即12345678,,,,,,,a a a a a a a a ,分别执行1a 个()2,3,5,8、3a 个()1,4,6,7,可得1312133415363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1234a a a a +=+,可得1312131215363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1357a a a a +++为偶数,则()()()()()()131315371313572a a a a a a a a a a a a a a +++++++=+++++为偶数,且13131537a a a a a a a a +=+<+<+,即转为④,可知符合题意;综上所述:若12345678a a a a a a a a +=+=+=+,则存在序列Ω,使得()ΩA 为常数列;(ⅱ)若存在序列Ω,使得()ΩA 为常数列,因为对任意()128Ω:,,,A b b b ⋅⋅⋅,均有()()()()12123434b b a a b b a a +-+=+-+()()()()56567878b b a a b b a a =+-+=+-+成立,若()ΩA 为常数列,则12345678b b b b b b b b +=+=+=+,所以12345678a a a a a a a a +=+=+=+;综上所述:“存在序列Ω,使得()ΩA 为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.。
课程名称:高等数学(D )2010 -2011 学年第(1)学期期末 试卷B 本试卷共 九 道大题,满分100 分 答案请写在答题本上,试卷上答题无效。
考试结束后请将试卷、答题本一起交给监考老师。
一、 判断题(给出简单解释,每题3分,共5题)1. 对于多元函数,可导必可微,可微必可导。
(错,不一定)2. 所有的初等函数在其定义域的任意子集上都是可求定积分的。
(错,y=x 在(0,)+∞上不可求) 3: 若函数(,)z f x y =在点00(,)x y 处取得极值,则函数在该点处偏导数都为0。
(错。
边界值情况)4. 若函数()f x 在 (a,b)上可导,则函数在(a,b)上有最大值与最小值。
(错,闭区间才可)5. 若区间[,][,]c d a b ⊆,则必有()()bda c f x dx f x dx ≥⎰⎰。
(对) 二、 选择题(不需要写过程,每题3分,共5题)1. 当0x +→等价无穷小的是( B )(A ) 1- (B )ln(1+ (C 1 (D )1-2.设1D I σ=,222()D I x y d σ=+⎰⎰,2223()DI x y d σ=+⎰⎰,其中}1),{(22≤+=y x y x D ,则:D (A ) 123I I I >> (B )213I I I >>(C )312I I I >> (D )321I I I >>3. 设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(= D (A )在x=0处左极限不存在 (B )有跳跃间断点x=0(C )在x=0处右极限不存在 (D )有可去间断点x=04. 设函数()f x 在(,)-∞+∞上连续, 则()d f x dx ⎡⎤⎣⎦⎰等于( B ). (A) ().f x (B) ().f x dx (C) ().f x C + (D) ().f x dx '5. 设43()()()d d I f x dx f x dx f x dx dx dx'=++⎰⎰⎰存在, 则I =( D ). (A) 0. (B) ().f x (C) 2().f x (D) 2().f x C +三、填空题(不需要写过程,每题3分,共5题)(1) 设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a (2) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = -4(3) 4π (4)设()f x =在[1, 4]上使Lagrange(拉格朗日)中值定理成立的ξ=_9/4_ .(5) 函数22(,)2()f x y x y x y =-+-的驻点为: (-1,-1)四、计算下列不定积分(每题4分,共20分)1. ()2331cos sin sin 23x x x dx x x C -=-++⎰2. C =+⎰3.C =+ 4. 232sin 113tan log(22tan )1cos 22x x dx x x x C x +=-+++⎰ 5. 2222111ln (1)4121x x x dx C x x x -=-+-+-⎰五、求抛物线22y px =及其在点(,)2p p 处的法线所围成的图形的面积。
2024届北京大学附属中学高三数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +2.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .43.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )A .514B .314C .328D .5284.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280B .4864C .-4864D .12805.已知集合{}1,3,A m =,{}1,B m =,若A B A ⋃=,则m =( ) A .0或3B .0或3C .1或3D .1或36.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 7.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4πB .16πC .163πD .323π8.已知集合A {}0,1,2=,B={}(2)0x x x -<,则A∩B= A .{}1B .{}0,1C .{}1,2D .{}0,1,29.已知命题p :1m =“”是“直线0x my -=和直线0x my +=互相垂直”的充要条件;命题q :函数4()f x x x=+的最小值为4. 给出下列命题:①p q ∧;②p q ∨;③()p q ∧⌝;④()()p q ⌝∧⌝,其中真命题的个数为( ) A .1B .2C .3D .410.已知0a b >>,椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b -=,1C 和2C 的离心率之积为32,则2C 的渐近线方程为( ) A .20x y ±=B .20x y ±=C .20x y ±=D .20x y ±=11.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .12.已知01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是( ) A .p q ∨是假命题 B .p q ∧是真命题 C .()p q ∨⌝是真命题D .()p q ∧⌝是假命题二、填空题:本题共4小题,每小题5分,共20分。
2023北京北师大附中高一(下)期末数 学考生须知1.本试卷有三道大题,共6页.考试时长120分钟,满分150分.2.考生务必将答案填写在答题纸上,在试卷上作答无效.3.考试结束后,考生应将答题纸交回.一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知角α的终边经过点34(,)55P −,则tan α=( ) A. 43−B. 34−C.43D.342. 在复平面内,复数z 对应的点的坐标为()2,1−−,则复数z 的共轭复数z =( ) A. 2i −−B. 2i −+C. 2i +D. 2i −3. 已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) A. 若//m α,//n α,则//m n B. 若//m α,m n ⊥,则n α⊥ C. 若m α⊥,n ⊂α,则m n ⊥D. 若m α⊥,m n ⊥,则//n α4. 已知正方体1111ABCD A B C D −,直线1BD 与直线1AA 所成角的余弦值是( )A. 12B.13C.3D.35. 在ABC 中,若2a =,3b =,()1cos 3A B +=,则c =( )B. 4D. 36. 函数()sin(2)(,)f x A x A R ϕϕ=+∈的部分图象如图所示,那么(0)f =( )A. 12−B.C. 1−D. 7. 已知D 是边长为2的正△ABC 边BC 上的动点,则AB AD ⋅的取值范围是( )A. B. 2] C. [0,2]D. [2,4]8. 在ABC 中,π4A =,则“sin 2B <”是“ABC 是钝角三角形”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件9. 将边长为2的正方形ABCD 沿对角线AC 折起,折起后点D 记为D .若2BD '=,则四面体ABCD '的体积为( )A.3B.3C.10. 如图,圆E 为ABC 的外接圆,4AB =,6AC =,D 为边BC 的中点,则AD AE ⋅=( )A. 26B. 13C. 10D. 5二、填空题共5小题,每小题5分,共25分.11. 已知复数21iz =+,则z =__________. 12. 已知正方形ABCD 的边长为2,则AB AC +=_________.13. 如图,在直三棱柱111ABCA B C 中,AC BC ⊥,3AC =,2BC =,点D 在棱AC 上,且2AD DC =,点E 在棱1BB 上,若三棱锥A BDE −的体积是43,则棱1BB 的长度可以是_________.(写出一个符合要求的值)14. 已知函数1()sin()f x x ωϕ=+(其中0ω>,2πϕ<)的部分图象如图所示,则ω=________,ϕ=________.15. 如图,在正方体1111ABCD A B C D −中,1AB =,点M 为直线1B C 上的动点,则下列四个命题: ①连接1D M ,总有1//D M 平面1A BD ; ②1AC ⊥平面1A BD ;③动点M 到直线BD 的距离的最小值是3; ④设CM x =,则三棱锥1A ADM −的体积随着x 增大而增大. 其中正确的命题的序号是_________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC 中,4a =,3b =,1cos 3A =. (1)求sinB 的值:(2)求c 的值和ABC 的面积17. 如图,在正方体1111ABCD A B C D −中,2AB =,E ,F 分别是线段1A C ,AB 的中点.(1)求证:平面1A DC ⊥平面11ADD A ; (2)求三棱锥1FACA −的体积;(3)求证://EF 平面1A AD ;18. 如图,在四棱锥P ABCD −中,底面ABCD 是菱形,PA ⊥平面ABCD ,E ,F 分别为PC ,AB 的中点.(1)求证:PC BD ⊥;(2)若2PA AB AC ===,求点A 到平面EBC 的距离:(3)直线AD 上是否存在一点M ,使得P ,M ,E ,F 四点共面?若存在,求AMAD的值;若不存在,说明理由.19. 已知有限数列{}n a 共M 项(4)M ≥,其任意连续三项均为某等腰三角形的三边长,且这些等腰三角形两两均不全等.将数列{}n a 的各项和记为S . (1)若{1,2}(1,2,,)n a n M ∈=,直接写出,M S 的值; (2)若{}1,2,3,2,()1,n a n M ∈=,求M 的最大值;(3)若*(1,2,,),16n a n M M ∈==N ,求S 的最小值参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 【答案】A【分析】根据给定条件,利用三角函数定义直接计算作答.【详解】因为角α的终边经过点34(,)55P −,所以445tan 335α==−−.故选:A 2. 【答案】B【分析】根据给定条件,求出复数z ,再求出共轭复数作答. 【详解】依题意,2i z =−−,所以复数z 的共轭复数2i z =−+. 故选:B 3. 【答案】C【分析】根据平行与垂直关系相关定理依次判断各个选项即可.【详解】对于A ,若//m α,//n α,则,m n 可能平行、相交或异面,A 错误; 对于B ,若//m α,m n ⊥,则n 与α可能平行或相交,B 错误; 对于C ,由线面垂直性质可知:若m α⊥,n ⊂α,则m n ⊥,C 正确; 对于D ,若m α⊥,m n ⊥,则//n α或n ⊂α,D 错误. 故选:C. 4. 【答案】D【分析】根据线线平行得异面直线所成的角,即可由三角形边角关系求解.【详解】由于11//AA DD ,所以1DD B ∠即为直线1BD 与直线1AA 所成的角或其补角, 不妨设正方体的棱长为a,则1,BD BD ===,所以111cos 3DD DD B D B ∠===, 故选:D 5. 【答案】A【分析】利用余弦定理求解.【详解】因为()()1cos cos cos 3A B C C π+−=−==, 所以1cos 3=−C ,又2a =,3b =,由余弦定理得:2222cos c a b ab C =+−,149223173⎛⎫=+−⨯⨯⨯−= ⎪⎝⎭,所以c = 故选:A 6. 【答案】C 【详解】2,22()2()326A k k Z k k Z πππϕπϕπ=⨯+=+∈∴=−+∈(0)2sin(2)16f k ππ=−+=−,选C.7. 【答案】D【分析】根据向量数量积的几何意义可得||cos [1,2]AD DAB ∠∈,再由||||cos AD AB D A A B AD B =∠⋅即可求范围.【详解】由D 在边BC 上运动,且△ABC 为边长为2的正三角形,所以03DAB π≤∠≤,则[]cos 1,2AB DAB ∠∈,由||||cos [2,4]AD AB D D B A A A B =∠⋅∈. 故选:D 8. 【答案】A【分析】先判断如果sin 2B <能不能推出ABC 是钝角三角形,再判断如果ABC 是钝角三角形,是否一定有sin 2B <即可.【详解】如果sin 2B <,由于B 是三角形的内角,并且4A π=, 则04B π<<,2A B π+<,ABC 是钝角三角形,所以sin 2B <是充分条件;如果ABC 是钝角三角形,不妨设23B π=,则sin 2B => ,所以sin 2B <不是必要条件; 故选:A.9. 【答案】A【分析】先将正方形ABCD 折起得到四面体ABCD ',由BO AC ⊥,D O AC '⊥得AC ⊥平面OBD ',再求出AC ,,OB OD '的长度,证明OB OD '⊥,最后把四面体看做两个同底的三棱锥A BOD '−和C BOD '−拼接而成,即可用三棱锥的体积公式求体积.【详解】如图1,连接BD 与AC 相交于点O ,则AC BD ⊥.如图2,将正方形ABCD 沿对角线AC 折起,折起后点D 记为D .因为BO AC ⊥,D O AC '⊥,BO D O O '=∩,BO ⊂平面OBD ',D O '⊂平面OBD ', 所以AC ⊥平面OBD ',因为正方形ABCD 边长为2,所以AC ==1122OB OD BD AC '==== 又因为2BD '=,所以222OB OD BD ''+=,所以OB OD '⊥. 所以四面体ABCD '的体积为1113323A BOD C BOD BOD V V SAC ''−−'⎛+=⨯⨯=⨯⨯= ⎝. 故选:A 10. 【答案】B【分析】由中点关系可得1()2AD AB AC =+,利用E 为ABC 的外接圆的圆心,可得2211||4822AE AB AB ⋅==⨯=,同理可得21||182AE AC AC ⋅==,即可得出结论. 【详解】由于D 是BC 边的中点,可得1()2AD AB AC =+, E 是ABC 的外接圆的圆心,∴2211||||cos ||4822AE AB AE AB BAE AB ⋅=∠==⨯=,同理可得21||182AE AC AC ⋅==, ∴11111()8181322222AD AE AB AC AE AE AB AE AC ⋅=+⋅=⋅+⋅=⨯+⨯=.故选:B二、填空题共5小题,每小题5分,共25分.11.【分析】根据复数的除法运算可得1i z =−,结合复数的几何意义即可求出模. 【详解】由21iz =+,得22(1i)1i 1i (1i)(1i)z −===−++−,所以z ==12.【答案】【分析】根据向量数量积以及模长公式即可求解. 【详解】由题意可知π2,22,,4AB AC ABAC ===, 24,2AB AC ∴=⋅=⨯故22222AB AC AB AC AB AC +⋅=++==,故答案为:13. 【答案】3(只要满足12BB ≥均可)【分析】根据锥体的体积公式结合等体积法即可求解. 【详解】由题意可知111114222332323A BDE E BDA ABDV V SEB AD BC EB EB EB −−==⋅=⨯⋅⋅=⨯⨯⨯⋅=⇒=, 所以1BB 的长度不小于2即可,不妨取13BB =, 故答案为:3(只要满足12BB ≥均可) 14. 【答案】 ①. 2 ②. 3π−【详解】由图知函数的周期是72,266ππππωω−===,,又知511512212f sin ππϕ⎛⎫== ⎪⎛⎫⎝⎭⨯+ ⎪⎝⎭,,5262k ππϕπ+=+,0k =时,3πϕ=−,故答案为(1)2;(2)3π−.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用图象先求出周期,用周期公式求出ω,利用特殊点求出ϕ,正确求ωϕ,是解题的关键.求解析时求参数ϕ是确定函数解析式的关键,由特殊点求ϕ时,可以先求出ϕ的所有的值,再根据题设中的条件,取特殊值即可. 15. 【答案】①②③【分析】利用面面平行的性质推理判断①;利用线面垂直的判定推理判断②;利用线面平行结合等体积法计算判断③;利用等体积法计算判断④作答.【详解】在正方体1111ABCD A B C D −中,对角面11A B CD 是矩形,则111//,B C A D A D ⊂平面1A BD ,1B C ⊄平面1A BD ,于是1//B C 平面1A BD ,同理11//B D 平面1A BD ,而1111111,,B CB D B BC BD =⊂平面11B CD ,则有平面1//A BD 平面11B CD ,而1D M ⊂平面11B CD ,因此1//D M 平面1A BD ,①正确;1CC ⊥平面,ABCD BD ⊂平面ABCD ,则1CC BD ⊥,而1,BD AC AC CC C ⊥=,1,AC CC ⊂平面1ACC ,则有BD ⊥平面1ACC ,而1AC ⊂平面1ACC ,因此1AC BD ⊥,同理11AC A B ⊥,11,,A B BD B A B BD =⊂平面1A BD ,所以1AC ⊥平面1A BD ,②正确;由①知,平面1//A BD 平面11B CD ,由于1B C 与BD 是异面直线,则点M 到直线BD 的距离最小值等于点1B 到平面1A BD 的距离h , 正方体棱长为1,则11122113311,4222A BDA B BSBD S A B ====,由1111B A BD D A B B V V −−=,得1111133A BDA B BS h SAD ⋅=⋅,即122h =,解得h ,③正确;因为111//,B C A D A D ⊂平面1A AD ,1B C ⊄平面1A AD ,则1//B C 平面1A AD , 因此点M 到平面1A AD 的距离为定值,而1A AD 的面积为定值, 于是三棱锥1A ADM −的体积11A ADM M A AD V V −−=为定值,④错误,所以正确的命题的序号是①②③. 故答案为:①②③【点睛】方法点睛:求点到平面的距离可以利用几何法,作出点到平面的垂线段求解;也可以用等体积法,求出三棱锥某个底面上的高即可.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 【答案】(1)2; (2)1c =+,4ABC S =+△【分析】(1)利用平方关系、正弦定理求值作答. (2)利用余弦定理、三角形面积公式计算作答. 【小问1详解】在ABC 中,4a =,3b =,1cos 3A =,则sin =A ,由正弦定理得sin sin a b A B=,所以3sin 3sin 42b A B a ⨯===. 【小问2详解】在ABC 中,由余弦定理得2222cos a b c bc A =+−,即21692c c =+−,而0c >,解得1c =+ABC 的面积1122sin 3(122)42223ABCSbcA ,所以1c =+,4ABC S =△ 17. 【答案】(1)见解析 (2)23(3)见解析【分析】(1)根据线面垂直即可求证面面垂直, (2)根据等体积法即可求解,(3)由中位线得线线平行,即可得到线面平行,进而可证面面平行,即可求解. 【小问1详解】在正方体中,由于CD ⊥平面11ADD A ,CD ⊂平面1A DC , 所以平面1A DC ⊥平面11ADD A 【小问2详解】1111111112122332323F ACA A ACF ACF V V SAA AF BC AA −−==⋅=⨯⋅⋅=⨯⨯⨯⨯= 【小问3详解】取CD 中点为M ,连接,EM FM ,由于,,E F M 均为中点,所以1//,//EM A D MF AD ,ME ⊄平面1AA D ,1A D ⊂平面1AA D ,所以//EM 平面1AA D ,MF ⊄平面1AA D ,AD ⊂平面1AA D ,所以//FM 平面1AA D ,,,FM EM M FM EM ⋂=⊂平面EFM ,所以平面//EFM 平面1AA D ,由于EF ⊂平面EFM ,所以//EF 平面1AA D .18. 【答案】(1)见解析 (2)7(3)1 【分析】(1)根据线面垂直即可求证线线垂直,(2)根据等体积法,结合棱锥的体积公式即可求解,(3)根据线线平行可得线面平行,进而根据中位线,由线线平行的传递性即可求解.【小问1详解】连接,AC BD 相交于O ,由于底面ABCD 是菱形,所以AC BD ⊥,又PA ⊥平面ABCD ,DB ⊂平面ABCD ,所以PA ⊥DB ,,,PA AC A PA AC ⋂=⊂平面PAC ,所以BD ⊥平面PAC ,PC ⊂平面PAC ,所以BD PC ⊥【小问2详解】由题意可知:点A 到平面EBC 的距离即为点A 到平面PBC 的距离,设点A 到平面EBC 的距离为h ,由于2PA AB AC ===,PA ⊥平面ABCD ,所以PB PC ===,所以11222PBC S BC ==⨯=11sin 6022222ABCS BC AB =⋅=⨯⨯⨯=, 11337ABC A PBC P ABC PBC ABC PBC S PA V V S h S PA hS −−⋅=⇒=⋅⇒===, 【小问3详解】 取PD 中点为N ,连接AN ,延长DA ,使得DA AM =,连接PM ,由于,E N 均为中点,所以//,EN CD 且12EN CD =, 又1,//,2AF AB AB CD AB CD ==,所以//,EN AF 且EN AF =, 故四边形ANEF 为平行四边形,故//AN EF ,由于A 是MD 的中点,N 是PD 中点,所以//AN PM ,因此//EF PM ,所以P ,M ,E ,F 四点共面,故1AM AD=19. 【答案】(1)4,7M S ==;(2)8; (3)50【分析】(1)直接列举出数列{}n a ,即可求得,M S ;(2)先构造数列使8M =,再说明不同的等腰三角形只有6个,故628M ≤+=,即可求得M 的最大值;(3)先构造数列使50S =,再设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,即可求解.【小问1详解】边长为1或2的等腰三角形只有1,1,1;1,2,2;2,2,2;若前三项为1,1,1,则该数列只有3项,不合题意;若前三项为1,2,2,该数列只有4项,该数列只能为1,2,2,2;若前三项为2,2,2,该数列只有4项,该数列只能为2,2,2,1;综上:4,7M S ==;【小问2详解】①构造数列:1,2,2,2,3,3,3,1,此时8M =.②当存在连续三项为1,1,1时,本题中有两条边为1,1的等腰三角形仅有1,1,1,即数列只有3项,与4M ≥矛盾,舍去.③当不存在连续三项为1,1,1时,连续三项(不考虑这三项的顺序)共以下6种可能:1,2,2;1,3,3;2,2,2;2,2,3;2,3,3;3,3,3.又相邻的4项组成的2个等腰三角形中间2项是共用的,则总的项数为不同的等腰三角形的个数加上首尾2项,所以628M ≤+=.④由①②③,M 的最大值为8.【小问3详解】①构造数列:1,2,2,2,3,3,3,4,4,4,5,5,5,3,3,1,此时50S =.②设T 为数列的每一组连续三项的和的和,则()()()()123234131415141516T a a a a a a a a a a a a =++++++++++++ ()121516121516322a a a a a a a a =++++−−−−,即116215322S T a a a a =++++.③连续三项(不考虑这三项的顺序)及这三项的和(标注在下面的括号内)有以下可能:2,2,1(5);2,2,2(6);2,2,3(7);3,3,1(7);3,3,2(8);3,3,3(9);;3,3,5(11);4,4,1(9);4,4,2(10);4,4,3(11);;4,4,7(15);5,5,1(11);5,5,2(12);5,5,3(13);;5,5,9(19);6,6,1(13);6,6,2(14);6,6,3(15);;6,6,11(23);其中画横线的连续三项不能同时满足和前一项、后一项构成3个等腰三角形,故必为数列的首三项或尾三项,故其对应的三角形在14个三角形中至多出现两个.④由③,要使S 最小,则使T 和11621522a a a a +++最小,在画横线的连续三项中取和最小的2组, 在没画横线的连续三项中取合最小的12组,同时令1162151,1,2,3a a a a ====,则()()5767891011111213131414140T ≥+++++++++++++=,116215212123922a a a a ⨯+≥⨯+++++=,又由②,31409149S ≥+=,所以50S ≥.⑤由①④,S 的最小值为50.【点睛】本题关键点在于设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,将S 最小,转化为T 和11621522a a a a +++最小,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,再构造数列使50S =即可求解.。