第四章 纳米二氧化钛
- 格式:ppt
- 大小:6.45 MB
- 文档页数:68
产品简介:纳米二氧化钛是金红石型白色疏松粉末,作为紫外线屏蔽剂,防止紫外线的侵害。
也可用于高档汽车面漆,具有随角异色效应。
纳米技术在光催化领域扮演着重要的角色。
纳米二氧化钛的光催化作用能将光能转变为电能和化学能,实现许多难以实现或不可能进行的反应。
屏蔽紫外线作用强,有良好的分散性和耐候性。
可用于化妆品、功能纤维、塑料、涂料、油漆等领域,。
目前,环境污染的控制与治理是我们面临的亟待解决的重大问题,在众多环境治理技术中,利用太阳光作为光源来活化纳米二氧化钛,使其在室温下进行氧化还原反应,杀灭有害菌、清除污染物,这一技术已成为一种理想的环境治理技术。
纳米二氧化钛属非溶出型抗菌剂,本身具有很好的化学稳定性,无毒性,重金属含量少,抗菌性广且长效,被越来越广泛地应用于日常生活之中。
如太阳能电池、抗菌材料、空气净化器、自清洁材料、精细陶瓷及建筑材料等。
将对提高我们的生活质量发挥无穷潜力。
分类:纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
结构:纳米材料的两个重要特征是纳米晶粒与高浓度晶界。
纳米TiO2的微观结构特征的研究报道较少。
其中用拉曼散射和高分辨电镜研究了纳米TiO2陶瓷, 显示的结果与通常粗晶材料无多大的区别,晶粒间界处亦含有短程有序的结构单元。
纳米TiO2晶粒基本是等轴晶粒, 与从气体凝聚法得到的原子团簇形状相同, 尺寸相同并都服从对数正态分布。
性能:™纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3 种晶型。
™其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。
纳米二氧化钛的制备及活度测定实验报告小组成员:指导老师:翁永根纳米二氧化钛的制备及活度检测一、实验目的:1、探索二氧化钛的制备方法,寻求最简便的制备过程,培养学生的实验创新能力。
2、了解二氧化钛的性质与作用。
3、掌握二氧化钛活度检测方法。
二、实验原理:1、纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。
由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。
纳米TiO2具有许多独特的性质。
比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。
基于上述特点,纳米TiO2具有广阔的应用前景。
利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。
如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。
目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂。
2、反应物为水、钛酸四丁酯(Ti(O-C4H9)4),分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度。
使钛酸四丁酯在乙醇红水解生成Ti (OH)4,脱水后即可得到TiO2.在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。
TiO2溶胶凝胶法的制备主要包括2个部分:水解缩合、凝结。
缩合是将溶质分子或离子缩合为大分子聚合物即胶粒的过程。
这些胶粒分散在介质中称为溶胶。
在一定条件下,胶粒聚集、合并,并转化成湿凝胶称为凝结。
在sol-gel过程中,钛酸丁酯的水解——缩聚反应速度极快,会立即生成沉淀,影响TiO2的细化。
1. 纳米TiO 2粉体制备方法1.1. 物理法1.1.1. 气相冷凝法:预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物1.1.2. 高能球磨法:工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差1.2. 化学法1.2.1. 固相法:依靠固体颗粒之间的混合来促进反应,不适合制备微粒1.2.2. 液相法:就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。
以四氯化钛为原料,其反应为TiCl4 + 4H2O → Ti (OH) 4 + 4HCl ,Ti (OH) 4 → TiO2 + 2H2O.以醇盐为原料,其反应为Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH ,Ti (OH) 4 −−−→煅烧TiO2 + 2 H2O. 主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。
溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.1.2.3. 气相法:其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。
2. 纳米TiO2薄膜制备方法:除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。
纳米二氧化钛的制备方法综述纳米二氧化钛的制备方法综述【摘要】纳米二氧化钛(Ti02)具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。
本文主要对纳米二氧化钛的各种制备方法作了简单介绍。
【关键词】纳米二氧化钛、制备【正文】二氧化钛的制备方法可分为气相法和液相法两大类。
一、气相制备法低压气体蒸发法此种制备方法是在低压的氩、氮气等惰性气体中加热普通的Ti02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法; (3)高频感应法; (4)电子束法; (5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。
活性氢—熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。
溅射法此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3—1.5kV。
由于两电极间的辉光放电使Ar离子形成。
在电场的作用下Ar离子冲击阴极靶材表面,靶上的Ti02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。
流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子钛醇盐气相水解法该工艺可以用来开发单分散的纳米TiO2,其反应式如下: nTi(0R)4,+2nH2O(g)————>nTiO2(s)+4nROH优点是操作温度较低、能耗小,对材质要求不是很高,并且可以连续化TiCl4,高温气相水解法该法与气相法生产白炭黑的原理相似,是将TiCl4气体导入高温的氢氧火焰中进行气相水解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)优点工艺制备的纳米粉体产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小。
纳米二氧化钛1.概述纳米级二氧化钛,亦称钛白粉。
物理性质为细小微粒,直径在100纳米以下,产品外观为白色疏松粉末,它是一种新型的无机化工材料。
具有透明性、紫外线吸收性、熔点低、磁性强、抗菌、自洁净、抗老化等性能,广泛应用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等众多领域。
本文将从制备、应用两个方面入手,简要介绍纳米二氧化钛材料。
2.制备目前,制备纳米二氧化钛的方法有很多,可分为气相法、液相法[1]两大类。
2.1.气相合成法制备TiO2纳米粒子中典型的气相法主要包括四氯化钛氢氧火焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化或水解法等方法。
四氯化钛氢氧火焰水解法最早由德国Degussa公司开发成功,并生产出当前纳米级超细TiO2粉体的著名牌号之一(P25 );还有美国的卡伯特公司和日本Aerosil公司等也采用该方法生产超细TiO2粉体。
TiCl4气相氧化法的反应初期,TiCl4和O2发生均相化学反应,生成Ti02的前驱体分子,通过成核形成TiO2的分子簇或粒子。
由于非均相成核比均相成核在热力学上更容易,随着反应的进行,TiCl4在Ti02粒子表面吸附并进行非均相反应,使粒子变大[2]。
施利毅等[3]利用N2携带TiCl4气体,预热到435℃后,经套管喷嘴的内管进入高温管式反应器,O2经预热后经套管喷嘴的外管也进入反应器,TiCl4和O2在900-l400℃下反应。
研究了氧气预热温度、反应器尾部氮气流量、反应温度、停留时间和掺铝量对TiO2颗粒大小、形貌和晶型的影响,结果表明:提高氧气预热温度和加大反应器尾部氮气流量对控制产物粒径有利,纳米TiO2,颗粒的粒径随反应温度升高和停留时间延长而增大,当反应温度为1373 K,AlCl3与TiCl4摩尔比为0.25、停留时间为1.73 s时,纯金红石型纳米Ti02颗粒的粒径分布为30-50nm。
华东理工大学[4]首先让可燃气体与过量氧气燃烧,生成高温含氧气流,然后再与经过预热的气态TiCl4呈一定角度交叉混合,使反应在高速下进行。