柱塞泵和柱塞马达工作原理..
- 格式:ppt
- 大小:1.29 MB
- 文档页数:3
泵的分类及工作原理泵是一种通过机械或物理方式将液体或气体从低压区域输送到高压区域的设备。
根据泵的工作原理和应用领域的不同,泵可以分为多个不同的分类。
以下将介绍一些常见的泵的分类及其工作原理。
1.位移泵位移泵是通过不断改变腔室体积来输送流体的。
根据腔室体积的变化方式,位移泵可以进一步分为柱塞泵、齿轮泵、螺杆泵和轴向柱塞泵等。
-柱塞泵是通过柱塞在缸体内的来回运动改变腔室的体积,从而实现流体的输送。
柱塞泵具有输送精度高、稳定性好的特点,常用于高压工况。
-齿轮泵是通过齿轮的旋转来改变腔室的体积,实现流体的输送。
齿轮泵结构简单、体积小,常用于中低压工况。
-螺杆泵是通过螺杆与外壳的配合来改变腔室的体积,实现流体的输送。
螺杆泵具有自吸能力强、输送流体稠度范围广的特点,常用于流体粘度较高的工况。
-轴向柱塞泵是通过轴向柱塞在缸体内的往复运动改变腔室的体积,实现流体的输送。
轴向柱塞泵具有体积小、重量轻的特点,常用于高速工况。
2.轴流泵和离心泵轴流泵和离心泵是根据流体运动的方式来分类的。
-轴流泵是通过叶轮产生的离心力将流体从中心向外推动,实现流体的输送。
轴流泵常用于大流量、低扬程的工况,例如排水、灌溉等。
-离心泵是通过叶轮旋转产生的离心力将流体从中心向外抛出,实现流体的输送。
离心泵常用于中、高扬程的工况,例如给水、供暖等。
3.定量泵和变量泵定量泵是以恒定的排量来输送流体的,而变量泵则可以根据需要调节排量。
-定量泵常用于对流体的压力和流量要求较为稳定的工况,例如润滑系统。
-变量泵可以根据系统需要来调节流量和压力,常用于需要灵活性和可调性的工况,例如液压系统。
除了以上列举的泵的分类,还有一些特殊类型的泵,例如真空泵、潜水泵、磁力泵等。
这些泵根据其特殊的工作原理和应用领域,有着各自的特点和用途。
总结起来,泵可以根据其工作原理、流体输送方式、排量调节方式等来分类。
不同类型的泵适用于不同的工况,可以满足各种不同的流体输送需求。
三缸柱塞泵工作原理
三缸柱塞泵是一种常用的流体传动装置,它通过柱塞在泵体内的工作循环来实现流体的输送和压力增加。
其工作原理如下:
1. 结构组成:三缸柱塞泵主要由泵体、柱塞、连杆、曲轴等部件组成。
泵体内存在三个互相平行且对称排列的柱塞孔,每个柱塞孔内装有一个柱塞。
柱塞通过连杆与曲轴相连,使得柱塞与曲轴有相对运动。
2. 运动循环:当柱塞随着曲轴的旋转而上下运动时,分别在吸入行程和排出行程完成流体的吸入和排出。
每个柱塞的循环为:吸入过程-压缩过程-排出过程。
具体流程如下:
- 吸入过程:当柱塞向上运动时,内部形成一个负压区域,
吸入口处的液体通过吸力进入泵体内。
- 压缩过程:当柱塞向下运动时,压缩腔内的液体被逐渐压缩,形成高压。
- 排出过程:当柱塞再次向上运动时,压缩腔与排出口之间
的阀门打开,高压液体被排出。
3. 压力增加:由于三缸柱塞泵的三个柱塞可以同时工作,因此在每个运动循环中,泵体内都会形成三个连续的压缩腔,增加了流体的压力。
通过合理调节柱塞的运动行程和曲轴的转速,可以控制泵体内流体的流量和压力。
三缸柱塞泵的工作原理简单明了,通过柱塞的往复运动来完成吸入和排出流体,实现了流体的输送和压力增加。
该泵具有结构紧凑、效率高、流量稳定等优点,在工业生产和机械设备中得到广泛应用。
柱塞式同步分流马达1. 引言柱塞式同步分流马达是一种常用于液压系统的关键元件,它通过精确的控制流体的流动来实现机械装置的运动。
本文将介绍柱塞式同步分流马达的基本原理、结构特点、工作原理以及应用领域。
2. 基本原理柱塞式同步分流马达基于液压传动原理,通过调节液体的流量和压力来控制机械装置的运动。
其基本原理如下:•马达内部包含多个柱塞,每个柱塞都与一根传动杆相连。
•当液体从供油口进入马达时,通过调节阀门控制液体的流量和压力。
•液体进入柱塞腔后,推动柱塞向前运动,并带动传动杆进行工作。
•当液体从排油口排出时,柱塞回到初始位置。
3. 结构特点柱塞式同步分流马达具有以下结构特点:3.1 柱塞和传动杆马达内部由多个柱塞和相应的传动杆组成。
柱塞通常采用高强度材料制造,以承受高压力和频繁的运动。
传动杆则通过连接柱塞和机械装置,将液压能转化为机械能。
3.2 分流阀分流阀是马达的关键部件之一,它控制液体的流量和压力分布。
通过调整分流阀的开启程度,可以实现不同速度和方向的运动。
3.3 液压油路马达内部有复杂的液压油路系统,包括供油口、排油口和各个柱塞腔之间的连接管道。
这些管道保证了液体在马达内部顺畅地流动,并提供所需的液压能。
4. 工作原理柱塞式同步分流马达的工作原理如下:1.液体从供油口进入马达,并通过分流阀进入各个柱塞腔。
2.马达内部的分流阀根据控制信号调整开启程度,控制液体进入每个柱塞腔的流量和压力。
3.液体推动柱塞向前运动,并带动传动杆进行工作。
4.当液体从排油口排出时,柱塞回到初始位置。
通过控制分流阀的开启程度和供油口的压力,可以实现不同速度和方向的运动。
同时,柱塞式同步分流马达还可以通过增加或减少柱塞的数量来调整输出功率。
5. 应用领域柱塞式同步分流马达广泛应用于各个领域的液压系统中,包括工业生产、机械设备、航空航天等。
其主要应用包括:•机床:用于控制切削工具、工作台等部件的运动;•农业机械:用于控制农业机械设备的运动,如收割机、拖拉机等;•工程机械:用于控制挖掘机、装载机等工程机械设备的运动;•航空航天:用于控制飞行器起落架、舵面等部件的运动。
变量柱塞泵原理
柱塞泵是一种常用的流体传动装置,它主要由柱塞、缸体、进油口、出油口和驱动装置等组成。
其工作原理是通过柱塞在缸体内的往复运动,从而实现液体的吸入和排出。
具体工作原理如下:
1. 吸入阶段:当柱塞向后运动时,缸体内的压力降低,此时进油口处的压力高于缸内压力,液体通过进油口进入缸体内。
2. 断流阶段:柱塞达到最大后向前运动,封闭进油口,此时液体不再进入缸体内,形成断流状态。
3. 排油阶段:柱塞向前运动时,缸体内的压力升高,此时出油口处的压力低于缸内压力,液体通过出油口排出。
柱塞泵的工作原理可根据柱塞与缸体的相对运动方式分为往复式和旋转式。
往复式柱塞泵通过柱塞的上下往复运动来实现液体的吸入和排出;旋转式柱塞泵则通过柱塞随着缸体的旋转来推动液体的运动。
总之,柱塞泵工作原理的核心是通过柱塞的往复运动来改变缸体内的压力,从而实现液体的吸入和排出。
这种工作原理使得柱塞泵在许多工业领域中得到广泛应用,例如液压系统、注射器等。
轴向柱塞泵和轴向柱塞马达介绍一、斜盘式轴向柱塞泵1、斜盘式轴向柱塞泵的工作原理教材图3-25。
由柱塞、回转缸体、配油盘、斜盘等组成。
特点:柱塞轴线平行或倾斜于缸体的轴线。
① V密形成:柱塞和缸体配合而成;②V密变化:缸体逆转:后半周,V密增大,吸油;前半周,V密减小,压油;③吸压油口隔开:配油盘上的封油区及缸体底部的通油孔2、轴向柱塞泵的流量计算(1)排量若柱塞数为z,柱塞直径为d,柱塞孔的分布圆直径为D,斜盘倾角为γ,则柱塞的行程为:h=Dtan γ故缸体旋转一圈,泵的排量为:V=Zhπd2/4 = πd2/4·Z·D·tanγ【变量原理】①γ= 0→q = 0;②γ大小变化→流量大小变化;③γ方向变化→输油方向变化。
∴斜盘式轴向柱塞泵可作为双向变量泵(2)理论流量:qvt=Vn=πd2/4·D(tanγ)·Z·n(3)实际流量:qv = qvtηv =πd2/4·D(tanγ)·Z·n·ηpv3、单柱液压机-斜盘式轴向柱塞泵的典型结构1、XBSC型斜盘式轴向柱塞泵2、CY14-1B型斜盘式轴向柱塞泵(1)主体部分结构中心弹簧机构:中心弹簧的作用:使泵具有自吸性能,提高容积效率缸体端面间隙的自动补偿:中心弹簧,缸体底部通油孔p除中心弹簧使缸体紧压配流盘外,柱塞孔底部的液压力也使缸体紧贴配流盘,补偿端面间隙,提高了容积效率A、滑靴和斜盘柱塞头部结构:球形头部——和斜盘接触为点接触,接触应力大,易磨损。
滑靴结构——和斜盘接触为面接触,大大降低了磨损。
B、柱塞和缸体(2)变量部分结构变量机构:手动*—转动手轮控制斜盘,改变倾角即可自动——3、XB1斜盘式轴向柱塞泵图3-31。
通轴泵。
二、斜轴式轴向柱塞泵1、斜轴式轴向柱塞泵的工作原理2、A7V型斜轴式轴向柱塞泵的构造图3-33。
三、轴向柱塞马达的工作原理图3-34,当压力油通入马达后,柱塞受油压作用压紧倾斜盘,斜盘则对柱塞产生一反作用力,因倾角2ptanγ。
固瑞克喷涂机之柱塞泵工作原理
柱塞泵理论
柱塞泵,又称容积式泵、往复泵。
主要通过柱塞在柱塞缸体中作往复运动,造成柱塞缸体中密封容积的变化而产生的压力差而使流体介质进行工作。
改变柱塞的工作行程就可以控制柱塞泵流量的大小。
特此,以固瑞克柱塞泵为例展示工作原理。
◎ 泵的第一个冲程
- 空气压力推压马达活塞,驱使柱塞向右侧移动。
- 左侧出口球和活塞密封密闭,形成低压区域。
一旦活塞伸出活塞密闭空间后,大气压便推压
流体,注入外壳。
◎ 可能出现的问题
- 入口受限导致空穴和下沉。
- 密封表面磨损导致输出低。
- 连接松动导致泄漏
◎ 泵的第二个冲程
- 空气压力将马达活塞压向左侧,驱使柱塞向左
移动。
- 右侧出口球和活塞密封件密闭,形成低压区域。
大气压推压流体形成压力差,注入右侧。
- 左侧流体被压出。
◎ 可能出现的问题
- 入口受限导致空穴和下沉。
- 密封表面磨损导致输出低。
◎ 泵的第三个冲程
- 空气压力将马达活塞压向右侧,驱使柱塞 向右移动,将流体压出柱塞室。
- 泵的左侧重新加注。
- 100% 加注并在两个冲程上分配流体。
◎ 注:
- 以下密封件用于活塞杆的密封。
这可以 取代喉部密封,并防止供料压力超过15 psi。
一、HST的工作原理:HST是整体式液压传动装置(Hydrostatic Transmission)的简称,国内称为静液压传动或静压传动, 它是一种特殊的液压传动方式。
它是由柱塞变量泵、柱塞定量马达、摆线补油泵及液压控制阀等几部分组成,是多种功能液压元件的组合体,并形成闭式回路。
它通过传动装置直接串接在底盘行驶系统动力传输链中(在半喂入联合收割机中是行走变速箱上),这样便可以通过操纵手柄改变柱塞泵的变量盘倾斜角度,改变柱塞泵的排量与方向,从而改变柱塞马达的输出转速与方向。
由于柱塞泵变量盘的角度可连续调整,所以柱塞马达的输出转速也是连续变化的,进而实现行走装置的无极变速,以满足半喂入联合收割机在复杂工况条件下对行驶系统的要求。
二、HST与传统机械式传动相比较的优点:(1)、发动机功率利用率高,可达到的扭矩比及转速比大。
(2)、起制动、过载性能好, 易于实现无级调速。
(3)、设计简单, 总体布置方便。
操纵方便、省力。
(4)、适合于不平坦路面, 运行平稳, 噪音低。
(5)、易于实现前进和后退的转换。
(6)、转动惯量小, 单位排量传递功率较大。
(7)、通过合理设计传动系统, 可实现车辆的原地转向。
(8)、可靠性高, 维护方便。
以上优点很适合半喂入联合收割机的使用要求(负载大且不时变化,不停地变换行驶速度,甚至频繁的停止与启动等),因此HST在半喂入联合收割机上有广泛的应用。
唯一的缺点是发动机最大功率时的传动效率较机械式传动低。
三、进口HST与国产HST比较:1、进口HST高压回路压力高,一般都在34MPa以上,有些可达39.2Mpa,我们采用的日本神崎公司生产的排量为38cc的HST,在额定输入转速3000r/min的状态下,高压回路压力为34.3Mpa,因此输入功率最高可达65.2kw。
而国产HST高压回路压力一般才28Mpa,比较成熟的产品排量才28cc,这样输入功率才39.2kw。
而我们公司生产的半喂入联合收割机发动机功率为48~50kw,国产HST远不能满足我公司半喂入联合收割的要求。