运筹学习题集(第七章)
- 格式:doc
- 大小:1.56 MB
- 文档页数:4
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。
《运筹学》第七章决策分析习题1. 思考题(1)简述决策的分类及决策的程序; (2)试述构成一个决策问题的几个因素;(3)简述确定型决策、风险型决策和不确定型决策之间的区别。
不确定型决策能否转化成风险型决策?(4)什么是决策矩阵?收益矩阵,损失矩阵,风险矩阵,后悔值矩阵在含义方面有什么区别;(5)试述不确定型决策在决策中常用的四种准则,即等可能性准则、最大最小准则、折衷准则及后悔值准则。
指出它们之间的区别与联系; (6)试述效用的概念及其在决策中的意义和作用;(7)如何确定效用曲线;效用曲线分为几类,它们分别表达了决策者对待决策风险的什么态度;(8)什么是转折概率?如何确定转折概率?(9)什么是乐观系数,它反映了决策人的什么心理状态? 2. 判断下列说法是否正确(1)不管决策问题如何变化,一个人的效用曲线总是不变的;(2)具有中间型效用曲线的决策者,对收入的增长和对金钱的损失都不敏感; (3)3. 考虑下面的利润矩阵(表中数字矩阵为利润)准则(3)折衷准则(取λ=0.5)(4)后悔值准则。
4. 某种子商店希望订购一批种子。
据已往经验,种子的销售量可能为500,1000,1500或2000公斤。
假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。
要求:(1)建立损益矩阵;(2)分别用悲观法、乐观法(最大最大)及等可能法决定该商店应订购的种子数;(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。
5. 根据已往的资料,一家超级商场每天所需面包数(当天市场需求量)可能是下列当中的某一个:100,150,200,250,300,但其概率分布不知道。
如果一个面包当天卖不掉,则可在当天结束时每个0.5元处理掉。
新鲜面包每个售价1.2元,进价0.9元,假设进货量限制在需求量中的某一个,要求 (1)建立面包进货问题的损益矩阵;(2)分别用处理不确定型决策问题的各种方法确定进货量。
6.有一个食品店经销各种食品,其中有一种食品进货价为每个3元,出售价是每个4元,如果这种食品当天卖不掉,每个就要损失0.8元,根据已往销售情况,这种食品每天销售1000,2000,3000个的概率分别为0.3,0.5和0.2,用期望值准则给出商店每天进货的最优策略。
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
第1章导论【真题演练】1、(12年4月)借助于某些正规的计量方法而做出的决策,称为( A )A.定量决策 B.定性决策 C.混合性决策 D.满意决策2、(12年4月)利用直观材料,依靠个人经验的主观判断和分析能力,对未来的发展进行预测属于( c )A.经济预测 B.科技预测 C.定性预测 D.定量预测3、(11年7月)根据决策人员的主观经验或知识而制定的决策,称之为( B )A.定量决策B.定性决策C.混合性决策D.满意决策4、(12年4月)对于管理领域,运筹学也是对管理决策工作进行决策的___计量___方法。
5、(11年7月)运筹学应用多种分析方法,对各种可供选择的方案进行比较评价,为制定最优的管理决策提供___数量___上的依据。
6、(11年4月)作为运筹学应用者,接受管理部门的要求,收集和阐明数据,建立和试验_数学模型_,预言未来作业,然后制定方案,并推荐给经理部门。
7、(10年7月)运筹学把复杂的功能关系表示成_数学模型_,以便通过定量分析为决策提供数量依据。
8、(10年4月)在当今信息时代,运筹学和信息技术方法的分界线将会____消失____,并将脱离各自原来的领域,组合成更通用更广泛的管理科学的形式。
9、(09年7月)决策方法一般分为定性决策、定量决策、___混合型决策___三类。
10、(09年4月)运筹学是一门研究如何有效地组织和管理____人机系统____的科学。
11、(09年4月)名词解释:定性预测12、(11年7月)名词解释:定量预测【同步练习】1、运筹学研究和运用的模型,不只限于数学模型,还有用___符号___表示的模型和___抽象___的模型。
2、在某公司的预算模型中,__收益表__是显示公司效能的模型,___平衡表__是显示公司财务情况的模型。
3、运筹学工作者观察待决策问题所处的环境应包括___部___环境和___外部___环境。
4、企业领导的主要职责是___作出决策___,首先确定问题,然后__制定目标___,确认约束条件和估价方案,最后选择___最优解___。
《运筹学》习题集目录第一章线性规划 (1)第二章运输问题 (9)第三章整数规划 (14)第四章目标规划 (20)第五章动态规划 (21)第六章图与网络分析 (24)第七章存储论 (27)第八章对策论 (28)第一章 线性规划1、将下列线性规划问题化为标准型(1) max Z = 3x 1+ 5x 2- 4x 3+ 2x 4⎪⎪⎩⎪⎪⎨⎧≥=+≥+≤++0x , x , x 9 5x -3x -4x x -13 2x -2x 3x -x 18 3x x -6x 2x s.t.421432143214321 (2) min f = 3x1+ x2+ 4x3+ 2x4 ≤ 1⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+≤+0 x 0, x , x15 2x 3x -4x 2x 7- x -2x 2x -3x 51- 2x - x -3x 2x s.t. 4214214321 43213 (3) min F=x1+x2+x3+x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+≥+≥+≥+0x ,x ,x ,x 7x x 8x x 6x x 5x x s.t.432143222141 (4) 3213min x x x F -+=⎪⎪⎩⎪⎪⎨⎧≤≤≥≥0x ,x ,x 4x +5x +x -22x +x -3x +x +x ..32132121321t s 2、求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≥++≥++0 x ,x ,x 12 4x 3x 2x -6 3x 3x 2x 3213213213、用图解法求解下列线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max )1(211212121t s X X Z⎪⎩⎪⎨⎧≥≥≥++-=0 x ,x 155x -3x 56 7x 4x ..3min )2(21212121t s x x Z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
判断题
判断正误,如果错误请更正
第七章网络计划
1.网络计划中的总工期等于各工序时间之和。
2.在网络计划中,总时差为0的工序称为关键工序。
3.在网络图中,只能有一个始点和终点。
4.在网络图中,允许工序有相同的开始和结束事件。
5.在网络图中,从始点开始一定存在到终点的有向路。
6.在网络图中,关键路线一定存在。
7.PERT是针对随机工序时间的一种网络计划编制方法,注重计划的评价和审查。
8.事件i的最迟时间等于以i为开工事件工序的最迟必须开工时间的最小值。
9.紧前工序是前道工序。
10.后续工序是紧后工序。
11.箭示网络图是用节点表示工序。
12.事件j的最早时间等于以j为结束事件工序的最早可能结束时间的最大值。
13.虚工序是虚设的,不需要时间、耗费和资源,并不表示任何关系的工序。
14.若将网络中的工序时间看作距离,则关键路线就是网络起点到终点的最长路线。
15.(i,j)是关键工序,则有TES(i,j)=TLS(i,j)。
16.网络计划中有TEF(i,j)=TE(i)+t(i,j)。
17.工序的总时差R(i,j) =tLF(i,j)+tLS(i,j)-t(i,j)。
18.工序(i,j)的最迟必须结束时间TLF(i,j)= TL(i)+t(i,j)。
19.工序时间是随机的,期望值等于3种时间的算术平均值。
选择题
在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第七章网络计划
1.事件j的最早时间T E(j)是指A 以事件j为开工事件的工序最早可能开工时间B 以事
件j为完工事件的工序最早可能结束时间C 以事件j为开工事件的工序最迟必须开工时间 D 以事件j为完工事件的工序最迟必须结束时间
2.时间i的最迟时间T L(i)是指A以事件i为开工事件的工序最早可能开工时间以
事件i为完工事件的工序最早可能结束时间C 以事件i为开工事件的工序最迟必须开工时间 D 以事件i为完工事件的工序最迟必须结束时间
3.工序(i,j)的最迟必须结束时间T LF(i,j)等于 A T E(i)+t(i,j)B T L(j)C T L
(j)-t ij D min{T L(j)-t ij}
4.工序(i,j )的最早开工时间T ES(i,j)等于 A T E(i) B maxT E(k)+t ki C T L(i)
D min{T L(j)-t ij}
E T EF(i,j)-t ij
5.工序(i,j)的总时差R(i,j)等于A T EF(i,j)- T ES(i,j) B T LF(i,j)- T EF(i,
j) C T LS(i,j)- T ES(i,j) D T L(j)- T E(i)- t ij E T L(j)- T E(i)+ t ij
计算题
7.1 (1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧
前工序。
(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序
表7-16
工序A B C D E F G
紧前工序---A C A F、D、B、E
紧后工序D,E G E G G G-
表7-17
工序A B C D E F G H I J K L M 紧前工序---B B A,B B D,G C,E,F,H D,G C,E I J,K,L 紧后工序F E,D,F,G I,K H,J I,K I H,J I L M M M-
【解】(1)箭线图:
节点图:
(2)箭线图:
7.2 根据项目工序明细表7-18:
(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18
工序A B C D E F G
紧前工序-A A B,C C D,E D,E
工序时间(周)961219678
【解】(1)网络图
(2)网络参数
工序A B C D E F G
最早开始0992*******
最迟开始015921344140
总时差06001310
(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.3 表7-19给出了项目的工序明细表。
表7-19
工序A B C D E F G H I J K L M N 紧前工序---A,B B B,C E D,G E E H F,J I,K,L F,J,L 工序时间(天) 8571281716814510231512(1)绘制项目网络图。
(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图
(2)工序最早开始、最迟开始时间
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差
工序t T ES T EF T LS T LF总时差S自由时差F A80891790
B5050500
C7077700
D12820172999
E851351300
F1772472400
G161329132900
H82937293700
I14132733472020
J51318192466
K103747374700
L232447244700
M154762476200
N124759506233
(4)关键路线及对应的关键工序
关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G,H,K,M
第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M
(5)项目的完工期为62天。