8002A音频IC 产品资料_矽源特科技
- 格式:pdf
- 大小:543.51 KB
- 文档页数:7
8002各脚电压在电子设备中,电压是一个非常重要的参数。
不同的电子元器件和电路板需要不同的电压来正常工作。
在数字电路中,最常用的电压是5V和3.3V,这两个电压可以满足大部分数字电路的需求。
然而,对于一些特殊的应用,可能需要其他的电压值。
在本文中,我们将讨论关于8002芯片的各脚电压。
8002是一款低压差线性稳压器芯片,主要用于电源管理和稳压控制。
它具有高效率、低功耗和低噪声等特点,广泛应用于手机、平板电脑、数码相机和其他便携式电子设备中。
我们来看看8002芯片的输入电压。
根据芯片规格书的说明,8002芯片的输入电压范围为2.7V至5.5V。
这意味着,我们可以将2.7V 至5.5V之间的任何电压作为8002芯片的输入电压。
当然,在实际应用中,我们应该选择适合具体应用场景的输入电压。
接下来,我们来看看8002芯片的输出电压。
8002芯片具有可调节的输出电压,可以满足不同的应用需求。
根据芯片规格书的说明,8002芯片的输出电压范围为0.8V至5.2V。
这意味着,我们可以将0.8V至5.2V之间的任何电压作为8002芯片的输出电压。
当然,在实际应用中,我们应该选择适合具体应用场景的输出电压。
除了输入电压和输出电压,8002芯片还有一些其他的电压参数需要注意。
例如,芯片的工作电流和待机电流。
根据芯片规格书的说明,8002芯片的工作电流一般在20mA至50mA之间,待机电流一般在1μA至10μA之间。
这些参数可以帮助我们评估芯片的功耗和使用寿命。
在使用8002芯片时,还需要注意一些电压的稳定性和精度问题。
根据芯片规格书的说明,8002芯片的输出电压稳定性一般在2%至5%之间,输出电压精度一般在1%至3%之间。
这些参数可以帮助我们评估芯片的性能和适用范围。
8002芯片的各脚电压参数非常重要。
在选择芯片和设计电路时,我们需要根据具体的应用需求来确定输入电压和输出电压。
同时,我们还需要考虑芯片的工作电流、待机电流、输出电压稳定性和精度等参数。
8002 DataSheet V1.0CONTENTSGeneral Description (4)Features (4)Applications (4)Typical Application Circuit (4)Absolute Maximum Ratings (5)Electrical Characteristics (5)Pin Configuration (6)Pin Layout (6)Pin Discription (6)Typical Characteristics (7)THD, THD+N,S/N (7)Power Supply Rejection Ratio (PSRR) (9)Power Dissipation (10)Output Power (11)Application Information (12)BLOCK DIAGRAM (12)BRIDGE CONFIGURATION EXPLANATION (13)POWER DISSIPATION (13)POWER SUPPLY BYPASSING (14)SHUTDOWN FUNCTION (14)PROPER SELECTION OF EXTERNAL COMPONENTS (14)Selection of Input Capacitor Size (15)AUDIO POWER AMPLIFIER DESIGN (15)A 1W/8Ω Audio Amplifier (15)Physical Size of Chip Package (17)FIGURE LISTFigure1. typical Audio Amplifier Application Circuit (4)Figure2. SOP Package Pin Distribution (6)Figure3. The block diagram of 8002 (12)Figure4. The Package of SOP-8 (17)TABLE LISTSTable1. Chip Limit Parameter Table (5)Table2. Electrical Characteristics (5)Table3. Pin Discription (6)General DescriptionThe 8002 is an audio power amplifier primarily designed for demanding applications in low-power portable systems. It is capable of delivering 3 watts of continuous average power to an 3ΩBTL load with less than 10% distortion (THD) from a 5VDC power supply. the 8002 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.the 8002 features a low-power consumption shutdown mode.the 8002 contains advanced pop & click circuitry which eliminates noise which would otherwise occur during turn-on and turn-off transitions. The 8002 is unity-gain stable and can be configured by external gain-setting resistorsFeaturesPower Output at 5.0V, 10% THD+N, 3Ω 3W (typ)Power Output at 5.0V,10% THD+N,4Ω 2.65W (typ)Power Output at 5.0V,10% THD+N,8Ω 1.8W (typ)Shutdown Current 0.6µA (typ)Available in space-saving packages: SOPImproved pop & click circuitry eliminates noise during turn-on and turn-off transitions2.20- 5.5V operationNo output coupling capacitors, snubber networks or bootstrap capacitors requiredUnity-gain stableExternal gain configuration capabilityApplicationsPortable computersDesktop computersLow voltage audio systemsTypical Application Circuitypical Audio Amplifier Application CircuitAbsolute Maximum RatingsChip Limit Parameter TableNameParameterSupply Voltage 6.0V Storage Temperature −65°C to +150°C Input Voltage −0.3V to VDD +0.3VESD Susceptibility 2000VJunction Temperature 150°CThermal ResistanceθJA 210°C/W θJC56°C/WWARNING: In addition to limits or any other conditions, the chip may be damaged.Electrical CharacteristicsThe following specifications apply for V DD =5V and R L =8Ω, unless otherwise specified. Limits apply for TA = 25°C.Electrical Characteristics8002SymbolParameter ConditionsTypical MaxUnits (Limits)V IN =0V,I O =0A, No load 6.510 mA I DD Quiescent Power Supply CurrentV IN =0V,I O =0A, 8load7.0 10 mA I OFF Shutdown Current0.8 2 uA V OS Outpt Offset Voltage5.7 30 mV R O Resistor Output8.5 10 K ΩOutput Power,3ΩLoad THD ≤1%,f=1KHz 2.3 Output Power,4ΩLoad THD ≤1%,f=1KHz 2 Output Power,8ΩLoad THD ≤1%,f=1KHz1.3 WOutput Power,3ΩLoadTHD+N ≤10%,f=1KHz 3 Output Power,4ΩLoad THD+N ≤10%,f=1KHz 2.56 P OOutput Power,8ΩLoadTHD+N ≤10%,f=1KHz 1.8 WT D Wake-up time100 mSTHD+N TotalHarmonicDistortion+Noise20Hz ≤ f ≤ 20kHz, A VD = 2R L = 8Ω, P O = 1W0.2 %PSRR Power Supply Rejection RatioV ripple =200mV sine P-P Input terminated With 10Ω 63(f=217Hz)67(f=1KHz)60 (min)dBPin ConfigurationPin LayoutSOP Package Pin DistributionPin DiscriptionTabl3. Pin DisnriptionPin NO.Pin Name Description1 SD The device enters in shutdown mode when a high level isapplied on this pin2 BYP Bypass capacitor pin which provides the common mode voltage3 +IN Positive input of the first amplifier, receives the common mode voltage4 -IN Negative input of the first amplifier, receives the audio inputsignal5 Vo1 Negative output6 VDD Analog VDD input supply.7 GND Ground connection for circuitry.8 Vo2 Positive outputTypical Characteristics THD, THD+N,S/NPower Supply Rejection Ratio (PSRR)Power DissipationPower Dissipaton vs Output Power,VDD=2.5VOutput PowerApplication InformationBLOCK DIAGRAMThe block diagram of 8002BRIDGE CONFIGURATION EXPLANATIONAs shown in Figure 1, the 8002 has two internal operational amplifiers. The first amplifier’s gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to Ri whilethe second amplifier’s gain is fixed by the two internal 20kΩ resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase by 180°. Consequently, the differential gain for the IC isBy driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as “bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of the load is connected to ground.A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier’s closed-loop gain without causing excessive clipping, please refer to the Audio Power Amplifier Design section.A bridge configuration, such as the one used in 8002,also creates a second advantage over single-ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and also possible loudspeaker damage.POWER DISSIPATIONPower dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Since the 8002 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier.The maximum power dissipation for a given application can be derived from the power dissipation graphs or from Equation 1.It is critical that the maximum junction temperature TJMAX of 150°C is not exceeded. TJMAX can be determined from the power derating curves by using PDMAX and the PC board foil area. By adding copper foil, the thermal resistance of the application can be reduced from the free air value of θJA, resulting in higher PDMAX values without thermal shutdown protection circuitry being activated. Additional copper foil can be added to any of the leads connected to the 8002. It is especially effective when connected to VDD, GND, and the output pins. Refer to the application information on the 8002 reference design board for an example of good heat sinking. If TJMAX still exceeds 150°C, thenadditional changes must be made. These changes can include reduced supply voltage, higher load impedance, or reduced ambient temperature. Internal power dissipation is a function of output power. Refer to the Typical Performance Characteristics curves for power dissipation information for different output powers and output loading. POWER SUPPLY BYPASSINGAs with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. Typical applications employ a 5V regulator with 10µF tantalum or electrolytic capacitor and a ceramic bypass capacitor which aid in supply stability. This does not eliminate the need for bypassing the supply nodes of the 8002. The selection of a bypass capacitor, especially CB, is dependent upon PSRR requirements, click and pop performance (as explained in the section, Proper Selection of External Components), system cost, and size constraints.SHUTDOWN FUNCTIONIn order to reduce power consumption while not in use, the 8002 contains shutdown circuitry that is used to turn off the amplifier’s bias circuitry. In addition, the 8002 contains a Shutdown Mode pin (LD and MH packages only), allowing the designer to designate whether the part will be driven into shutdown with a high level logic signal or a low level logic signal. This allows the designer maximum flexibility in device use, as the Shutdown Mode pin may simply be tied permanently to either VDD or GND to set the 8002 as either a "shutdown-high" device or a "shutdown-low" device, respectively. The device may then be placed into shutdown mode by toggling the Shutdown pin to the same state as the Shutdown Mode pin. For simplicity’s sake, this is called "shutdown same", as the 8002 enters shutdown mode whenever the two pins are in the same logic state. The MM package lacks this Shutdown Mode feature, and is permanently fixed as a ‘shutdown-low’ device. The trigger point for either shutdown high or shutdown low is shown as a typical value in the Supply Current vs Shutdown Voltage graphs in the Typical Performance Characteristics section. It is best to switch between ground and supply for maximum performance. While the device may be disabled with shutdown voltages in between ground and supply, the idle current may be greater than the typical value of 0.1µA. In either case, the shutdown pin should be tied to a definite voltage to avoid unwanted state changes.In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry, which provides a quick, smooth transition to shutdown. Another solution is to use a single-throw switch in conjunction with an external pull-up resistor (or pull-down, depending on shutdown high or low application). This scheme guarantees that the shutdown pin will not float, thus preventing unwanted state changes.PROPER SELECTION OF EXTERNAL COMPONENTSProper selection of external components in applications using integrated power amplifiers is critical to optimize device and system performance. While the 8002 is tolerant of external component combinations, consideration to component values must be used to maximize overall system quality. The 8002 is unity-gain stable which gives the designer maximum system flexibility. The 8002 should be used in low gain configurations to minimize THD+N+N values, and maximize the signal to noise ratio. Low gain configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1Vrms are available from sources such as audio codecs. Please refer to the section, AudioPower Amplifier Design, for a more complete explanation of proper gain selection. Besides gain, one of the major considerations is the closedloop bandwidth of the amplifier. To a large extent, the bandwidth is dictated by the choice of external components shown in Figure 1. The input coupling capacitor, Ci, forms a first order high pass filter which limits low frequency response. This value should be chosen based on needed frequency response for a few distinct reasons.Selection of Input Capacitor SizeLarge input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to 150Hz. Thus, using a large input capacitor may not increase actual system performance .In addition to system cost and size, click and pop performance is effected by the size of the input coupling capacitor, Ci. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally 1/2 VDD). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value. Bypass capacitor, CB, is the most critical component to minimize turn-on pops since it determines how fast the 8002 turns on. The slower the 8002’s outputs ramp to their quiescent DC voltage (nominally 1/2 VDD), the smaller the turn-on pop. Choosing CB equal to 1.0µF along with a small value of Ci (in the range of 0.1µF to 0.39µF), should produce a virtually clickless and popless shutdown function. While the device will function properly, (no oscillations or motorboating), with CB equal to 0.1µF, the device will be much more susceptible to turn-on clicks and pops. Thus, a value of CB equal to 1.0µF is recommended in all but the most cost sensitive designs.AUDIO POWER AMPLIFIER DESIGNA 1W/8Ω Audio Amplifier Given:Power OutputLoad ImpedanceInput LevelInput ImpedanceBandwidthA designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating from the Output Power vs Supply Voltage graphs in the Typical Performance Characteristics section, the supply rail can be easily found.5V is a standard voltage in most applications, it is chosen for the supply rail. Extra supply voltage creates headroom that allows the 8002 to reproduce peaks in excess of 1W without producing audible distortion. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section.1Wrms8Ω1Vrms20k Ω100Hz–20kHz ± 0.25dBOnce the power dissipation equations have been addressed, the required differential gain can be determined from Equation 2.From Equation 2, the minimum AVD is 2.83; use A VD = 3.Since the desired input impedance was 20kΩ, and with a A VD impedance of 2, a ratio of 1.5:1 of Rf to Ri results in an allocation of Ri = 20kΩ and Rf = 30kΩ. The final design step is to address the bandwidth requirements which must be stated as a pair of −3dB frequency points. Five times away from a −3dB point is 0.17dB down from passband response which is better than the required ±0.25dB specified.As stated in the External Components section, Ri in conjunction with Ci create a highpass filter.Use 0.39uf.The high frequency pole is determined by the product of the desired frequency pole, fH, and the differential gain, A VD. With a A VD = 3 and fH = 100kHz, the resulting GBWP = 300kHz which is much smaller than the 8002 GBWP of 2.5MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the 8002 can still be used without running into bandwidth limitations.Physical Size of Chip PackageThe Package of SOP-8Dimensions In Millimeters Dimensions In Inches Symbol Min Max MinMax A 1.350 1.750 0.053 0.069 A 1 0.100 0.250 0.004 0.010 A 2 1.350 1.55 0.053 0.061 b 0.330 0.510 0.013 0.020 c 0.170 0.250 0.006 0.010 D 4.700 5.100 0.185 0.200 E 3.800 4.000 0.150 0.157 E1 5.800 6.2000.2280.244e 1.270(BSC) 0.050(BSC)L 0.400 1.270 0.016 0.050 θ0° 8°0° 8°。
WT8002V1.00WT8002功放芯片说明书Note:WAYTRONIC ELECTRONIC CO.,LTD.reserves the right to change this document without prior rmation provided by WAYTRONIC is believed to be accurate and reliable.However,WAYTRONIC makes no warranty for any errors which may appear in this document.Contact WAYTRONIC to obtain the latest version of device specifications before placing your orders.No responsibility is assumed by WAYTRONIC for any infringement of patent or other rights of thirdparties which may result from its use.In addition,WAYTRONIC products are not authorized for use as critical components in V1.02一.概述WT8002是一款音频功率放大芯片.工作电压2V~6V,以BTL的方式输出,它內含降低上电瞬间与启动/关闭产生pop声的电路与过温保护,低待机电流0.5uA二、特性内置降低上电瞬间与启动/关闭产生pop声的电路增益可由外挂电阻调节宽广的工作电流:1.6V-6V封装形式:SOP-8高輸出功率Pout= 1.2W(VDD=5V,THD+N=1%,8ohm)Pout=2W(VDD=5V,THD+N=1%,4ohm)三、应用可应用于手提设备,台式电脑及低电压工作的音频设备四、功能特性桥路设置WT8002内部共有2个运放工作,第一个运放增益可在外部用RF和RJ两个电阻进行设置(+IN 和-IN端口),第二个运放的增益由内部固定不变。
SD8002A3W 单声道带关断模式音频功率放大器DatasheetVersion 1.0Shouding3W 单声道带关断模式音频功率放大器SD8002A SD8002A SD8002A SD8002A SD8002A3W 单声道带关断模式音频功率放大器一.概述是一种桥工音频功率放大器,使用5V 电源,且THD+N≤1.0%时,能给一个4Ω的负载提供2W 的平均功率。
音频功率放大器是为提供高质量的输出功率而设计的,需要很少的外围设备,便可以提供高品质的输出功率。
不需要输出耦合电容,具有高电平关断模式,非常适合低功耗的便携式系统。
可以通过外部电阻控制增益,并有补偿器件保证芯片的正常工作。
二. 重要规格1.1KHz ,接4Ω负载(),平均输出功率为2W ,THD+N 1%(典型) 2.1kHz ,接4Ω负载,平均输出功率为3W ,THD +N 10%(典型) 3.关断电流 0.6 μA (典型) 4.输入电压范围 2.0~5.5V三.特征1. 无输出耦合电容2. 外部电阻可调增益3. 整体增益稳定4. 热敏关断保护电路5. 小尺寸 (SOP-8)封装形式四.应用1. 个人电脑2. 便携式消费类电子产品3. 无源扬声器4. 玩具及游戏机3W 单声道带关断模式音频功率放大器Shouding五.芯片封装引脚分布六.典型应用3W 单声道带关断模式音频功率放大器Shouding七.绝对最大额定值电源电压 6.0V 焊接信息存储温度 -65℃~+ 150℃ 气化态(60秒) 215 ℃输入电压 -0.3V ~V DD +0.3V 红外线(15秒) 220℃ 功耗 内部限制 热阻ESD 磁化系数(人体模型) 3000V θJC (典型) 35°C/W ESD 磁化系数(机器模型) 250V θJA (典型) 140°C/W 结温 150℃八.工作额定值温度范围:T MIN ≤T A ≤T MAX -40 ℃≤T A ≤+ 85℃ 电源电压 2.0V ≤V DD ≤5.5V3W 单声道带关断模式音频功率放大器Shouding九.电学特性1、除非另外指明,以下都是V DD =5V ,R L =8Ω, 限制应用在TA =25℃MD4871 符号 参数 条件 标准 限制单位 (限制)2.0 V (最小) V DD 电源电压2.5 V (最大)I DD 静态电流 V IN = 0V , I O =0A 3.5 8 mA (最大) I SD 关断电流 V SD =V DD , V IN =0V 0.6 2 μAV OS输出失调电压V IN = 0V5.0 50.0mV (最大)THD=1%(最大);f=1KHzR L =4Ω R L =8Ω 2 1.2 WP O输出功率THD=10%(最大);f=1KHzR L =4Ω R L =8Ω3 2WPSRR 电源抑制比 V DD =4.9V ~5.1V 65 dBTHD+N 总谐波失真 20Hz ≤f ≤20KHz R L =4Ω,P O =1.6W R L=8Ω, P O =1W0.10.1%十、外围元器件描述器件 功能描述1.R i 与R f 一起设置闭环增益的输入电阻,同时还与C I 形成了高通滤波器,且f C =1/(2πR I C I )。
文章标题:探秘功率放大器8002芯片:基本结构揭秘一、引言功率放大器8002芯片,作为音频功率放大器领域的重要组成部分,其基本结构和工作原理一直备受关注。
本文将从8002芯片的基本结构出发,深入解析其组成和功能,帮助读者全面理解这一重要器件。
二、8002芯片的基本构造1. 芯片外部形状:8002芯片通常采用DIP-8封装,包括8个引脚,外形小巧玲珑却功能强大。
2. 内部器件构成:8002芯片内部包括了多个功能模块,包括输入级、驱动级和输出级等,每个部分都承担着不同的功能。
三、8002芯片的工作原理1. 输入级:8002芯片的输入级主要负责接收外部音频信号,并对其进行放大和处理,为后续级别提供合适的信号源。
2. 驱动级:驱动级是8002芯片的核心部分,它负责将输入的信号放大,并驱动功放芯片的输出级,保证输出级得到稳定的驱动信号。
3. 输出级:8002芯片的输出级将来自驱动级的信号经过二次放大和滤波,输出给扬声器,从而实现音频信号的放大和放大。
四、8002芯片的应用领域8002芯片由于其优秀的性能和稳定的工作特性,在音频功率放大器领域得到了广泛的应用。
无论是消费类电子产品中的音箱、手机等,还是工业控制系统中的音频放大器模块,都离不开8002芯片的支持。
五、结论与展望功率放大器8002芯片的基本结构和工作原理,本文进行了深入的剖析和阐释。
通过本文的阅读,相信读者已经对这一重要器件有了全面的了解和认识。
未来,随着技术的不断进步,8002芯片将会迎来更广阔的应用空间,也希望它能为音频领域的发展贡献更多的力量。
六、个人观点与理解在笔者看来,功率放大器8002芯片作为音频领域的重要器件,其基本结构紧凑、功能全面,能够满足不同场景的音频放大需求。
随着智能化、数字化的发展,8002芯片将会迎来更多的创新应用,为人们带来更加优质的音频体验。
以上内容为文章的主要结构和内容,希望对您有所帮助。
在8002芯片的基本结构和工作原理的基础上,我们可以进一步探讨其在音频功率放大器领域的具体应用和未来发展趋势。
8002a功放芯片参数8002A功放芯片参数1. 引言功放芯片是一种用于放大电信号的集成电路。
8002A功放芯片是一种常见的功放芯片,广泛应用于电子产品中。
本文将详细介绍8002A功放芯片的参数及其作用。
2. 8002A功放芯片概述8002A功放芯片是一种双路单声道功放芯片,采用BTL(平衡型连接方式)设计,适用于3V至12V的供电电压。
它具有低功耗、低噪声、高音质等优点,广泛应用于MP3播放器、手机音频放大、电子琴等电子产品中。
3. 电源参数8002A功放芯片的工作电源电压范围为3V至12V。
在3V供电电压下,输出功率约为300mW。
当供电电压达到12V时,输出功率可达4W。
此外,8002A功放芯片的静态电流非常低,仅为6mA左右,因此它非常适合低功耗的电子设备。
4. 输出参数8002A功放芯片的输出功率范围为300mW至4W。
它能够提供稳定的音频输出信号,具有较低的失真和噪声。
该芯片的输出电阻为8Ω,适用于8Ω阻抗的扬声器。
5. 控制参数8002A功放芯片具有灵活的控制参数,可以通过外部电阻来调整放大倍数。
通常情况下,通过控制输入信号的幅度,可以控制功放芯片的放大倍数。
此外,该芯片还具有短路保护功能,能够保护耳机或扬声器免受电流过大的损害。
6. 输入参数8002A功放芯片的输入电阻为30kΩ。
它采用单端输入方式,对于输入信号具有良好的接收能力。
此外,该芯片还具有一定的输入电容,可以阻隔直流偏置,从而提高音频的输出质量。
7. 应用领域8002A功放芯片广泛应用于各种消费电子产品中。
它常见的应用领域包括但不限于以下几个方面:(1)MP3/MP4播放器: 8002A芯片提供了较好的音频放大效果,使得MP3/MP4播放器具备更好的音质输出。
(2) 手机音频放大:由于8002A芯片具有低功率消耗和低噪音等优点,适合用于手机音频放大,提高音质和音量输出。
(3) 电子琴: 8002A芯片能够提供稳定的音频放大效果,使得电子琴具备更好的音质和音量效果。
8002a典型电路8002a典型电路是一种常见的电路设计,它具有多种应用。
本文将从人类视角出发,以生动的方式描述8002a典型电路的特点和作用。
第一段:引言8002a典型电路是一种广泛应用于音频放大器中的电路设计。
它能够提供高质量的音频放大功能,使得音乐和声音更加动听和清晰。
本文将为您详细介绍8002a典型电路的特点和作用。
第二段:特点介绍8002a典型电路具有多项特点,使得它在音频放大领域中备受青睐。
首先,它采用了高性能的音频功率放大芯片,能够提供稳定而高效的功率输出。
其次,它采用了精心设计的音频输入和输出电路,能够实现低失真和高保真的音频放大效果。
此外,8002a典型电路还具有低功耗和高可靠性的特点,能够满足长时间使用的需求。
第三段:作用介绍8002a典型电路在音频放大领域中有着广泛的应用。
首先,它常用于音响设备中,如家庭影院系统、音乐播放器等。
通过将8002a典型电路与扬声器连接,可以实现音频信号的放大和增强,使得音乐和声音更加震撼和逼真。
其次,8002a典型电路还常用于汽车音响系统中,为驾驶者和乘客提供高品质的音乐享受。
此外,8002a典型电路还可用于电视、电脑和手机等设备中,提升其音频输出的质量和效果。
第四段:应用案例举例为了更好地理解8002a典型电路的作用,我们来看一个具体的应用案例。
假设你正在享受一部电影,而这部电影有着激动人心的音乐和精彩的对话。
如果你使用的是一个配备了8002a典型电路的家庭影院系统,那么你将会感受到音乐的震撼和对话的逼真。
8002a典型电路通过放大音频信号,使得影院系统的扬声器能够更好地表现出音乐的细节和对话的情感,让你仿佛置身于电影的现场,享受着身临其境的视听盛宴。
第五段:总结8002a典型电路是一种应用广泛的电路设计,它能够提供高质量的音频放大功能。
无论是在家庭影院系统、汽车音响系统还是其他音响设备中,8002a典型电路都能够使音乐和声音更加动听和清晰。
8002芯片8002芯片是一种低功耗、高性能的处理器芯片,广泛应用于智能手机、平板电脑等移动设备中。
以下是对8002芯片的详细介绍,共计1000字。
8002芯片是一种先进的32位处理器,采用先进的制造工艺,具有高性能与低功耗的特点。
首先,8002芯片具有出色的性能。
它采用了ARM Cortex-A53架构,可提供高达2.4GHz的主频。
这种架构结合了多核技术和超频技术,使得芯片在处理数据时能够更为高效地运行。
8002芯片还配备了强大的图形处理单元(GPU),可提供流畅的游戏和视频播放体验。
此外,芯片还支持高速的存储器访问和数据传输,能够满足复杂的计算需求。
其次,8002芯片具有出色的功耗控制能力。
它采用了先进的低功耗设计技术,包括功耗级联和动态电压频率调整等。
这些技术使得芯片在保持高性能的同时,能够尽量减少功耗,延长电池寿命。
与传统的芯片相比,8002芯片在相同的使用条件下能够节省约20%的能耗。
这对于移动设备来说非常重要,用户可以更长时间地使用手机或平板电脑而不必频繁充电。
此外,8002芯片还具有较强的安全性能。
它支持多种加密算法和安全协议,能够保护用户的个人数据和隐私安全。
芯片内部还集成了硬件级别的安全模块,能够有效防止黑客攻击和恶意软件的入侵。
这使得用户在使用手机或平板电脑时能够更加放心,不必担心个人信息被泄露或被用于非法用途。
另外,8002芯片还支持5G通信技术。
5G是下一代移动通信技术,具有更高的网速和更低的延迟,能够更好地支持高清视频、虚拟现实和物联网等应用。
8002芯片内置了5G调制解调器,能够实现高速稳定的网络连接。
这使得用户在使用手机或平板电脑时能够享受到更快速、更流畅的网络体验。
总而言之,8002芯片是一款集高性能、低功耗、安全性和5G 通信技术于一体的先进处理器芯片。
它的出现使得移动设备能够更好地满足用户对高性能、长续航和安全的需求。
在今后的发展中,8002芯片将会继续不断创新,为移动设备带来更多更好的功能和体验。
8002功放音频IC芯片替代型号HX8358功放一、前言:8002系列率功放芯片,是前几年生产和开发蓝牙、MP3的音箱用的最广泛的一个芯片,也可以说是最经典的一款模拟芯片。
在淘宝搜素一下,各种各样的8002都有。
但随着时间的推移,产品的升级,很多的新的产品它适用不了,比如工作电压超过5V,功率要求比较大一点的,它都不能做。
因此就会有新的产品来替代它。
下面就针对我公司的功放芯片,给大家介绍一下。
先例出几款常用功放芯片的比较:从列表可以看出,我公司推出的HX系列功放芯片,工作电压和输出功率明显的高于其它的功放。
二、为什么要向大家介绍我公司HX8358这个功放芯片?做电子音频产品的,大家都知道市面上有一款8002系列的功放音频IC。
据我所知,8002一共有6个版本,8002A、8002B、8002C、8002D、8002E、CSC8002,搞的大家在使用上极其的不方便,有时还会卖错8002.它们的不同之处,就是功率的大小不一样,价钱也是不一样的。
但8002不管是那个版本,它的最高工作电压只有5.0V,超过5.0V,在生产或者用户在使用中,肯定会烧坏的,这是已经求证过的事实。
这方面,浙江省的生产公司就身有体会,他们在做童车、摇摇车的过程中,因使用的是4节干电池供电。
4节干电池的电压远远超过8002极限工作电压5.0V。
因此在生产的过程中,动不动就烧坏8002,发出去的成品,也是成了严重的售后问题。
有的生产公司为此把烧坏的芯片拿去开光,结果看到芯片的内部已经是烧黑了。
HX8358,他的工作电压最高可达7.0V,工作电压范围:2.5V—7V,根本不用担心4节干电池烧坏芯片的问题。
音质和功率也不会比8002差,功率甚至比8002大,可以做到5W的功率三、HX8358芯片功能说明:QQ:298391364HX8358是一款超低EMI,无需滤波器,AB/D类可选式音频功率放大器。
6V工作电压时,最大驱动功率为8W(VDD=6V,2ΩBTL负载,THD<10%),音频范围内总谐波失真噪声小于1%,(20Hz~20KHz);HX8358的应用电路简单,只需极少数外围器件;HX8358输出不需要外接耦合电容或上举电容和缓冲网络四、典型应用电路:五、芯片功能主要特性:1、超低EMI,高效率,音质优2、AB/D类切换、单通道3、VDD=6V,RL=2Ω,Po=8W,THD+N≤10%4、VDD=6V,RL=4Ω,Po=5W,THD+N≤10%5、(防失真关断模式)6、宽工作电压范围2.5V—7V7、优异的上掉电POP声抑制六、8W输出功率设置:有拿到样品的朋友问我这样的问题,HX8358的输出功率达不到8W,声音大小和8871的差不多。
Features•Operating temperature range:•Automotive, -40°C to +125°C•Mechanically robust:•Shock, 50 KG•Vibration, 70 G•Wide frequency range•1 MHz to 125 MHz•Low frequency tolerance•±100 ppm or ±200 ppm or ±500•Operating voltage•1.8V or 2.5 or 3.3 V•Small footprint•2.5 x 2.0 x 0.85 mm•3.2 x 2.5 x 0.85 mm•5.0 x 3.2 x 0.85 mm•7.0 x 5.0 x 0.85 mm•All packages are Pb-free and ROHs compliant (QFN SMD)•Ultra-reliable start up and greater immunity from interfer-ence•High drive option: 30pF load (contact factory)Benefits•No crystal or capacitors required•Eliminates crystal qualification time•50% + board saving space•Most cost effective than Quartz oscillators, Quartz crystals and Clock ICs.•completely quartz-freeApplications•Automotive•Industrial•Automation•Space•SatellitePin DescriptionPin Pin Description1ST/OE Standby/ Output Enable2GND Connect to Ground3OUT 1 to 125 MHz Programmed Clock output 4VDD Connect to 1.8V or 2.5V or 3.3V Pin1Pin #1 FunctionalityOEH or Open; specified frequency outputL: output is high impedanceSTH or Open; specified frequency outputL: output is low level (weak pull down) oscillation stopsDescriptionThe SiT8002AA oscillator family is composed of the world’s smallest, high-performance programmable oscillators. The SiT8002AA is suitable for use in clock generation for automotive, industrial, and space/Satellite applications.MEMS resonators are 1000x smaller by volume than quartz resonators and are built in high volume CMOS fabs instead of small custom manufacturing facilities. Due to their small size,massive lot sizes, and simpler manufacturing processes MEMS oscillators are inherently more reliable, have more consistent performance and are always in stock.The SiT8002AA, by eliminating the quartz crystals, has improved immunity to the environmental effects of vibration,shock, strain, and humidity.Absolute Maximum RatingsAttempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications not absolute maximum ratings.Notes:1.The2.5V device can operate from 2.25V to3.63V with higher output drive, however, the data sheet parameters cannot be guaranteed. Please contact factory for this option.2.The output driver strenght can be programmed to drive up to 30pF load. Please contact factory for this option.Ab solute Maximum TableParameterMin.Max.Unit Storage Temperature -65150°C VDD-0.5+3.65V Electrostatic Discharge6000V Theta JA ( with copper plane on VDD and GND)–75°C/W Theta JC (with PCB traces of 0.010 inch to all pins)–24°C/W Soldering Temperature (follow standard Pb free soldering guidelines)260°C Number of Program Writes1NA Program Retention over -40 to 125C, Process, VDD (0 to 3.6V)1,000+yearsOperating ConditionsParameterMin.Typ.Max.Unit Supply Voltages, VDD [1]2.973.3 3.63V 2.25 2.5 2.75V 1.71.8 1.9V Automotive OperatingTemperature -40-125°C Maximum Load Capacitance [2]--15pF VDD Ramp Time-200msEnvironmental ComplianceParameter Condition/Test MethodMechanical Shock MIL-STD-883F, Method 2002, 50 KG Mechanical Vibration MIL-STD-883F, Method 2007, 70 G Temperature Cycle JESD22, Method A104SolderabilityMIL-STD-883F, Method 2003Moisture Sensibility LevelMSL1@VDD = 3.3V ±10%, -40 to 125°CParameter Condition Min.Typ.Max.Unit Voltage Output High IOH = -20 mA 70--%Vdd Voltage Output Low IOL = 20 mA --30%Vdd Input Voltage High Pin 170--%Vdd Input Voltage Low Pin 1 --30%Vdd Operating Current Output frequency = 65 MHz, 15 pF load--30mA Standby Current Output is weakly pulled down, ST = GND-3080uA Power Up Time Time from minimum power supply voltage-1250ms@VDD = 2.5V ±10%, -40 to 125°CParameter Condition Min.Typ.Max.Unit Voltage Output High IOH = -15 mA 70--%Vdd Voltage Output Low IOL = 15 mA --30%Vdd Input Voltage High Pin 170--%Vdd Input Voltage Low Pin 1 --30%Vdd Operating Current Output frequency = 65 MHz, 15 pF load--30mA Standby Current Output is weakly pulled down, ST = GND-3080uA Power Up Time Time from minimum power supply voltage-1250ms@VDD = 1.8V ±5%, -40 to 125°CParameter Condition Min.Typ.Max.Unit Voltage Output High IOH = -10 mA 70--%Vdd Voltage Output Low IOL = 10 mA --30%Vdd Input Voltage High Pin 170--%Vdd Input Voltage Low Pin 1 --30%Vdd Operating Current Output frequency = 65 MHz, 15 pF load--25mA Standby Current Output is weakly pulled down, ST = GND-3080uA Power Up Time Time from minimum power supply voltage-1250ms@VDD = 3.3V ±10%, -40 to 125°CParameter Condition Min.Typ.Max.Unit Clock Output Frequency1-125MHzFrequency Tolerance Initial tolerance, operating temperature, ratedpower supply voltage change, load change,aging,shock and vibration -100-+100ppm -200-+200ppm -500-+500ppmClock Output Duty Cycle Output frequency= 1 MHz to 125 MHz45-55% Clock Output Rise Time15 pF Load, 20% to 80% VDD- 1.03ns Clock Output Fall Time15 pF Load, 80% to 20% VDD- 1.03ns Pk-pk Period Jitter Output frequency = 24 MHz-100125psOutput frequency = 100 MHz-6075ps @VDD = 2.5V ±10%, -40 to 125°CParameter Condition Min.Typ.Max.Unit Clock Output Frequency1-125MHzFrequency Tolerance Initial tolerance, operating temperature, ratedpower supply voltage change, load change,aging,shock and vibration -100-+100ppm -200-+200ppm -500-+500ppmClock Output Duty Cycle Output frequency= 1MHz to 125MHz45-55% Clock Output Rise Time15 pF Load, 20% to 80% VDD- 1.03ns Clock Output Fall Time15 pF Load, 80% to 20% VDD- 1.03ns Pk-pk Period Jitter Output frequency = 24 MHz-130150psOutput frequency = 100 MHz-6075ps@VDD = 1.8V ±5%, -40 to 125°CParameter Condition Min.Typ.Max.Unit Clock Output Frequency1-125MHzFrequency Tolerance Initial tolerance, operating temperature, ratedpower supply voltage change, load change,aging,shock and vibration -50-+50ppm -100-+100ppmClock Output Duty Cycle Output frequency= 1 MHz to 65MHz45-55%Output frequency= 65 MHz to 125MHz40-60% Clock Output Rise Time15 pF Load, 20% to 80% VDD- 1.03ns Clock Output Fall Time15 pF Load, 80% to 20% VDD- 1.03ns Pk-pk Period Jitter Output frequency = 24 MHz-185225psOutput frequency = 100 MHz-100125psOrdering InformationPackage Information[3]Dimension (mm) Land Pattern (recommneded) (mm)2.5 x 2.0 x 0.85mmNote:3.xxxx top marking denotes manufacturing lot number..Package Information (continued)[3]Dimension (mm) Land Pattern (recommneded) (mm)3.2 x 2.5 x 0.85mm5.0 x 3.2 x 0.85mm7.0 x 5.0 x 0.85mma Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any sitime product and any product documentation. products sold by sitme are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. all sales are made conditioned upon compliance with the critical uses policy set forth below.CRITICAL USE EXCLUSION POLICYBUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.。
N S8002用户手册V1.0深圳市纳芯威科技有限公司2011年11月修改历史日期版本作者修改说明目录1功能说明 (5)2主要特性 (5)3应用领域 (5)4典型应用电路 (5)5极限参数 (6)6电气特性 (6)7芯片管脚描述 (7)7.1 管脚分配图 (7)7.2 引脚功能描述 (7)8NS8002典型参考特性 (8)8.1 总谐波失真(THD),失真+噪声(THD+N),信噪比(S/N) (8)8.2 电源电压抑制比(PSRR) (10)8.3 芯片功耗(Power Dissipation) (11)8.4 关断滞回(Shut Down Hysteresis) (12)8.5 输出功率(Output Power) (13)9NS8002应用说明 (14)9.1 芯片基本结构描述 (14)9.2 芯片数字逻辑特性 (15)9.3 外部电阻配置 (15)9.4 外部电容配置 (15)9.5 芯片功耗 (15)9.6电源旁路 (15)9.7 掉电模式 (15)10芯片的封装 (16)图目录图1 NS8002典型应用电路 (5)图2 SOP8封装的管脚分配图(top view) (7)图3 NS8002原理框图 (14)图4 SOP8封装尺寸图 (16)表目录表1 芯片最大物理极限值 (6)表2 NS8002电气特性 (6)表3 NS8002管脚描述 (7)关断信号数字逻辑特性表4 (15)1功能说明NS8002是一款AB类桥式输出音频功率放大器。
其应用电路简单,只需极少数外围器件。
输出不需要外接耦合电容或上举电容和缓冲网络。
SOP8封装,更适合用于便携系统。
NS8002可以通过控制进入低功耗关断模式,从而减少功耗。
增益带宽积高达2.5M,并且单位增益稳定。
通过配置外围电阻可以调整放大器的电压增益,方便应用。
NS8002提供 SOP8封装,额定的工作温度范围为-40℃至85℃。
2主要特性●输出功率: 2. 4W(RL=4Ω,THD=10%)●掉电模式漏电流小: 1uA(典型)●高电平ShutDown●采用SOP8封装●外部增益可调●电压范围3.0V—5.25V●不需驱动输出耦合电容、自举电容和缓冲网络●单位增益稳定3应用领域●手提电脑●台式电脑●低压音响系统4典型应用电路图1NS8002典型应用电路5极限参数表1 芯片最大物理极限值参数最小值最大值单位说明电源电压 2.8 5.5 V储存温度-65 150 o C输入电压-0.3 V DD V耐ESD电压1 3000 VHBM耐ESD电压2 250 VMM节温150 o C 典型值150工作温度-40 85 o C热阻θJC(SOP8) 35o C/WθJA(SOP8) 140o C/W焊接温度 220 o C 15秒内注:在极限值之外或任何其他条件下,芯片的工作性能不予保证。
N S 4249用户手册V 1.1深圳市矽源特技有限公司2011年05月矽源特科技Ch i p S o u r c e T e k目 录1 功能说明...........................................................................................................................................................42 主要特性...........................................................................................................................................................43 应用领域...........................................................................................................................................................4 4 典型应用电路....................................................................................................................................................45 极限参数...........................................................................................................................................................56 电气特性...........................................................................................................................................................5 7芯片管脚描述 (6)7.1 封装管脚分配图...............................................................................................................................6 7.2引脚功能描述 (7)8NS4249典型参考特性......................................................................................................................................7 9NS4249应用说明............................................................................................................................................11 9.1 芯片基本结构描述.........................................................................................................................11 9.2 NS4249工作模式...........................................................................................................................12 9.3 上电 ,掉电噪声抑制.......................................................................................................................13 9.4 EMI 增强技术..................................................................................................................................13 9.5 效率.................................................................................................................................................14 9.6保护电路 (14)10 NS4249应用注意事项...................................................................................................................................14 11 芯片的封装尺寸图 (15)矽源特科技Ch i p S o u r c e T e k图 目 录图1 NS4249典型应用电路.............................................................................................................................4 图2 封装管脚分配图(top view).......................................................................................................................6 图3 NS4249原理框图...................................................................................................................................11 图4 立体耳机工作电路示意图.....................................................................................................................12 图5 EMI 测试频谱图......................................................................................................................................13 图6 NS4249加磁珠应用电路.......................................................................................................................14 图7 SOP16封装尺寸图 (15)表 目 录表1 芯片最大物理极限值...............................................................................................................................5 表2 NS4249电气特性.....................................................................................................................................5 表3 NS4249管脚描述.....................................................................................................................................7 表4 NS4249工作模式设置 (12)矽源特科技Ch i p S o u r c e T e k1功能说明NS4249是一款带AB 类/D 类工作模式切换功能、超低EMI 、无需滤波器、3W 双声道音频功放。
一、概述SC8002B是一颗带关断模式的音频功放IC。
在5V输入电压下工作时,负载(3Ω)上的平均功率为3W,且失真度不超过10%。
而对于手提设备而言,当VDD作用于关断端时,SC8002B将会进入关断模式,此时的功耗极低,IQ仅为0.6uA。
SC8002B是专为大功率、高保真的应用场合所设计的音频功放IC。
所需外围元件少且在2.0V~5.5V的输入电压下即可工作。
二、功能特点➢无需输出耦合电容或外部缓冲电路。
➢稳定的增益输出。
➢外部增益设置。
➢封装形式:SOP8、SOP8-PP、DIP8、MSOP8。
三、应用➢可应用于手提设备,台式电脑及低电压工作的音频设备。
四、管脚排列及说明电压基准端的外接电容应尽可能的靠近SC8002B,0.1μF的电容提高了内部偏置电压的稳定性并且减少了PSRR的影响。
可以通过加大BYPASS端的对地电容值来改善PSRR。
CB值的大小取决于对PSRR的要求。
➢关断功能为了减少功耗,SC8002B的关断端可以关闭外部的偏置电路。
当关断端为高电平时,运放关闭,SC8002B不工作,这时SC8002B的工作电流降低到0.6uA。
当关断端电压略低于VDD时,SC8002B工作状态不稳定。
所以,关断端应置于一个稳定的电压值,以免IC进入错误的工作状态。
在很多应用场合,关断端的电平转换都是由处理器来完成的。
当使用单向闸刀开关实现电平转换时,可以在关断端加上拉电阻,这样当开关关断时,因上拉电阻的作用,使得SC8002B关断端的电平处于一个正确的状态,以保证SC8002B不会进入错误的工作状态。
六、极限参数(Ta=25℃)特性符号范围单位工作电压V DD 6 V输入电压V IN-0.3~V DD+0.3 V工作温度T OPR-65~+150 ℃环境温度T A-40~+85 ℃节点温度T J150 ℃七、电气参数(VDD=5V,RL=8Ω,Ta=25℃)名称符号最小值典型值最大值单位测试条件工作电压V DD 2.0 -- 5.5 V静态电流I DD-- 6.5 10 mA V IN=0V, I O=0mA关断电流I SD-- 0.6 2 uA V PIN1=V DD输出偏压V OS-- 5.0 50 mV V IN=0V输出功率P O -- 1.2 --WTHD=1%, f=1KH z, R L=8Ω-- 1.5 -- THD=10%, f=1KH z, R L=8Ω总谐波失真+噪音THD+N -- 0.25 -- % 20Hz≤f≤20KHz, A VD=2, RL=8Ω, P O=1W 电源抑制比-- 60 -- dB V DD=4.9V~5.1V八、特性参数九、电路原理图.3456ABCDTitl eNu mber Rev isionSize B Date:24-Nov-2009Sheet o fFile:E:\规格书\规格图\规格图-0\ZB O\SC4871.ddb Drawn B y :+-+-+NCRP UVDDC1.0uFBCi 0.39uFRi 20KΩAudio InputRf 20KΩ-IN +INBypass ShutdownBiasCs +1.0uF TantVDD100KΩVDD/2GNDA V=-140KΩ40KΩVO1VO2R L 8Ω12345678100KΩ十、封装尺寸图SOP-8SOP8-PP (带散热片)3.92.4133.3021.276.00.214.90.10.421.55。
Recommended soldering pattern(Unit: mm)NO.1 OE or ST 2 GND 3 OUT 4 V DD5.081.82.04.27.0±0.25.085.0±0.2# 4 # 3# 1 # 2E 125.000PHC724A1.4 -0.15+0.1External dimensionsSpecifications (characteristics)(Unit: mm)Pin terminal PROGRAMMABLE HIGH-FREQUENCY CRYSTAL OSCILLATORSG-8002CA seriesItemOutput frequency range Power source voltage Temperature rangeSoldering condition Frequency stability Current consumption Output disable current Standby current DutyHigh output voltage Low output voltage Output loadcondition (fan out)Output enable/disable input voltageOutput rise timeOutput fall timeOscillation start up time AgingShock resistanceSymbol f 0V DD -GND V DD T STG T OPRT SOL ∆f/f 0Iop I OE I ST t w /t V OH V OL N C L V IH V IL t TLH t THL t OSC fa S.R.TTL C-MOSC-MOS level TTL level C-MOS levelTTL levelPT/ST PH/SH PC/SCSpecifications-0.5V to +7.0V5.0V±0.5V 2.7V to 3.6V-55˚C to +125˚C-20˚C to +70˚C (-40˚C to +85˚C) -40˚C to +85˚CTwice at under 260˚C within 10 sec.or under 230˚C within 3 min.B: ±50ppm C: ±100ppm M: ±100ppm(-40˚C to +85˚C)45mA max. 25mA max.30mA max. 15mA max.— 40% to 60%40% to 60% —V DD -0.4V min.0.4V max.5TTL max. —15pF max. 25pF max. 15pF max.2.0v min. 0.7 × V DD min.0.8V max. 0.2 × V DD max.— 4ns max.4ns max. —— 4ns max.4ns max. —10ms max.±5ppm/year max.±20ppm max.RemarksOperating voltage range-20˚C to +70˚CNo load condition, Max. frequency rangeOE=GND ST=GNDC-MOS load: 1/2V DD level TTL load: 1.4V levelI OH =-16mA(PT/ST,PH/SH),-8mA(PC/SC)I OL = 16mA(PT/ST,PH/SH), 8mA(PC/SC)Max. frequency and max. operating voltage rangeST _, OE terminalC-MOS load: 20%→80%V DDTTL load: 0.4V →2.4V C-MOS load: 80%→20%V DDTTL load: 2.4V →0.4VTime at Operating voltage to be 0 sec.Ta= 25˚C, V DD = 5.0V/3.3V(PC/SC)Three drops on a hard board from 75 cm or excitation test with 3000G x 0.3ms x 1/2sine wave in 3 directionsNote: • Please contact us for inquiries about operating temperature(-40˚C to +85˚C), usagle frequencies, duty and output load conditions.Max. supply voltage Operating voltage Storage temperature Operating temperature50µA max.• Wide frequency range from 1MHz to 125MHz.• Quick delivery of samples and short lead time by mass production.• Use of C-MOS IC assures low current consumption.• Excellent shock resistance and environmental capability.• Output enable function (OE) and stand-by function (ST) can be used for low current consumption applications.1.0000 MHz to125.0000 MHz 1.0000 MHz to90.0000 MHzActual size。
8002a典型电路一、引言在现代科技发展的背景下,电路技术的应用越来越广泛。
而8002a 典型电路作为一种常见的电路设计,具有其独特的特点和功能。
本文将以人类的视角,通过描述和叙述,向读者介绍8002a典型电路的一些基本特点和应用。
二、8002a典型电路的基本介绍8002a典型电路是一种具有放大功能的电路,常用于音频放大器中。
它使用了特定的集成电路芯片,通过放大输入信号,将其输出为更大幅度的音频信号。
8002a典型电路具有体积小、功耗低、效率高等优点,因此在电子产品中得到了广泛的应用,如手机、电视、音响等。
三、8002a典型电路的工作原理8002a典型电路的工作原理相对复杂,但我们可以通过简单的描述来理解其基本原理。
当输入音频信号进入8002a典型电路时,电路中的集成电路芯片会将信号分为多个频段,并对每个频段进行放大处理。
这样,原本较弱的音频信号就会被放大为更大幅度的信号,以便驱动扬声器或耳机等输出设备。
四、8002a典型电路的应用领域8002a典型电路在现代生活中有着广泛的应用。
首先,它常用于手机音频放大器中,使手机的音乐、通话声音更加清晰、响亮。
其次,8002a典型电路也广泛应用于电视、音响等娱乐设备中,为用户提供更好的听觉体验。
此外,由于8002a典型电路体积小巧,功耗低,还可以用于一些便携式音箱、蓝牙音响等移动设备中。
五、总结通过对8002a典型电路的基本介绍和应用领域的描述,我们可以看出,8002a典型电路在现代生活中扮演着重要的角色。
它的小巧、高效的特点使得它在各种电子产品中得到了广泛的应用。
相信随着科技的不断进步,8002a典型电路将会有更多的应用场景和发展空间。
六、致读者希望通过本文的描述,读者对8002a典型电路有了更清晰的认识。
8002a典型电路的应用范围广泛,未来的发展也充满了无限的可能性。
作为一种电路设计,8002a典型电路在提升音频体验、改善生活质量方面发挥着重要作用。
8002a典型电路8002a典型电路是一种常见的电路设计,具有广泛的应用范围。
该电路由多个元件组成,能够实现特定的功能。
下面将详细介绍8002a典型电路的结构和工作原理。
8002a典型电路由多个部分组成,包括电源、输入信号接口、功率放大器、输出接口等。
其中,电源提供稳定的电压供电,输入信号接口接收外部音频信号,功率放大器将输入信号放大,输出接口将放大后的信号传输到外部设备。
在8002a典型电路中,电源起到了至关重要的作用。
它为整个电路提供所需的电压和电流。
通常,电源会通过适配器或者电池等方式提供。
为了保证电路的正常工作,电源需要稳定,且电压和电流的波动范围需要在一定范围内。
输入信号接口是8002a典型电路的另一个重要组成部分。
它接收外部音频信号,并将其传输到功率放大器。
输入信号接口通常由输入电容、输入电阻等组成,用于过滤杂音和保护电路。
输入信号接口需要具备合适的阻抗匹配,以确保信号传输的质量和稳定性。
功率放大器是8002a典型电路的核心部分。
它接收输入信号,并将其放大到足够的功率,以驱动输出接口连接的外部设备。
功率放大器通常由多个级联的放大器组成,每个级别都具有不同的放大倍数和频率响应。
通过调整各个级别的放大倍数和频率响应,可以实现对输入信号的精确放大。
输出接口是8002a典型电路的最后一个关键组成部分。
它将经过功率放大器放大的信号传输到外部设备,如扬声器、耳机等。
输出接口通常由耦合电容、输出电阻等组成,用于过滤杂音和保护外部设备。
输出接口需要具备合适的阻抗匹配,以确保信号传输的质量和稳定性。
总的来说,8002a典型电路是一种功能强大的电路设计,能够实现音频信号的放大和输出。
它在音频设备、音响系统等领域都有着广泛的应用。
通过合理的结构设计和优化的参数配置,8002a典型电路能够提供高质量的音频体验。
希望通过本文的介绍,能够对8002a典型电路有更深入的了解。