频域分析法(经典)
- 格式:ppt
- 大小:3.74 MB
- 文档页数:80
频域分析法频域分析法是一种探究信号的量化分析方法,广泛应用于工程领域,如电子、声学、机械、生物医学等,具有很高的科学研究价值。
频域分析法是用来提取信号特征和分析信号组成部分的,它可以用来分析信号的时频特性和频频特性。
频域分析法包括三个步骤:信号提取、频域变换和分析。
第一步需要从信号中提取想要测量的特征;第二步把信号变换到频域,以获取信号的频域特征;第三步是对提取的特征进行分析,以提取信号的有效信息。
频域分析的最基本的方法是傅里叶变换法,它能将时域信号变换到频域,这样就可以确定信号的频域特征。
傅里叶变换的基本原理是:将时域信号的抽样点拆分成一系列的正弦波,用这些正弦波的加和表示原信号。
当拆分正弦波的加和够多时,傅里叶变换可以很好地求出信号系数,也就是频谱,用它来表示原信号的特性,这就是傅里叶变换的本质。
除傅里叶变换法,还有基于图像技术的频域处理方法,如图像增强、图像降噪、图像复原和图像分割等。
图像技术在频域中的应用可以有效地提取信号的频率特性,从而给出清晰的信号图像。
另一种常用的频域分析法是统计分析法。
统计分析法可以帮助我们探究不同信号之间的关系,并对信号进行统计分析,以提取有效信息。
主要有数据描述统计、概率统计和数据建模统计。
数据描述统计可以统计信号的特征,包括均值、中位数、标准差、最大值、最小值等;概率统计可以分析信号的概率特征;数据建模统计可以将信号映射到复杂的模型中,以挖掘深层的信号信息。
频域分析法在各种工程领域中得到了广泛的应用,有助于深入地理解信号的特性。
在电子和声学领域,频域分析法可以用来分析信号的声音和数据特性,帮助我们快速发现隐藏的频率特征;机械领域可用来分析信号的空间位移和空间速度特性;生物医学领域用来分析人体心电图、脑电图、超声图像和医学影像信号等。
综上所述,频域分析法是一种量化分析信号的重要技术手段,主要包括信号提取、频域变换和分析三个部分。
它在工程领域中有着广泛的应用,可以有效地提取信号的特征,为研究信号提供极大的帮助。
频域分析的经典案例
从时域看信号的局限性
将信号表示为时间的函数(时域函数)及波形,非常直观,是人们认知信号最直接、最自然的方法。
但其有问题吗?看一个例子。
从时域的角度看信号(c),很难将X。
(t)和X(t)区分开。
?
取样后的离散信号能恢复成原信号吗?
x(0x(02
-2651.91 3.82 5.737.6401.91 3.825.737.64
t/mst/ms
(a)(b)
Xe+b(), Te+(n)
-0 1.91 3.82 5.73 7.64--01.913.825.737.64
t/msn/ms
引入傅立叶级数和傅立叶变换这一数学工具后,我们可以从一个全新的角度(频域)去认识信号。
以上问题有了简单明确的答案。
有了频域分析的基础和启发,人们还发现了过多的其它变量域的分析信号的方法。
如连续时间信号的s域分析、离散时间信号的z域分析等变换域分析法(包括频域)。
不同的分析方法面向各自的信号对象或侧重于不同的问题。
111 第五章 频域分析法用时域分析法分析和研究系统的动态特性和稳态误差最为直观和准确,但是,用解析方法求解高阶系统的时域响应往往十分困难。
此外,由于高阶系统的结构和参数与系统动态性能之间没有明确的函数关系,因此不易看出系统参数变化对系统动态性能的影响。
当系统的动态性能不能满足生产上要求的性能指标时,很难提出改善系统性能的途径。
本章介绍的频域分析法是研究控制系统的一种经典方法,是在频域内应用图解分析法评价系统性能的一种工程方法。
频率特性可以由微分方程或传递函数求得,还可以用实验方法测定。
频域分析法不必直接求解系统的微分方程,而是间接地揭示系统的时域性能,它能方便的显示出系统参数对系统性能的影响,并可以进一步指明如何设计校正。
第一节 频率特性对于线性定常系统,若输入端作用一个正弦信号t U t u ωsin )(= (5—1)则系统的稳态输出y(t)也为正弦信号,且频率与输人信号的频率相同,即) t Y t y ϕω+=sin()( (5—2)u(t)和y(t)虽然频率相同,但幅值和相位不同,并且随着输入信号的角频率ω的改变,两者之间的振幅与相位关系也随之改变。
这种基于频率ω的系统输入和输出之间的关系称之为系统的频率特性。
不失一般性,设线性定常系统的传递函数G(s)可以写成如下形式)()()()()())(()()()()(121s A s B ps s B p s p s p s s B s U s Y s G n j j n =+=+++==∏= (5—3) 式中B(s)——传递函数G(s)的m 阶分子多项式,s 为复变量;A(s)——传递函数G(s)的n 阶分母多项式 (n ≥m);n p p p ---,,,21 —传递函数G(s)的极点,这些极点可能是实数,也可能是复数,对稳定的系统采说,它们都应该有负的实部。
由式(5—1),正弦输入信号u(t)的拉氏变换为(查拉氏变换表)))(()(22ωωωωωj s j s U s U s U -+=+= (5—4) 输出信号y(t)的拉氏变换为Y(s)=U(s)G(s)将式(5—3)、式(5—4)代人上式得∏=+⨯-+=n j j ps s B j s j s U s Y 1)()())(()(ωωω 上式可改写成(利用部分分式法)nn p s b p s b p s b j s a j s a s Y +++++++-++= 221121)(ωω (5-5)112上式中 n b b b a a ,,,,,2121 —待定系数,它们均可用留数定理求出。
频域分析法1、低频段通常指L(w)=20lg|G(jw)| 的渐近线在第一个转频率之前的频段,这一频段的特此哪个完全由积分环节和开环放大倍数决定。
低频段的斜率越小,位置越高,对应系统积分环节的数目越多(系统型号越高),开环放大倍数K越大,则在闭环系统稳定的条件下,其稳态误差越小,动态响应的跟踪精度越高2、中频段指开环对数幅频特性曲线在开环截止频率W C附近(0dB附近)的区段(±20dB),这一频段的特性集中反应了开环系统动态响应的平稳性和快速性。
3、反应中频段形状的参数主要有:开环截止频率W C、中频段斜率、中频段宽度。
W C的选择决定于系统暂态、响应速度的要求;中频段越长,相位裕量越大。
4、开环对数幅频特性中频段斜率最好为-20dB/dec,而且希望其长度尽可能长些,缓一些,以确保系统有足够的相角裕量。
当中频段斜率为-40dB/dec时,中频段占据的频率范围不宜过长,否则相角裕量会很小,若中频段斜率更小(如-60dB/dec),系统就很难稳定。
另外,截止频率W c越高,系统浮现信号能力越强,系统快速性也就越好。
5、高频段指开环对数幅频特性在中频段以后的频段,高频段的形状主要影响时域响应的起始阶段。
在进行分析时,可以将高频段进行近似处理,即用一个小惯性环节来等效地代替多个小惯性环节,等效的小惯性环节的时间常数等于被代替的多个小惯性环节的时间常数之和。
系统开环对数幅频特性在高频段的肤质,直接反应了系统对高频信号的抑制能力,高频部分的幅值越低,系统的抗干扰能力越强。
6、总之,为了系统满足一定的稳态和动态要求,对开环对数幅频特性的形状有如下要求:低频段要有一定的高度和斜率,中频段的斜率最好为-20dB/dec,且具有足够的宽度,高频段采用迅速衰减的特性,以抑制不必要的高频干扰。
7、对于自小相位系统,r>0 闭环系统稳定,当r<0 闭环系统不稳定8、PID调节:P控制只改变系统的增益而不影响相位,它对系统的影响主要反映在系统的稳态误差和稳定性上,增大比例系数可以提高系统的开环增益,减小系统的稳态误差,从而提高系统的控制精度,但这会降低系统的相对稳定性,甚至可能造成闭环系统的不稳定,因此,在系统校正和设计中,P一般不单独使用。
频域分析法
频域分析法是一种信号处理技术,它利用频率域中信号的特性对信号进行分析和处理,以检测和消除某些特定的不良信号。
它可以应用于电力系统、控制系统和信号处理系统等许多器件中,以提高系统的性能和可靠性。
频域分析法的概念
频域分析法是指将时域信号转换为描述频率特性的频域信号,并使用特定的处理和检测策略对其进行分析。
特别的,它使用傅里叶变换和短时傅里叶变换等技术将信号从时域转换到频域,以便更准确地检测和消除其中的不良信号。
频域分析法的应用
频域分析法可用于信号处理系统中,其中包括:信号监测系统,为了发现和确定干扰电源的输入信号的特性,用于检测和消除其中的不良信号;抗抖动系统,为了最大限度地减少系统中的振荡现象,采用低通滤波器或其他特定技术,以限制高频信号;降噪系统,利用特定滤波技术进行分析,从而消除无关高频数据;时域重建系统,对信号进行重新调节,从而获得最佳信号性能;频域滤波系统,分析和筛查信号,以便滤除任何不可接受的波形;等等。
频域分析法的优势
频域分析法的优势在于,它可以帮助用户精确控制信号的幅度和频率,以及消除信号中的任何不良成分。
它可以帮助用户快速地捕获信号的变化,从而使系统更加可靠可靠。
此外,频域分析法可以让用
户省去大量的计算开销,从而节省时间和成本。
总结
频域分析法是一种用于信号处理系统的技术,其特点是可以帮助用户准确控制信号的幅度和频率,快速捕获信号的变化,节省时间和成本。
它可以应用于电力系统、控制系统和信号处理系统等许多场景中,以提高系统的性能和可靠性。