南邮_数据结构作业答案讲解教学内容
- 格式:ppt
- 大小:268.00 KB
- 文档页数:49
实验报告(2014 / 2015 学年第一学期)课程名称数据结构实验名称二叉树基本操作以及哈夫曼编码译码系统实验时间年月日指导单位指导教师学生姓名班级学号学院(系) 专业二叉树的基本运算:一、问题描述1.设计递归算法,实现二叉树的运算:删除一棵二叉树,求一棵二叉树的高度,求一棵二叉树中叶子节点数,复制一棵二叉树,交换一棵二叉树的左右子树2.设计算法,自上而下,自左向右即按层次遍历一棵二叉树3.设计main函数,测试上述每个运算二、系统分析和概要设计首先用maketree构造一棵二叉树,然后遍历二叉树,然后交换每个结点的左右子树,接着算出输得高度和叶子节点,最后删除。
三、详细设计2. 核心算法建立二叉树的void MakeTree(const T& x,BinaryTree<T>& left,BinaryTree<T>& right)和计算叶子节点的int Size();3. 算法分析删除一棵二叉树,求一棵二叉树的高度,求一棵二叉树中叶子节点数,复制一棵二叉树等都是用递归的方法实现。
四、程序代码流程图#include<iostream.h>template<class T>struct BTNode{BTNode(){lChild=rChild=NULL;}BTNode(const T &x){element=x;lChild=rChild=NULL;}BTNode(const T &x,BTNode<T>* l,BTNode<T>* r){element=x;lChild=l;rChild=r;}T element;BTNode<T>* lChild,* rChild;};template<class T>class BinaryTree{public:BinaryTree(){root=NULL;}~BinaryTree(){Clear();}void Copy(BinaryTree<T> &r) const;bool IsEmpty()const{return root == NULL;}void Clear();void Exchange();bool Root(T& x)const;int GetHeight();void MakeTree(const T& x,BinaryTree<T>& left,BinaryTree<T>& right);void BreakTree(T& x,BinaryTree<T>& left,BinaryTree<T>& right);void PreOrder(void (*Visit)(T &x));void LevelOrder(void (*Visit)(T& x));int Size();BinaryTree<T>(BinaryTree<T> &t)root=Copy(t.root);}// void InOrder(void (*Visit)(T &x));// void PostOrder(void (*Visit)(T &x));BTNode<T>* Copy(BTNode<T>* t);protected:BTNode<T> * root;private:static int number;void Clear(BTNode<T>* &t);void Exchange(BTNode<T>* t);int GetHeight(BTNode<T>* t);int Size(BTNode<T>* t);void PreOrder(void (*Visit)(T &x),BTNode<T>* t);void LevelOrder(void (*Visit)(T& x),BTNode<T>* t); // void InOrder(void (*Visit)(T &x),BTNode<T>* t);// void PostOrder(void (*Visit)(T &x),BTNode<T>* t); };template <class T>bool BinaryTree<T>::Root(T &x)const{if(root){x=root->element;return true;}elsereturn false;}template <class T>void BinaryTree<T>::Clear(){Clear(root);}template <class T>void BinaryTree<T>::Clear(BTNode<T>* &t){if(t)Clear(t->lChild);Clear(t->rChild);delete t;t=NULL;}}template <class T>void BinaryTree<T>::MakeTree(const T& x,BinaryTree<T>& left,BinaryTree<T>& right) {if(root||&left==&right)return;root=new BTNode <T>(x,left.root,right.root);left.root=right.root=NULL;}template <class T>void BinaryTree<T>::BreakTree(T& x,BinaryTree<T>& left,BinaryTree<T>& right) {if(!root||&left==&right||left.root||right.root)return;x=root->element;left.root=root->lChild;right.root=root->rChild;delete root;root=NULL;}template <class T>BTNode<T>* BinaryTree<T>::Copy(BTNode<T>* t){if(!t)return NULL;BTNode<T>*q=new BTNode<T>(t->element);q->lChild=Copy(t->lChild);q->rChild=Copy(t->rChild);return q;}template <class T>void Visit(T &x){cout<<x<<" ";}template <class T>void BinaryTree<T>::PreOrder(void (*Visit)(T& x)){PreOrder(Visit,root);}template <class T>void BinaryTree<T>::PreOrder(void (*Visit)(T& x),BTNode<T>* t) {if(t){Visit(t->element);PreOrder(Visit,t->lChild);PreOrder(Visit,t->rChild);}}template <class T>void BinaryTree<T>::Exchange(){Exchange(root);}template <class T>void BinaryTree<T>::Exchange(BTNode<T>* t){if(!t)return;BTNode<T>* temp;temp=t->lChild;t->lChild=t->rChild;t->rChild=temp;Exchange(t->lChild);Exchange(t->rChild);}template <class T>int BinaryTree<T>::GetHeight(){return GetHeight(root);}int BinaryTree<T>::GetHeight(BTNode<T>* t){int templ;int tempr;if(!t)return 0;templ=GetHeight(t->lChild);tempr=GetHeight(t->rChild);if(templ++>tempr++)return templ;elsereturn tempr;}template <class T>int BinaryTree<T>::number=0;template <class T>int BinaryTree<T>::Size(){Size(root);return number;}template <class T>int BinaryTree<T>::Size(BTNode<T>* t){if(t!=NULL){Size(t->lChild);if(t->lChild ==NULL&&t->rChild ==NULL)number++;Size(t->rChild);}return number;}template <class T>void BinaryTree<T>::LevelOrder(void (*Visit)(T& x)) {PreOrder(Visit,root);}void BinaryTree<T>::LevelOrder(void (*Visit)(T& x),BTNode<T>* t) {BTNode *quene[50],*p;int pre=1,rear=1;quene[++pre]=t;while(pre!=0){p=quene[++rear];cout<<p->element<<" ";if(p->lChild !=NULL)quene[++pre]=p->rChild ;if(p->rChild !=NULL)quene[++pre]=p->lChild ;}}void main(){BinaryTree <char> a,b,x,y,z;y.MakeTree('E',a,b);z.MakeTree('F',a,b);x.MakeTree('C',y,z);y.MakeTree('D',a,b);z.MakeTree('B',y,x);cout<<"二叉树z的先序遍历:"<<endl;z.PreOrder(Visit);cout<<endl;cout<<"层次遍历二叉树:";z.LevelOrder(Visit);cout<<endl;BinaryTree<char> q(z);cout<<"复制的二叉树q的先序遍历:"<<endl;q.PreOrder(Visit);cout<<endl;cout<<"树的高度:";cout<<z.GetHeight()<<endl;cout<<"叶子节点数量:";cout<<z.Size()<<endl;z.Exchange();cout<<"二叉树左右子树交换后的先序遍历:"<<endl;z.PreOrder(Visit);cout<<endl;}五、测试用例和运行结果测试用例如main函数中所示,结果如下图所示。
实验报告
( 2016 / 2017 学年第一学期)
课程名称数据结构A
实验名称二叉树的基本操作
及哈夫曼编码译码系统的实现
实验时间2017 年 5 月 1 日指导单位计算机学院计算机科学与技术系
指导教师邹志强
学生姓名吴爱天班级学号B15040916 学院(系) 计算机学院专业信息安全
实验报告
之后三步输出,对应的是三种遍历方式,应该输出的测试结果是:
先序:68 69 72 70 74 71 67 75 65 66
中序:72 69 74 70 71 75 67 68 65 66
后序:72 74 75 67 71 70 69 66 65 68
实验结果符合预期。
对于哈夫曼建树操作我自己又按照自己的想法重写了,里面也去学习了C++的字典类MAP,这个类非常好用,可以简单粗暴地提供一些方法和迭代器,让你将关键字和值绑定,这样我每新加入一个字母的数据块,我就可以记录下这对组合,不用之后搜索和解码的时
之后进行编码,其实也是一个搜索的过程,主要是调用了一个
测试:。
实验报告(2014 / 2015 学年第二学期)课程名称数据结构实验名称线性表的基本运算及多项式的算术运算实验时间2015 年9 月28 日指导单位计算机科学与技术系指导教师黄海平学生姓名陈明阳班级学号Q学院(系) 贝尔英才专业信息科技强化班实验报告~SeqList() { delete[] elements; }bool IsEmpty() const;int Length() const;bool Find(int i, T& x) const;int Search(T x) const;bool Insert(int i, T x);bool Delete(int i);bool Update(int i, T x);void Output(ostream& out)const;private:int maxLength;T *elements;};template<class T>SeqList<T>::SeqList(int mSize){maxLength = mSize;elements = new T[maxLength];n = 0;}template<class T>bool SeqList<T>::IsEmpty() const{return n == 0;}template<class T>int SeqList<T>::Length()const{return n;}template<class T>bool SeqList<T>::Find(int i, T& x)const{if (i<0 || i>n - 1){cout <<"out of bounds"<< endl; return false;}x = elements[i];return true;}template<class T>int SeqList<T>::Search(T x)const{for (int j = 0; j < n; j++)if (elements[j] == x)return j;return -1;}template<class T>bool SeqList<T>::Insert(int i, T x){if (i<-1 || i>n - 1){cout <<"out of bounds"<< endl;return false;}if (n == maxLength){cout <<"over flow"<< endl;return false;}for (int j = n - 1; j > i; j--)elements[j + 1] = elements[j];elements[i + 1] = x;n++;return true;}template<class T>bool SeqList<T>::Delete(int i){if (i<0 || i>n - 1){cout <<"out of bounds"<< endl;return false;}if (!n){cout <<"over flow"<< endl;return false;}for (int j = i+1; j <n; j--)elements[j -1] = elements[j];n--;return true;}template<class T>bool SeqList<T>::Update(int i, T x){if (i<0 || i>n - 1){cout <<"out of bounds"<< endl;return false;}elements[i] = x;return true;}template<class T>void SeqList<T>::Output(ostream& out)const{for (int i = 0; i < n; i++)out << elements[i] << " ";out<< endl;}源.cpp:#include"seqlist.h"const int SIZE = 20;void main(){SeqList<int> LA(SIZE);int i = 0;for (i = 0; i<5; i++) LA.Insert(i - 1, i);LA.Insert(-1, 10);LA.Output(cout);}实现在线性表LA中插入0-4然后在一开始插入10 运行截图如下:多项式实验:定义类如下重构函数如下:源码:#include<iostream>using namespace std;class Term{public:Term(int c, int e);Term(int c, int e, Term* nxt);Term* InsertAfter(int c, int e);private:int coef;int exp;Term* link;friend ostream& operator<<(ostream &, const Term &);friend class Polynominal;};Term::Term(int c, int e) :coef(c), exp(e){link = 0;}Term::Term(int c, int e, Term *nxt) : coef(c), exp(e) {link = nxt;}Term* Term::InsertAfter(int c, int e){link = new Term(c, e, link);return link;}ostream& operator<<(ostream& out, const Term& val){if (0 == val.coef)return out;if (1!= val.coef)out<<val.coef;switch (val.exp){case 0:break;case 1:out<<"X"; break;default:out<<"X^"<<val.exp; break;}return out;}class Polynominal{public:Polynominal();~Polynominal();void AddTerms(istream& in);void Output(ostream& out)const;void PolyAdd(Polynominal& r);void PolyMul(Polynominal& r);private:Term* theList;friend ostream& operator<<(ostream &, const Polynominal &);friend istream& operator>>(istream&, Polynominal &);friend Polynominal& operator+(Polynominal &, Polynominal &);friend Polynominal& operator*(Polynominal &, Polynominal &); };Polynominal::Polynominal(){theList = new Term(0, -1); //头结点theList->link = NULL; //单链表尾结点指针域为空}Polynominal::~Polynominal(){Term* p = theList->link;while (p != NULL){theList->link = p->link;delete p;p = theList->link;}delete theList;}void Polynominal::AddTerms(istream & in){Term* q = theList;int c, e;for (;;){cout <<"Input a term(coef,exp):\n"<< endl;cin >> c >> e;q = q->InsertAfter(c, e);if (0 >= e) break;}}void Polynominal::Output(ostream& out)const{int first = 1;Term *p = theList->link;for (; p != NULL && p->exp >= 0; p = p->link){if (!first && (p->coef>0)) out<<"+";first = 0;out<< *p;}cout << endl;}void Polynominal::PolyAdd(Polynominal& r){Term *q, *q1 = theList, *p; //q1指向表头结点p = r.theList->link; //p指向第一个要处理的结点q = q1->link; //q1是q的前驱,p和q就指向两个当前进行比较的项while (p != NULL && p->exp >= 0)//对r的单循环链表遍历,知道全部结点都处理完{while (p->exp < q->exp) //跳过q->exp大的项{q1 = q;q = q->link;}if (p->exp == q->exp) //当指数相等时,系数相加{q->coef = q->coef + p->coef;if (q->coef == 0) //若相加后系数为0,则删除q{q1->link = q->link;delete(q);q = q1->link; //重置q指针}else{q1 = q; //若相加后系数不为0,则移动q1和qq = q->link;}}else//p>exp>q->exp的情况q1 = q1->InsertAfter(p->coef, p->exp); //以p的系数和指数生成新结点,插入q1后 p = p->link;}}void Polynominal::PolyMul(Polynominal& r){Polynominal result; //定义相乘后的数据Term *n = result.theList; //n指向result的头结点n = n->InsertAfter(0, 0); //在result的头结点后插入新结点,系数指数均为0 Term *p = r.theList->link; //p指向第一个要处理的结点while(p->exp >= 0) //对r的单循环链表遍历{Polynominal tmp; //存储某段相乘后的数据Term *m = tmp.theList; //m指向tmp的头结点Term *q = theList->link; //q指向表头结点的后继结点while(q->exp >= 0) //对当前对象的单循环环链表遍历{m = m->InsertAfter((p->coef)*(q->coef), (p->exp) + (q->exp)); //生成新结点插入n后 q = q->link;}result.PolyAdd(tmp); //将temp加到result上p = p->link;}Term *q = theList->link; //q指向表头结点的后继结点while(q != NULL) //删除原对象的所有数据{theList->link = q->link;delete q;q = theList->link;}q = theList;q = q->InsertAfter(0, 0);PolyAdd(result); //将result加到当前对象上}ostream &operator<<(ostream& out, const Polynominal& x){x.Output(out);return out;}istream &operator>>(istream& in, Polynominal &x){x.AddTerms(in);return in;}Polynominal & operator + (Polynominal &a, Polynominal &b){a.PolyAdd(b);return a;}Polynominal & operator * (Polynominal &a, Polynominal &b){a.PolyMul(b);return a;}int main()实验报告文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.。
实验报告
( 2016 / 2017 学年第一学期)
课程名称数据结构A
实验名称线性表的基本运算及多项式的算术运算实验时间2017 年 3 月22 日指导单位计算机学院计算机科学与技术系
指导教师邹志强
学生姓名吴爱天班级学号B******** 学院(系) 计算机学院专业信息安全
实验报告
实验报告
度为O(n)级别。
2、在顺序表类SeqList 中增加成员函数bool DeleteX (const T &x), 删除表中所有元素值等于x 的元素.若表中存在这样的元素, 则删除之, 且函数返回true, 否则函数返回false.
删除所有值为X的元素
注释:主要思路为,依次查找SeqList内的元素,每次都与X的值进行依次对比,如果相同则删除,不同则继续向下扫描,知道SeqList末尾,最后用Search()来检验是否删除干净,复杂度也为O(n).
如图,原数据为 7 49 73 58 30 72,逆转过后为72 30 58 73 49 7,符合预期。
DeleteX()
如图,原数据中有3个0,输出结果中已经没有0,已经删除干净,符合预期。
实验报告
如图,分别检测6X^6+3X^5+4X^2与2X^2+3X相加和相乘运算,得到
6X^6+3X^5+4X^2+2X^2+3X+2X^2+3X和12X^8+18X^7+6X^7+9X^6+8X^4+12X^3,
符合预期。
第1 章绪论一、基础题1. A2. C3. C4. A5. C二、扩展题1.数据是计算机加工处理的对象;数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理;数据项是组成数据元素的、不可分割的最小单位。
2.数据结构是按某种逻辑关系组织起来的数据元素的集合,使用计算机语言描述并按一定的存储方式存储在计算机中,并在其上定义了一组运算。
3.集合结构、线性结构、树形结构和图形结构。
集合结构中,元素之间没有关系;线性结构中,元素之间存在一对一的关系;树形结构中,元素之间存在一对多的关系,其中最多只有一个元素没有前驱元素,这个元素就是根;图形结构中,元素之间存在多对多的关系。
4.顺序存储、链式存储、索引存储和散列存储。
5.一个算法是对特定问题的求解步骤的一种描述,是指令的有限序列。
其特征包括:➢输入:算法有零个或多个输入➢输出:算法至少产生一个输出➢确定性:算法的每一条指令都有确切的定义,没有二义性。
➢能行性/可行性:可以通过已经实现的基本运算执行有限次来实现➢有穷性:算法必须总能在执行有限步之后终止6.联系:程序是计算机指令的有序集合,是算法用某种程序设计语言的表述,是算法在计算机上的具体实现。
区别:在语言描述上不同,程序必须是用规定的程序设计语言来写,而算法的描述形式包括自然语言、伪代码、流程图和程序语言等;算法所描述的步骤一定是有限的,而程序可以无限地执行下去,比如一个死循环可以称为程序,但不能称为算法。
7.正确性:算法的执行结果应当满足功能需求,无语法错误,无逻辑错误简明性:思路清晰、层次分明、易读易懂,有利于调试维护健壮性:当输入不合法数据时,应能做适当处理,不至于引起严重后果效率:有效使用存储空间和有高的时间效率最优性:解决同一个问题可能有多种算法,应进行比较,选择最佳算法可使用性:用户友好性8(1)执行次数为n-1(n>=2),n=1时执行1次;时间复杂度为O(n)。
(2)执行次数为⌈log3n⌉;时间复杂度为O(logn)(3) 执行次数为n2;时间复杂度为O(n2)(4)执行次数为⌊√n⌋ + 1;时间复杂度为O(√n)第2 章线性表1.A2.D3.B4.C5.B6.D7.D8.C9.A10.D1.编写程序实现对顺序表逆置。
课时安排:2课时教学目标:1. 让学生掌握数据结构的基本概念、分类和特点;2. 使学生熟悉线性表、栈、队列、数组、树和图等基本数据结构;3. 培养学生运用数据结构解决实际问题的能力。
教学重点:1. 数据结构的基本概念和分类;2. 线性表、栈、队列、数组、树和图等基本数据结构;3. 数据结构的实际应用。
教学难点:1. 数据结构在实际问题中的应用;2. 复杂数据结构的实现和算法设计。
教学过程:一、导入1. 引导学生回顾上一节课的内容,如数据的基本概念等;2. 提出问题:什么是数据结构?数据结构有哪些类型?二、数据结构的基本概念1. 介绍数据结构的基本概念,如数据的逻辑结构和存储结构;2. 讲解数据结构的分类,如线性结构、非线性结构等;3. 强调数据结构的特点,如逻辑结构简单、存储结构紧凑等。
三、基本数据结构1. 线性表:a. 介绍线性表的定义、性质和基本操作;b. 讲解线性表的顺序存储和链式存储;c. 举例说明线性表在实际问题中的应用。
2. 栈和队列:a. 介绍栈和队列的定义、性质和基本操作;b. 讲解栈和队列的顺序存储和链式存储;c. 举例说明栈和队列在实际问题中的应用。
3. 数组:a. 介绍数组的基本概念和性质;b. 讲解数组的顺序存储;c. 举例说明数组在实际问题中的应用。
4. 树和图:a. 介绍树的基本概念和性质,如二叉树、二叉搜索树等;b. 讲解图的基本概念和性质,如无向图、有向图等;c. 举例说明树和图在实际问题中的应用。
四、实际应用1. 结合实际案例,讲解数据结构在实际问题中的应用;2. 引导学生思考如何运用所学知识解决实际问题。
五、总结与作业1. 总结本节课所学内容,强调数据结构在实际问题中的重要性;2. 布置作业,要求学生完成以下任务:a. 复习本节课所学内容;b. 完成课后习题,巩固所学知识。
教学反思:本节课通过讲解数据结构的基本概念、基本数据结构和实际应用,使学生掌握了数据结构的基本知识。