行程问题的知识点及练习(1)
- 格式:doc
- 大小:42.50 KB
- 文档页数:6
领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。
3、基本数量关系:速度x 时间=路程路程速度和x 时间(相遇时间)=路程和(相遇路程)路程和(相遇路程)速度差x 时间(追及时间)=路程差(追击路程)路程差(追击路程)二、学法提示二、学法提示1.火车过桥:火车过桥路程=桥长+车长车长过桥时间=路程÷车速路程÷车速过桥过程可以通过动手演示来帮助理解。
2.水流问题:水流问题: 顺水速度=静水速度+水流速度水流速度逆水速度=静水速度-水流速度水流速度顺水速度-逆水速度=2x 水流速度水流速度3.3.追及问题:追击路程÷速度差追及问题:追击路程÷速度差=追及时间追及时间追击距离÷追及时间=速度差速度差4.相遇问题:相遇问题: 相遇路程÷相遇时间=速度和速度和相遇路程÷速度和=相遇时间相遇时间三、解决行程问题的关键三、解决行程问题的关键画线段图,画线段图,标出已知和未知。
标出已知和未知。
标出已知和未知。
能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,找到解决问找到解决问题的突破口。
题的突破口。
四、练习题四、练习题(一)火车过桥(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。
求客车行驶的速度和车身的长度。
3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。
桥的长度。
4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米?千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
含答案】四年级奥数行程问题精选练习(相遇、追及)小牛老师工作室精华讲义:小学奥数行程问题知识点一:相遇问题1.两辆汽车同时从相距325千米的两地相对开出。
甲车速度为35千米/时,乙车速度为30千米/时。
当甲、乙两车相遇时,它们各行驶了多少千米?解答:两车相对速度为35+30=65千米/时。
根据相遇问题,它们行驶的总时间相等,所以它们各行驶了325/2=162.5千米。
2.高小帅家距离学校3000米。
小帅妈妈从家出发接小帅放学,小帅也要从学校回家。
他们同时出发。
小帅妈妈每分钟比小帅多走24米。
30分钟后两人相遇。
那么小帅的速度是多少?解答:设小帅速度为v,则小帅妈妈速度为v+24.根据相遇问题,它们行驶的总时间相等,所以小帅行驶了30v米,小帅妈妈行驶了30(v+24)米。
因为两人相遇,所以它们行驶的总路程为3000米,即30v+30(v+24)=3000,解得v=48米/分钟,即小帅的速度为48/60=0.8米/秒。
3.甲、乙两辆汽车分别从A、B两地相对而行。
已知甲车的速度为38千米/时,乙车的速度为40千米/时。
甲车先行2小时后,乙车才开始出发,乙车行驶5小时后两车相遇。
求A、B两地的距离。
解答:设A、B两地的距离为d。
则甲车行驶了d+2×38千米,乙车行驶了5×40千米。
因为它们相遇,所以它们行驶的总路程相等,即d+2×38+5×40=2×38+5×40+d,解得d=342千米。
4.两列城际列车从两城同时相对开出,其中一列车的速度为40千米/时,另一列车的速度为45千米/时。
在行驶途中,两列车先后各停车4次,每次停车15分钟。
这样经过7小时后两车相遇。
求两城的距离。
解答:设两城的距离为d。
则两车相对速度为40+45=85千米/时。
因为两车在行驶途中各停车4次,所以它们行驶的总时间为7小时-4×4×15分钟=6.4小时。
二元一次方程组行程问题类型全知识点加练习Tomorrow Will Be Better, February 3, 2021一、行程问题:路程=速度×时间1、相遇问题:两者所走的路程之和=两者原相距路程2、追及问题:快者所走路程-慢者所走路程=两者原相距路程例1、某站有甲乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出30千米后,乙车出发,则乙车出发4小时后乙车所走的路程比甲车所走的路程多10千米;求两车的速度;例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇;相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机;这时,汽车、拖拉机各自行驶了多少千米3、环形跑道问题:环形跑道追及、相遇问题等同于直线追及、相遇问题;(1)同时同地相向而行第一次相遇相当于相遇问题:甲的路程+乙的路程=跑道一圈长(2)同时同地同向而行第一次相遇相当于追及问题:快者的路程-慢者的路程=跑道一圈长例1、甲、乙两人在周长为400米的环形跑道上练跑,如果同时同地相向出发,每隔2.5分钟相遇一次;如果同时同地同向出发;每隔10分钟相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度;4、航行、飞行问题:(1)顺流风:航速=静水无风中的速度+水风速(2)逆流风:航速=静水无风中的速度-水风速例1、已知A、B两码头之间的距离为240千米,一艘船航行于A、B两码头之间,顺流航行需4小时;逆流航行需6小时,求船在静水中的速度及水流的速度;练一练1、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米2、甲乙两人练习赛跑如果甲让乙先跑10m,甲跑5s就能追上乙,如果乙先跑2s,那么甲跑4s就能追上乙,求两人每秒各跑多少米;3、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度4、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米5、某部队执行任务,以8千米/时的速度前进,通讯员在队尾接到命令后把命令传给排头,然后立即返回排尾,通讯员来回的速度均为12千米/小时,共用14.4分钟,求队伍的长是多少6、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;求无风时飞机的飞行速度和两城之间的距离;7、一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米8、已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和火车的速度;9、王平要从甲村走到乙村.如果他每小时走4千米,那么走到预定时间, 离乙村还有0.5千米;如果他每小时走5千米,那么比预定时间少用半小时就可到达乙村.求预定时间是多少小时,甲村到乙村的路程是多少千米;10、袁峰家离学校1880米,其中一段为上坡路,其余为下坡路,他跑步去学校共用时16分钟,,已知他上坡的速度为4.8千米/小时,下坡的速度为12千米/小时,那么,袁峰上坡、下坡各用了多长时间;11、从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以12km/h的速度下山,以9km/h的速度通过平路,到学校共用了55分钟,回来时,通过平路的速度不变,但以6km/h的速度上山,回到营地又花去了1小时10分,问夏令营到学校的距离是多少公里12、小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米 ,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远13、为了参加2011年威海国际铁人三项游泳、自行车、长跑系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.。
2020年小升初数学专题复习训练—拓展与提高行程问题(1)知识点复习一.相遇问题【知识点归纳】两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程.小学数学教材中的行程问题,一般是指相遇问题.相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度.它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度.【命题方向】例1:根据算式选择问题.甲、乙两人同时从两地相向而行,甲骑车每小时行15千米,乙步行每小时行6千米,经过4小时两人相遇.(1)甲、乙两人每小时共行多少千米?(2)两地之间的路程是多少千米?(3)相遇时,甲行了多少千米?分析:(1)根据甲乙两人的速度求和,求出甲、乙两人每小时共行多少千米即可;(2)根据速度×时间=路程,用甲乙的速度之和乘以相遇用的时间,求出两地之间的路程是多少千米即可;(3)根据速度×时间=路程,用甲的速度乘以骑车的时间,求出相遇时甲行了多少千米即可.解:(1)15+6=21(千米)答:甲、乙两人每小时共行21千米.(2)21×4=84(千米)答:两地之间的路程是84千米.(3)15×4=60(千米)答:相遇时,甲行了60千米.点评:此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.二.追及问题【知识点归纳】1.追击问题的概念:追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.2.追及问题公式:根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速3.解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的.【命题方向】例1:上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米,则爸爸的速度为1千米/分钟.那么,小明先走8分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米.解:爸爸的速度是小明的几倍:(4+8)÷4=3(倍),爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米,则爸爸的速度为1千米/分钟.爸爸所用的时间:(4+4+8)÷1=16(分钟)16+16=32(分钟)答:这时是8时32分.点评:此题既需要根据关系式而且还要更加深刻的理解题意.三.流水行船问题【知识点归纳】船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量.另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2.【命题方向】例1:一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?分析:根据题干,可以求得船逆水速度为:16×3÷4=12千米/时,船速是指的静水速=(顺水速+逆水速)÷2,水速=(顺流速度-逆流速度)÷2,由此代入数据即可解决问题.解:逆水速度:16×3÷4=12(千米/时),则船速:(12+16)÷2=14(千米/时),水速:(16-12)÷2=2(千米/时),答:船速为14千米/时;水速为2千米/时.点评:解答此题的关键是,根据船速,水速,船逆水的速度,船顺水的速度,几者之间的关系,找出对应【知识点归纳】多次相遇的基本公式和方法计算:距离、速度、时间这三个量之间的关系,可以用下面的公式来表示:距离=速度×时间.显然,知道其中的两个量,就可以求出第三个量.还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S甲、S乙;速度分别为V甲、V乙;所用时间分别为T甲、T乙时,由于S甲=V甲×T甲,S乙=V乙×T乙,有如下关系:(1)当时间相同即T甲=T乙时,有S甲:S乙=V甲:V乙;(2)当速度相同即V甲=V乙时,有S甲:S乙=T甲:T乙;(3)当路程相同即S甲=S乙时,有V甲:V乙=T乙:T甲.在多次相遇、追及问题中,用比例方法来解往往能收到很好的效果.【命题方向】例1:如图:A、B是圆直径的两端,小张在A点,小王在B点,同时出发反向而行,他们在C点第一次相遇,C点离A点100米,在D点第二次相遇,D点离A点有60米,求这个图的周长.分析:由题意可知,第一次相遇于C点,两人合走了半个周长.从C点开始到第二次相遇于D点,两人合起来走了一个周长.因为两速度和一定,所以第一段所需时间是第二段的一半.对于小王而言,他第一段所走的行程是第二段的一半.则C,D的关系有如下两种情况:对于第一种情况,小王第一段所走的行程为BC,第二段所走的为CD,则CD=2BC,所以CD=AC+AD=160米,则BC=160÷2=80米,所以半圆周长是100+80=180米,圆的周长是180×2=360米.对于第二种情况,小王所走的行程为BC,第二段所走的为CD,同样有CD=2BC,CD=AC-AD=40米,则BC=40÷2=20米,则半圆周长是100+20=120米,圆的周长是120×2=240米.即这个圆的周长为360米或240米.解:由题可知,C,D的关系有如下两种情况:对于第一种情况,CD=2BC,所以CD=AC+AD=160米,则BC=160÷2=80米,所以半圆周长是100+80=180(米),圆的周长是180×2=360(米).对于第二种情况,CD=2BC,CD=AC-AD=40米,则BC=40÷2=20米,则半圆周长是100+20=120(米),圆的周长是120×2=240(米).即这个圆的周长为360米或240米.点评:完成本题要细心,注意分析所给条件,从两种情况进行分析解答.五.环形跑道问题【知识点归纳】1.环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈.环形跑道:同相向而行的等量关系:乙程-甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长.2.解题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时;看地点是指是同地还是两地甚至更多.看方向是同向、背向还是相向;看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追击问题中一个重要环节就是确定追上地点,从而找到路程差.比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差.这个是追击问题经常用到的,通过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来.相遇问题就找路程和,追击问题就找路程差.【命题方向】例1:环绕小山一周的公路长1920米,甲、乙两人沿公路竞走,两人同时同地出发,反方向行走,甲比乙走得快,12分钟后两人相遇.如果两人每分钟多走16米,则相遇地点与前次相差20米.(1)求甲乙两人原来的行走速度.(2)如果甲、乙两人各以原速度同时同地出发,同向行走,则甲在何处第二次追上乙?分析:(1)根据题干不难得出甲乙的速度之和是:1920÷12=160米/分;则提高速度后的速度之和就是160+16+16=192米/分,所以提高速度后甲乙二人相遇的时间是:1920÷192=10分钟;因为甲的速度较快,提高速度之后,二人行走的时间变短,所以甲比原来少走了20米,由此设甲原来的速度是x米/分,则提高速度后,甲的速度是x+16米/分,由此根据,即可列出方程,求出x的值即可解答.(2)甲第二次追上乙时,比乙多走了两周,用两周的路程除以速度差即可得走的时间,用甲的速度乘以时间再除以一周的路程,余数即是离出发点的距离.解:(1)甲乙原来的速度之和是:1920÷12=160(米),提高速度之后的速度之和是:160+16+16=192(米),所以提高速度之后二人相遇的时间是:1920÷192=10(分钟),设甲原来的速度是x米/分,则提高速度后,甲的速度是(x+16)米/分,根据题意可得方程:12x-10(x+16)=20,12x-10x-160=20,2x=180,x=90,则乙原来的速度是:160-90=70(米/分),答:甲原来的速度是90米/分,乙原来的速度是70米/分;(2)1920×2÷(90-70)=1920×2÷20=192(分),192×90÷1920=9,说明正好在出发点.答:甲在出发点第二次追上乙.点评:本题考查了环形跑道问题.解答此题的关键是根据甲乙第一次相遇的时间求出甲乙的速度之和,从而得出第二次相遇的时间,设出甲的速度,利用甲前后两次行走的路程之差即可列出方程解决问题.同步测试一.选择题(共10小题)1.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙在何处相会()A.A B.B C.C D.D2.有一艘渡轮在静水中的船速是35公里/时,在流速2公里/时的河流上顺流而下5小时,渡轮共行驶几公里?()A.155公里B.165公里C.175公里D.185公里3.小王、小李沿着400米的环行跑道跑步.他们同时从同一地点出发,同向而行.小王每分钟跑280米,小李每分钟跑240米,经过()分钟后小王第二次追上小李.A.10B.15C.20D.304.有一艘轮船所带的燃料最多可用12小时,驶出时速度是30千米/每小时,返回时逆水,速度是顺水速度的80%,这艘轮船最多驶出()就应返航.A.160B.200C.180D.3205.一条环形跑道的长是40米,小东和小明在跑道上同一点沿相反方向同时出发,小东每秒跑6米,小明每秒跑4米,那么,除第一次出发以外,两人在中途相遇了()次后又相遇在原出发点.A.2B.3C.4D.56.小红和爷爷一起去圆形街心花园散步.小红走一圈需要6分钟,爷爷走一圈需要8分钟,如果两人同时同地出发,相背而行,12分钟时两人的位置是下图()A.B.C.D.7.如图,在一圆形跑道上,甲从A点、乙从B点同时出发,反向而行,8分后两人相遇,再过6分甲到B 点,又过10分两人再次相遇.甲环行一周需()分.A.28B.30C.32D.348.下午放学后,弟弟以每分钟40米的速度步行回家,5分钟后,哥哥以每分60米的速度也从学校步行回家,哥哥出发后,经过()可以追上弟弟.A.10分钟B.15分钟C.20分钟9.甲车和乙车分别从A、B两站同时相向开出,6小时后相遇.相遇后,两车仍按原速度前进,当它们相距m千米时,甲车行了全程的60%,乙车行了全程的80%.则甲车行完全程需要()小时.A.10.5B.C.m D.1410.(北京市第一实验小学学业考)一辆汽车和一辆摩托车同时从甲、乙两地相向开出,相遇后辆车继续行驶,当摩托车到达甲城,汽车到达乙城后,立即返回,第二次相遇时汽车距甲城120千米,汽车与摩托车的速度比是2:3.则甲乙两城相距多少千米.()A.100(km)B.150(km)C.155(km)D.135(km)二.填空题(共10小题)11.船运木材,逆流而上,在途中掉下一块木头在水里,2分钟后,船掉头追木头(掉头时间不算),已知船在静水中的速度是18千米/小时,再经过分钟小船追上木头.12.一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用小时.13.某校学生队列以8千米/时的速度前进.在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,那么学生队伍的长是米.14.甲乙两人从AB两地同时开出,相向而行.经过4小时相遇.然后,它们又各自按原速原方向继续行驶3小时,这时甲到达B点,乙距离A点还有30千米,甲乙两地距离千米.15.(北京市第一实验小学学业考)大雪后,小华和爸爸一前一后沿着一个圆形的水池,从同一起点朝同一方向跑步,爸爸每步跑50厘米,小华每步跑30厘米,雪地上脚印有时重合,一圈跑下来,共留下1099个脚印,这个水池一圈有米.16.有一条环形公路长15千米,甲、乙两人同时同地沿公路骑自行车反向而行,0.5小时后相遇;若他们同时同地同向而行,经过3小时后,甲追上乙.问:乙的速度是千米/时.17.如图,甲、乙两动点分别从正方形ABCD的顶点A、C点同时沿正方形的边开始移动,甲点顺时针方向环行,乙点逆时针方向环行.若乙的速度是甲的速度的4倍,则它们第2014次相遇在边上.18.甲、乙两车分别从A、B两地同时出发,相向而行.甲车每小时行45千米,乙车每小时行36千米.相遇以后继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶.已知途中第二次相遇地点与第三次相遇地点相距60千米.则A、B两地相距千米.19.已知,兔跑5步的时间狗跑3步,狗跑4步的距离兔要跑7步,它们从同一起点出发,当兔跑了600米的时候,狗跑了米.20.如图,小红和小丽两个小朋友在一块正方形地上玩游戏.小红在A点,小丽在C点,她们同时出发,在距离D点3.5米处的E点相遇.已知小红和小丽的速度比是7:5,这个正方形的周长是米.三.应用题(共5小题)21.(北京市第一实验小学学业考)小强以平均每分钟80米的速度步行上学,他走了150米后,爸爸发现他忘带作业本了,立即步行去追,爸爸平均每分钟走110米,这时,小强距离学校还有300米,在小强到学校前,爸爸能追上他吗?22.甲、乙两地相距408km,一辆客车和一辆货车同时从甲、乙两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每小时行驶多少千米?23.如图,甲、乙两人分别在圆形跑道的直径两端上.甲跑完一圈要4分钟,乙跑完一圈要6分钟.(1)两人如果同时出发,相向而行,多少分钟后能相遇?(2)两人如果同时出发,同向而行,多少分钟后甲能够追上乙?24.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时.求水流的速度.25.2015年的某一天,智康的两位老师杨老师和刘老师进行体能训练.跑道为一个椭圆形状,他们同时从同地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈.跑第﹣圈时,刘老师的速度是杨老师的三分之二,杨老师跑第二圈时速度比第一圈提高了三分之一,刘老师跑第二圈时速度提高了五分之一.已知杨老师、刘老师第二次相遇点距第一次190米,那么你知道这条椭圆形跑道长多少米吗?四.操作题(共2小题)26.为响应“阳光体育”,唐老师坚持每天运动一小时,如图是他次的晨跑路线图.(1)图中的“平均配速”指的是1千米所用的时间,唐老师晨跑的平均配速是6分30秒,合分.(2)算一算,唐老师跑步的速度大约是米/分钟.(得数保留整数)(3)照这样的速度,唐老师沿着直线跑了5分钟,请你在图中用△表示出跑到的大致位置.(4)唐老师沿着半径300米的圆形跑了20分钟,请你在图中用△表示出跑到的大致位置,并说明理由.27.甲、乙两地相距750km,客车以每小时55km的速度从甲地出发,小轿车以每小时70km的速度同时从乙地出发.(1)估计两车大约在什么地方相遇?在图上标出来.(2)出发后几小时相遇?相遇地点离乙地多远?(列方程解答)五.解答题(共3小题)28.一艘轮船顺流航行80千米,逆流航行48千米共用9小时;顺流航行64千米,逆流航行96千米共用12小时,求轮船顺流速度与逆流速度之比.29.如图,ABCD是一个边长为6米的模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进(乙车速度小于甲车速度),结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?30.一列火车出发1小时后因故停车0.5小时,然后以原速的前进,最终到达目的地晚1.5小时,若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的前进,则到达目的地仅晚1小时,那么整个路程为多少公里?参考答案与试题解析一.选择题(共10小题)1.【分析】根据题意,可假设甲和乙都不停留,两者的速度差为135﹣120=15米/分钟,那么,甲追上乙的时间为:80÷15=分,甲跑一条边的时间为80÷135=分,=9,即甲追上乙需要跑9条边,又每过一个顶点时要多用5秒,×60+(9﹣1)×5=360秒=6分钟,9÷4=2…1,即在B 处相会.【解答】解:80÷(135﹣120)=80÷15,=(分钟);÷(80÷135)=÷,=9.×60+(9﹣1)×5=360秒=6分钟,9÷4=2…1,即在B处相会.即甲与乙相会需要6分钟,在B处相会.故选:B.【点评】先假设他们休息5秒的次数一样,算出不休息的追及时间,然后求行了几条边,进一步解决问题.2.【分析】根据路程=顺水时间×顺水速度,顺水速度=静水中的速度+水流速度,解答即可.【解答】解:顺水速度=35+2=37(公里/时),37×5=185(公里),答:渡轮共行驶185公里.故选:D.【点评】本题考查了流水行船问题,运用了下列关系式:路程=顺水时间×顺水速度,顺水速度=静水中的速度+水流速度.3.【分析】根据题意可知,小王第二次追上小李,他比小李应多跑两圈,利用追及问题公式:追及时间=路程差÷速度差,把数代入计算得:400×2÷(280﹣240)=20(分钟).【解答】解:400×2÷(280﹣240)=800÷40=20(分钟)答:经过20分钟后小王第二次追上小李.故选:C.【点评】本题主要考查追及问题,关键利用路程、速度和时间之间的关系做题.4.【分析】设这艘轮船最多驶出x千米就应返航,先依据分数乘法意义,求出逆水时的速度,再依据时间=路程÷速度,分别用x表示出顺水和逆水行驶时需要的时间,最后根据需要时间和是12小时,即“距离÷顺水速度+距离÷逆水速度=12小时”列方程,依据等式的性质即可求解.【解答】解:设这艘轮船最多驶出x千米就应返航,30×80%=24(千米)x÷30+x÷24=12x=12x÷=12÷x=160答:这艘轮船最多驶出160千米就应返航.故选:A.【点评】本题用方程解答比较简便,只要设驶出的距离是x,进而用x表示出顺水和逆水需要的时间,根据时间和是12小时列方程解答即可.5.【分析】根据题意,两人又相遇在原出发点,说明小东比小明多跑了一圈,即40米;由题意求出他们每次的需要时间,即40÷(6+4)=4秒,那么每次相遇时,小东比小明多跑了4×(6﹣4)=8米,用多跑的一圈除以多跑的距离,就是他们一共相遇了40÷8=5次再原点相遇,然后再减去原点相遇的一次就是要求的答案.【解答】解:他们每次的相遇时间是:40÷(6+4)=4(秒);每次相遇时,小东比小明多跑了4×(6﹣4)=8(米);又相遇在原出发点时的相遇次数是:40÷8=5(次);中途相遇的次数是:5﹣1=4(次).答:人在中途相遇了4次后又相遇在原出发点故选:C.【点评】两人又相遇在原出发点,说明小东比小明多跑了一圈,这是本题的关键,然后用多跑的总路程除以每次相遇时多跑的路程,可以求出相遇的次数,然后再进一步解答即可.6.【分析】把圆形街心花园的周长看作单位“1”,小红走一圈需要6分钟,平均每分钟走圈,爷爷走一圈需要8分钟,平均每分钟走圈,根据速度和×时间=总路程,据此求出12分钟时两人走了多少圈,进而确定两人的位置,据此解答.【解答】解:()×12=()×12==3(圈),因为两人12分钟走了3圈半,所以两人相距半圈的距离.由此可以确定两人的位置在图象C的位置.故选:C.【点评】此题考查的目的是理解掌握路程、速度、时间三者之间的关系及应用,关键是把圆形街心花园的周长看作单位“1”.7.【分析】设跑道一周长是单位“1”,乙8分的行程甲行了6分,所以甲乙的速度比是:8:6=4:3;从第一次相遇到第二次相遇用了:6+10=16分,二人共行了一个全程.所以二人的速度和是:.即甲的速度是:×=,那么甲跑一周的时间是:1÷=28分钟.【解答】解:甲乙的速度比是:8:6=4:3.1÷[1÷(6+10)×]=1÷[×],=1,=28(分钟).答:甲环行一周需28分.故选:A.【点评】首先根据行驶相同的路程,所用时间与速度成反比求出两人的速度比是完成本题的关键.8.【分析】根据题意,先求弟弟5分钟所行的路程:40×5=200(米),然后利用追及问题公式:追及时间=路程差÷速度差,求出哥哥追弟弟所用时间:200÷(60﹣40)=10(分钟).【解答】解:40×5÷(60﹣40)=200÷20=10(分钟)答:经过10分钟哥哥可追上弟弟.故选:A.【点评】本题主要考查追及问题,关键利用路程差、速度差和追及时间之间的关系做题.9.【分析】把全程看作是单位“1”,求出m千米对应的分率,要用60%+80%﹣1=,所以全程为m;根据甲车行了全程的60%,乙车行了全程的80%可以求出两车的速度比为60%:80%=3:4,根据全程为,相遇时间为6小时,可以求出两车的速度和,结合按比例分配问题可以求出甲车的速度,再利用时间=路程除以速度可求出甲车行驶全程需要的时间.【解答】解:60%+80%﹣1=,m=(千米),甲乙两车的速度比为60%:80%=3:4,甲乙两车的速度和:÷6=(千米/小时),甲车的速度:(千米/小时),甲车的时间:(小时)故选:D.【点评】本题考查行程问题,需要熟练掌握速度、路程和时间三者之间的关系.10.【分析】汽车与摩托车的速度比是2:3,把两地间距离看作单位“1”,那么第一次两车相遇时,汽车行驶全程的,第二次相遇时,汽车行驶全程的3=,也就是汽车从乙城回来,又走了1=,此时汽车距甲城的距离是1﹣,也就是120千米占全长的分率,据此即可解答.【解答】解:2+3=5,120÷[1﹣(3﹣1)],=120÷[1﹣(﹣1)],=120÷[1﹣],=120,=150(千米),答:甲乙两城相距150千米.故选:B.【点评】解答本题要明确:第二次相遇时,它们各行驶了第一次相遇时的3倍距离,求出120千米占全长的分率是解答本题的关键.二.填空题(共10小题)11.【分析】已知船在静水速度为18千米/小时=300米/分,设水流速度为a,小船逆水速度就为每分(300﹣a)米,2分钟行:2(300﹣a)米;则木头2分钟行2a米,相差2(300﹣a)+2a=600米.由此即可求出小船追上木头要时间:2×300÷(300+a﹣a)=2(分钟).【解答】解:设水流速度为每分a米,[2(300﹣a)+2a]÷(300+a﹣a)=600÷300=2(分钟)答:再经过2分钟小船追上木头.故答案为:2.【点评】本题考查速度公式的应用,难点是明白在顺水中运动时船的速度等于船速与水流速度之和;在逆水中行驶时,速度等于船速与水速之差.12.【分析】因为返回原处是逆水行使,要求返回原处所用的时间,就要知道逆水行驶的速度,因为逆水速度=船的静水速度﹣水流速度,因此关键在于求水流速度.根据顺水速度﹣船的静水速度=水流速度,水流速度为(210÷6)﹣25=10(千米/时),返回原处所需要的时间:210÷(25﹣10),计算得解.【解答】解:水流速度:(210÷6)﹣25,=35﹣25,=10(千米/时)返回原处所需要的时间:210÷(25﹣10),=210÷15,。
五年级知识点:行程问题例题专练,附解析行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t),三个关系:1. 简单行程:路程= 速度×时间2. 相遇问题:路程和= 速度和×时间3. 追击问题:路程差= 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”有这样一道应用题:“一辆汽车从A地开往B地,每小时行48千米,行了5小时到达B地。
A、B两地相距多少千米?”我相信,同学们都能很快地列式解答,即48×5=24O(千米),从而求得A、B两地相距24O千米。
但遇到较复杂的行程问题,往往会觉得无从下手。
其实,只要是行程问题,不管怎么复杂,都可以根据“路程=速度×时间”这一基本数量关系来解答。
下面我们一起来解答几道题目。
例:两辆汽车同时从A、B两地相向开出,甲车每小时行48千米,乙车每小时行50千米,5小时相遇。
求A、B两地间的距离。
分析:求两地间的路程,就是两车原来相隔路程,也就是求两车在5小时里所走路程的和。
根据“路程=速度×时间”,可以先算出每小时两车一共行多少千米,再与相遇时间相乘,就可求得两地相距多少千米。
(48+50)×5=490(千米)答:A、B两地间相距是490千米。
现在我们就以这道题为基础来进行改编练习。
1.把原题的“5小时相遇”这一条件改为“5小时后还相距15千米”,问题不变。
我们可以按原题进行分析,所不同的是:这里两车没有相遇,还相距15千米。
这样,两地间的路程就不仅仅是两车5小时里所走的路程和了,还必须加上没有走的15千米。
可这样列式解答。
(48+50)×5+15=490+15=505(千米)答:A、B两地间相距505千米。
行程问题(一)相遇追及问题知识点1:路程=速度×时间2:路程和=速度和×相遇时间3:路程差=速度差×追击时间例1 甲、乙两人同时从两地出发相向而行,距离是1300米,甲每分钟行60米,乙每分钟行70米。
甲带着一只狗,狗每分钟行150米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走…直到两人相遇,这只狗一共走了多少米?解析: 狗行走的时间与甲乙两人的相遇时间相同,用其速度乘其时间便可求解.1300÷(60+70)=10(分钟)150×10=1500(米)例2 两城相距400千米,两列火车同时从两城相对开出,5小时相遇,已知第一列火车的速度比第二列火车每小时快2千米,两列火车的速度各是多少?解析: 两车速度和为400÷5=80km/h,又知差为2km/h,则根据和差问题可求二者速度.提示:和差问题:大数=(和+差)÷2,小数=(和—差)÷2400÷5=80(km/h)(80+2)÷2=41(km/h)(80-2)÷2=39(km/h)例3 甲、乙两辆汽车同时从A、B两地相向而行,4小时后相遇。
相遇后甲车继续前行3小时到达B地,乙车继续以每小时24千米的速度前进,问A、B两地相距多少千米?解析:甲车行完全程用7小时,求得甲的速度就能求出全程.(24×4÷3)×(3+4)=224(km)例4 甲、乙两车分别从A、B两地同时相向而行。
甲车每小时行82千米,乙车每小时行72千米,两车在距离中点30千米处相遇。
A、B两地相距多少千米?解析:关键是求甲乙两车的相遇时间,由于在距离中点30km相遇可知二者的路程差为30×2=60km.用路程差除以速度差可求相遇时间.30×2÷(82—72)×(82+72)=924(km)例5 甲、乙两车同时从A、B两地相向而行,第一次相遇在距A地65千米处,相遇后,两车继续前进,分别到达目的地后立刻返回。
行程问题(一)相遇问题1.两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程.2.相遇问题公式:根据速度和、距离和相遇时间三者之间的关系,常用下面的公式:路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和﹣已知的一个速度.例1.在比例尺是1∶4000000的地图上,A、B两地的距离是5厘米,两辆汽车同时从A、B两地相对开出,一辆汽车每小时行35千米,另一辆汽车每小时行45千米,几小时可以相遇?例2.甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5∶4,两地相距540km,求两车各自的速度。
例3.甲乙两车从相距450千米的两地同时出发相向而行,经过3小时相遇。
已知甲车每小时比乙车少行驶10千米,那么乙车每小时行多少千米?例4.甲、乙两车从相距596千米的两地同时出发,相向而行,3小时后两车还相距32千米(未相遇)。
甲车每小时行84千米,乙车每小时行多少千米?例5.客车和货车同时从AB两地相向而行,货车每小时行60千米,货车每小时行48千米。
两车离两地中点30千米相遇,求两地间的距离是多少?例6.甲、乙两城市之间的铁路总长745千米,一列客车以每小时85千米的速度从甲城开往乙城,一列货车在客车出发1小时后,立即以每小时80千米的速度从乙城开往甲城。
货车出发后经过多少小时两车相遇?(二)追及问题【知识点归纳】1.追及问题的概念:追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.2.追及问题公式:根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速﹣慢速例1.甲从A出发,每分钟走50米,甲出发30分钟后,乙也从A出发,去追甲,乙每分钟走80米。
第一讲行程问题知识点一③行程问题1.行程问题:关于走路、行车等问题,一般都是计算路程、时间和速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解它们之间的关系,再根据这类问题的规律解答。
2.解题关键及规律:同时同地相背而行:路程一速度和X时间。
同时相向而行:相遇时间一路程:速度和。
同时同向而行(速度慢的在前,快的在后):追及时间=路程差一速度差。
同时同地同向而行(速度慢的在后,快的在人前):路程差一速度差X时间。
知识点二流水问题1.流水问题一般研究船在“流水”中航行的问题题。
它是行程问题中比较特殊的种类型,它也是种和差问题。
它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速十水速。
逆速=船速一水速。
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。
解题时要以水流为线索。
解题规律:船行速度= (顺流速度+逆流速度)+ 2,流水速度= (顺流速度-逆流速度)+2,路程=顺流速度X顺流航行所需时间,路程=逆流速度X逆流航行所需时间。
考点一相遇问题例1 (成都)A、B两地相距700千米,甲乙两车分别同时从A、B两地相对开出,甲车速度为每小时110千米,经过5小时两车同时到达A、B之间的C地,乙车每小时行多少千米?变式应用甲、乙二人同时从相距18千米的两地相对而行,甲每时行5千米,乙每时行4千米。
如果甲带了一只狗与甲同时出发, 狗以每时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲再向乙跑.....这样二人相遇时,狗跑了多少千米?考点二追及问题例2在某高速公路上A、B两车相距96千米,现两车正好同时从两个不同的服务区上高速公路,A车每小时行95千米,B车每小时行107千米。
经过几小时B车可以追上A车?变式应用2.竹子的生长速度很快,生长旺盛期每小时约增高4厘米。
六年级解决问题的策略行程问题(一)专题简析:行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题1:两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
到10点钟时两车相距112.5千米。
继续行进到下午1时,两车相距还是112.5千米。
A、B两地间的距离是多少千米?例题2:两辆汽车同时从东、西两站相向开出。
第一次在离东站60千米的地方相遇。
之后,两车继续以原来的速度前进。
各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。
两站相距多少千米?东西练习2:1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。
各自到站后都立即返回,又在距中点南侧15千米处相遇。
小学数学六年级知识点:行程问题发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速. 说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例1:某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?分析:这个题可以简单的找规律求解时间车辆4分钟9辆6分钟10辆8分钟9辆12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。
行程问题集合(一共61题)注:解答仅供参考,可以用小学的方法去解决,欢迎互相探讨解法。
常用知识点:1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
5、常画画线段图,利用数形结合的方式解决问题。
例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。
设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则回来时的时间为:,即回来时用了小时。
评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。
例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-=(小时),后半段行驶速度应为:120÷=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。
四年级行程问题知识点总结与练习一、填空1.一共行了多长的路,叫做(),每小时(或每分钟)行的路程,叫做();行了几个小时(或几分钟等),叫做()。
2.一辆汽车的速度是每小时85千米,可写作(),读作()。
3.李军步行的速度是每分钟65米,可写作(),读作()。
4.一种超音速飞机2秒钟可以飞行700米,它的速度可以写作(),读作()。
5.速度×时间 =()6.(1)一辆汽车每小时行驶80千米,2小时可行多少千米?“每小时行驶80千米”是指汽车的(),“2小时”是指汽车行驶的(),“2小时可行多少千米”就是汽车的(),数量关系式是()。
(2)时间 =()÷()(3)速度 =()÷()二、填空(1)光在真空中的传播速度约是每秒300000千米,横线上得数写作()。
(2)某高速列车的速度是300千米/时,它表示()。
(3)从甲地到乙地的路程是160千米,李叔叔开车从甲地到乙地用了2小时,李叔叔开车平均每小时行(),李叔叔开车的平均速度是()。
(4)小红买5本同样的日记本花了10元,她买7本这样的日记本应该花()元;小丽有24元,最多能买()本这样的日记本。
基本方法:抓不变量抓不变量法是指解题时抓住始终不变的数量,分析不变的数量与其他数量的关系,从而找到解题的突破口,把问题解答出来的方法。
典型例题一辆汽车上山的速度为36千米/时,行驶5小时到达山顶,下山时沿原路返回只用了4小时,这辆汽车下山时的平均速度是多少?方法指导由“下山时沿原路返回”可知,汽车上山的路程和下山的路程相等。
抓住路程这个不变量,用汽车上山的速度乘上所用的时间,就可以求出汽车上山的路程,也就是汽车下山的路程,用汽车下山的路程除以汽车下山所用的时间,就可以求出汽车下山的平均速度。
正确解答(36×5)÷ 4 = 45(千米/时)答:这辆汽车下山时的平均速度是45千米/时。
同步练习:乡里要修一段路,平均每天修60米,要12天修完。
行程问题的知识点及练习
【知识要点】行程问题的三个基本量是:速度、时间、路程,它们之间的关系是:速度×时间=路程,路程÷速度=时间,路程÷时间=速度
行程问题按所行方向的不同,可分为①相遇问题(相向而行)②相离问题(相背而行)③追及问题(同向而行)其基本数量关系是:
①相遇问题: 速度和×相遇时间=路程
②相离问题: 速度和×时间=相距路程
③追及问题: 速度差×时间=追及路程
相关练习
一.脱式计算(能简算的要简算)
1.0.25×1.25×4×8
2. 2.25×4.8+77.5×0.48
3. 9999×7+1111×37
4. 8.89×36+8.89×63+8.89
5. 4.85×0.17+0.485×8.3
6. 54+99×99+45
二.解方程
1. 3.5X+7=119
2. 0.6×(4.2+X)=7.2
三.问题解决
1.两列火车从相距640千米的两地同时相对开出,5小时相遇,客车每小时行70千米,货车每小时行多少千米?
2.甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇.已知汽车每小时行40千米,摩托车每小时行多少千米?
3.甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米.两队合作8天后还差52米,这条水渠全长多少米?
4.一列货车以每小时50千米的速度由甲站开往乙站,2小时后,一列客车以每小时55千米的速度由乙站驶向甲站,客车行了4小时与货车相遇,甲乙两站的距离是多少千米?
5.一辆汽车从甲地开往乙地,每小时行40千米,8小时到达,从乙地返回甲地,每小时比去时少行8千米,返回时需要多少小时?
6.一辆客车和一辆货车同时从甲、乙两地相对开出,在距中点12千米处相遇。
已知客、货两车的速度比是6:5,甲、乙两地相距多少千米?
7.A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。
各自达到目的地后又立即返回,经过8小时后它们第二次相遇。
已知甲车每小时行45千米,乙车每小时行多少千米?
8.山脚到山顶有12千米,一人以每小时4千米的速度到山顶,又立即返回,他上下山的平均速度是每小时4.8千米,求他下山的速度是每小时多少千米?
9.甲、乙两汽车同时从东、西两地相向开出,甲每小时行56千米,乙每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?
练习参考答案
一.计算
1. 0.25×1.25×4×8
2. 2.25×4.8+77.5×0.48
=(0.25×4)×(1.25×8) =22.5×0.48+77.5×0.48
=1×10 =(22.5+77.5)×0.48
=10 =48
3. 9999×7+1111×37
4. 8.89×36+8.89×63+8.89 =1111×9×7+1111×37 =8.89×(36+63+1)
=1111×(63+37) =8.89×100
=111100 =889
5. 4.85×0.17+0.485×8.3
6. 54+99×99+45
=4.85×0.17+4.85×0.83 =(54+45)+99×99
=4.85×(0.17+0.83) =(99+1)×99
=4.85 =9900
二.解方程
1. 3.5X+7=119
2. 0.6×(4.2+X)=7.2 解:
3.5X=119-7 解:
4.2+X=7.2÷0.6
3.5X=112
4.2+X=12
X=32 X=7.8三.问题解决
1. 640÷5-70
=128-70
=58(千米)
2. (484-40×1.5)÷4-40
=424÷4-40
=106-40
=66(千米)
3. (75+75-2.5)×8+52
=147.5×8+52
=1232米
4. 50×2+(55+50)×4
=100+105×4
=100+420
=520(千米)
5. (40×8)÷(40-8)
=320÷32
=10(小时)
6. 12×2÷(6/11-5/11)
=24÷1/11
=264(千米)
7.(600-45×8)÷8
=(600-360)÷8
=240÷8
=30(千米)
8. 12×2÷4.8=5(时)
5-12÷4=2(时)
12÷2=6(千米)
9. 32×2÷(56-48)=8(时)
(56+48)×8=832(千米)。