第6章:三层交换机动态路由
- 格式:ppt
- 大小:397.50 KB
- 文档页数:7
设备配置三层交换路由协议配置在企业网络中,为了实现网络之间的通信和数据转发,常常需要使用三层交换路由协议进行配置。
三层交换路由协议是指在局域网中使用交换机进行数据转发,并在网络层使用路由协议实现不同网络之间的互联。
本文将介绍如何配置设备的三层交换路由协议,包括以下几个方面:1.设备选择和准备2.路由协议选择和配置3.设备间连接和接口配置4.运行和维护1. 设备选择和准备要进行三层交换路由协议配置,首先需要选择合适的设备。
常用的设备包括交换机和路由器。
交换机用于实现局域网内的数据转发,而路由器用于实现不同网络之间的数据转发。
根据网络规模和需求,选择合适的设备型号和数量。
在选择设备前,还需要考虑以下因素:•设备性能:确保设备具备足够的处理能力和内存容量,以支持网络的数据转发和路由功能。
•网络拓扑:根据企业网络的拓扑结构,选择合适的设备,如核心交换机、汇聚交换机和接入交换机等。
•安全需求:考虑网络的安全需求,选择支持安全功能的设备。
配置三层交换路由协议之前,还需要对所需的设备进行准备。
确保设备的硬件连接正确,包括电源、网络线缆等。
2. 路由协议选择和配置在配置三层交换路由协议之前,需要选择合适的路由协议。
常用的路由协议包括静态路由和动态路由协议。
静态路由是手动配置的路由,需要管理员手动指定路由表中的目的网络和下一跳地址。
适用于较小的网络规模和路由信息变化不频繁的场景。
静态路由的配置简单,维护成本较低。
动态路由协议是通过路由协议自动学习和更新路由信息。
常用的动态路由协议包括OSPF、BGP、RIP等。
动态路由协议适用于网络规模较大或需要频繁变化的场景。
选择合适的路由协议后,需要对设备进行相应的路由协议配置。
配置的具体步骤和命令根据不同的设备和路由协议可能有所不同,请参考设备的操作手册和路由协议的配置指南。
3. 设备间连接和接口配置在配置三层交换路由协议之前,需要确保设备之间的物理连接正常。
在局域网中,可通过交换机实现设备之间的连接。
三层交换机实现路由功能三层交换机是一种集成了路由和交换功能的设备,它可以实现在局域网内进行路由转发和数据交换。
与二层交换机相比,三层交换机具有更高的功能和灵活性,可以根据IP地址进行路由转发,支持虚拟局域网(VLAN)和QoS(Quality of Service)等功能。
1.静态路由:静态路由是通过手动配置路由表来实现的,管理员需要手动指定每个网络的下一跳路由器。
静态路由的设置简单,适用于网络规模较小且变动较少的场景。
2. 动态路由:动态路由是根据网络拓扑和链路状态自动更新路由表的一种方式。
三层交换机可以支持常见的动态路由协议,如OSPF(Open Shortest Path First)和RIP(Routing Information Protocol)。
动态路由可以实现网络的自动调整和优化,适用于大规模网络或网络拓扑变动频繁的场景。
3.路由策略:三层交换机可以根据不同的策略进行路由转发,如基于源IP地址或目的IP地址进行转发,也可以基于服务质量(QoS)的需求进行转发。
路由策略可以根据实际需求进行配置,提供更加灵活和个性化的路由转发方式。
4.虚拟局域网(VLAN):三层交换机支持虚拟局域网的划分和隔离。
通过将不同的端口划分到不同的VLAN中,可以实现不同VLAN之间的隔离和通信。
三层交换机可以通过VLAN间的路由功能实现不同VLAN之间的数据转发。
5.安全性:三层交换机可以实现网络的安全防护和访问控制。
通过配置访问控制列表(ACL),可以限制网络的访问权限,防止未经授权的访问。
三层交换机还可以支持虚拟专用网(VPN)和防火墙等安全功能。
需要注意的是,三层交换机的路由功能相对于专用的路由器来说,性能可能有一定的限制。
在需要处理大规模的路由转发或者复杂的路由策略时,可能需要采用专用的路由器设备。
综上所述,三层交换机通过集成的路由表和路由功能实现了在局域网内的路由转发和数据交换。
它支持静态路由和动态路由,提供了路由策略和虚拟局域网(VLAN)等功能,同时还能提供一定的安全性。
三台三层交换机OSPF多区域划分动态路由实验⼀、实验拓扑⼆、实验步骤1、给主机设置IP,⽹关;给交换机划分VLAN,给VLAN划分端⼝,给VLAN设置IP2、启⽤OSPF、宣告⽹段(network ⽹络地址反掩码区域名其中0区域为主⼲区域)▲SwitchA 的相关配置Switch>enableSwitch#configConfiguring from terminal, memory, or network [terminal]?Enter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname SwitchASwitchA(config)#vlan 10SwitchA(config-vlan)#exitSwitchA(config)#vlan 20SwitchA(config-vlan)#exitSwitchA(config)#vlan 100SwitchA(config-vlan)#exitSwitchA(config)#interface range fastEthernet 0/1-10SwitchA(config-if-range)#switchport access vlan 10SwitchA(config-if-range)#interface range fastEthernet 0/11-20SwitchA(config-if-range)#switchport access vlan 20SwitchA(config-if-range)#interface fastEthernet 0/23SwitchA(config-if)#switchport access vlan 100SwitchA(config-if)#SwitchA(config-if)#interface vlan 100SwitchA(config-if)#ip address 192.168.100.1 255.255.255.0SwitchA(config-if)#no shutdownSwitchA(config-if)#interface vlan 10SwitchA(config-if)#ip address 192.168.10.1 255.255.255.0SwitchA(config-if)#no shutdownSwitchA(config-if)#interface vlan 20SwitchA(config-if)#ip address 192.168.20.1 255.255.255.0SwitchA(config-if)#no shutdownSwitchA(config-if)#exitSwitchA(config)#router ?eigrp Enhanced Interior Gateway Routing Protocol (EIGRP)ospf Open Shortest Path First (OSPF)rip Routing Information Protocol (RIP)SwitchA(config)#router ospf ?<1-65535> Process IDSwitchA(config)#router ospf 1SwitchA(config-router)#network 192.168.10.0 0.0.0.255 area 0SwitchA(config-router)#network 192.168.20.0 0.0.0.255 area 0SwitchA(config-router)#network 192.168.100.0 0.0.0.255 area 0SwitchA(config-router)#▲SwitchB 的相关配置Switch>Switch>enableSwitch#configConfiguring from terminal, memory, or network [terminal]?Enter configuration commands, one per line. End with CNTL/Z.Switch(config)#vlan 30Switch(config-vlan)#exitSwitch(config)#vlan 40Switch(config-vlan)#exitSwitch(config)#vlan 101Switch(config-vlan)#exitSwitch(config)#vlan 200Switch(config-vlan)#exitSwitch(config)#hostname SwitchBSwitchB(config)#interface range fastEthernet 0/1-10SwitchB(config-if-range)#switchport access vlan 30SwitchB(config-if-range)#interface range fastEthernet 0/11-20 SwitchB(config-if-range)#switchport access vlan 40SwitchB(config-if-range)#interface fastEthernet 0/23SwitchB(config-if)#switchport access vlan 101SwitchB(config-if)#interface fastEthernet 0/24SwitchB(config-if)#switchport access vlan 200SwitchB(config-if)#SwitchB(config-if)#exitSwitchB(config)#interface vlan 101SwitchB(config-if)#ip address 192.168.100.2 255.255.255.0 SwitchB(config-if)#no shutdownSwitchB(config-if)#interface vlan 200SwitchB(config-if)#ip address 192.168.200.1 255.255.255.0 SwitchB(config-if)#no shutdownSwitchB(config-if)#interface vlan 30SwitchB(config-if)#ip address 192.168.30.1 255.255.255.0 SwitchB(config-if)#no shutdownSwitchB(config-if)#interface vlan 40SwitchB(config-if)#ip address 192.168.40.1 255.255.255.0 SwitchB(config-if)#no shutdownSwitchB(config-if)#exitSwitchB(config)#route ospf 1SwitchB(config-router)#network 192.168.100.0 0.0.0.255 area 0 SwitchB(config-router)#network 192.168.30.0 0.0.0.255 area 0 SwitchB(config-router)#network 192.168.200.0 0.0.0.255 area 1 SwitchB(config-router)#network 192.168.40.0 0.0.0.255 area 1 SwitchB(config-router)#▲SwitchC 的相关配置Switch>Switch>enableSwitch#configConfiguring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#hostname SwitchCSwitchC(config)#vlan 50SwitchC(config-vlan)#exitSwitchC(config)#vlan 60SwitchC(config-vlan)#exitSwitchC(config)#vlan 201SwitchC(config-vlan)#exitSwitchC(config)#interface range fastEthernet 0/1-10 SwitchC(config-if-range)#switchport access vlan 50SwitchC(config-if-range)#interface range fastEthernet 0/11-20 SwitchC(config-if-range)#switchport access vlan 60SwitchC(config-if-range)#interface fastEthernet 0/24 SwitchC(config-if)#switchport access vlan 201SwitchC(config-if)#exitSwitchC(config)#interface vlan 201SwitchC(config-if)#ip address 192.168.200.2 255.255.255.0SwitchC(config-if)#no shutdownSwitchC(config-if)#interface vlan 50SwitchC(config-if)#ip address 192.168.50.100 255.255.255.0SwitchC(config-if)#no shutdownSwitchC(config-if)#interface vlan 60SwitchC(config-if)#ip address 192.168.60.100 255.255.255.0SwitchC(config-if)#no shutdownSwitchC(config-if)#exitSwitch(config)#router ?eigrp Enhanced Interior Gateway Routing Protocol (EIGRP)ospf Open Shortest Path First (OSPF)rip Routing Information Protocol (RIP)Switch(config)#router ospf ?<1-65535> Process IDSwitch(config)#router ospf 1Switch(config-router)#network 192.168.50.0 0.0.0.255 area 1Switch(config-router)#network 192.168.60.0 0.0.0.255 area 1Switch(config-router)#network 192.168.200.0 0.0.0.255 area 1Switch(config-router)# 当三台交换机都设置好ospf动态路由后,⽤以下命令查看(在特权模式下)SwitchC#show ip route结果如图三、实验结果所有的PC间全通。
配置动态路由RIP(三个三层交换机Vlan互通)网络拓扑如下:配置如下:第一个交换机:1、重命名设备Switch#conf tEnter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname S12、创建Vlan 10、20、30S1#vlan databaseS1(vlan)#vlan 10 name toyotaVLAN 10 added:Name: toyotaS1(vlan)#vlan 20 name LexusVLAN 20 added:Name: LexusS1(vlan)#vlan 30 name ShareVLAN 30 added:Name: Share3、将网口1-5给Vlan10,网口21-24给Vlan20,将G1做扩展相互通信使用.S1(config)#interface range fastEthernet 0/1-5S1(config-if-range)#switchport access vlan 10S1(config-if-range)#exitS1(config)#interface range fastEthernet 0/21-24S1(config-if-range)#switchport access vlan 20S1(config-if-range)#exitS1(config)#interface gigabitEthernet 0/1S1(config-if)#switchport access vlan 30S1(config-if)#exit4、Vlan 配置上IPS1(config)#interface vlan 10S1(config-if)#ip address 10.6.1.2 255.255.255.0S1(config-if)#exitS1(config)#interface vlan 20S1(config-if)#ip address 10.6.2.2 255.255.255.0S1(config-if)#exitS1(config)#interface vlan 30S1(config-if)#ip address 10.6.3.2 255.255.255.0S1(config-if)#exit5、台式机测试网络,测试OKA、如发现仅能ping所属Vlan的地址,需要在三层启动IP routing6、其他二个交换机配置类似,需注意中间的S2交换机,需将G0/1、G0/2都划给Vlan30,G0/1连接S1,G0/2连接S37、配置动态路由,并查看路由状态。
13实验⼗三三层交换机OSPF动态路由实验⼗三三层交换机OSPF 动态路由⼀、实验⽬的1. 掌握三层交换机之间通过 OSPF 协议实现⽹段互通的配置⽅法。
2. 理解 RIP 协议和 OSPF 协议内部实现的不同点。
⼆、应⽤环境当两台三层交换机级联时,为了保证每台交换机上所连接的⽹段可以和另⼀台交换机上连接的⽹段互相通信,最简单的⽅法就是设置静态路由。
三、实验设备1.DCRS-5650-28C 交换机 2 台2.PC 机 2—4 台PC1PC2 PC1PC3PC4五、实验要求1.在交换机A 和交换机B 上分别划分基于端⼝的VLAN:2.交换机A 和B 通过的24 ⼝级联。
3.配置交换机A 和B 各VLAN 虚拟接⼝的IP 地址分别如下表所⽰:4.PC1-PC4 的⽹络设置为:5.验证:没有OSPF路由之前:PC1 与PC2,PC3 与PC4 可以互通。
PC1、PC2 与PC3、PC4 不通。
配置OSPF路由之后:四台PC 之间都可以互通。
若实验结果和理论相符,则本实验完成。
六、实验步骤1.交换机恢复出⼚设置(以交换机A为例,交换机B配置步骤同A)DCRS-5650-28C>enableDCRS-5650-28C#set defaultAre you sure? [Y/N] = yDCRS-5650-28C#writeDCRS-5650-28C#reload Process with reboot? [Y/N] y2. 创建vlan10和vlan20、vlan100 和并给相应vlan添加端⼝。
DCRS-5650-01(Config)#vlan 10DCRS-5650-01(Config-Vlan10)#switchport interface ethernet1/1-8DCRS-5650-01(Config-Vlan10)#exitDCRS-5650-01(Config)#vlan 20DCRS-5650-01(Config-Vlan20)#switchport interface ethernet 1/9-16 DCRS-5650-01(Config-Vlan20)#exitDCRS-5650-01(Config)#vlan 100DCRS-5650-01(Config-Vlan100)#switchport interface ethernet 1/24 Set the port Ethernet1/24 access vlan 100 successfullyDCRS-5650-01(Config-Vlan100)#exitDCRS-5650-01#show vlan3.配置交换机各vlan虚接⼝的IP地址1)开启三层转发功能(默认情况下此功能关闭,若要配置多个IP,需要先开启此功能)DCRS-5650-01((Config)#l3 enable (此命令不能⾃动补全,需⼿动输⼊)2)分别给Vlan 10 与Vlan 20、vlan100配置IP地址DCRS-5650-01(Config)#int vlan 10DCRS-5650-01(Config-If-Vlan10)#ip address 192.168.10.1 255.255.255.0 DCRS-5650-01(Config-If-Vlan10)#no shutDCRS-5650-01(Config-If-Vlan10)#exitDCRS-5650-01(Config)#int vlan 20DCRS-5650-01(Config-If-Vlan20)#ip address 192.168.20.1 255.255.255.0 DCRS-5650-01(Config-If-Vlan20)#no shutDCRS-5650-01(Config-If-Vlan20)#exitDCRS-5650-01(Config)#int vlan 100DCRS-5650-01(Config-If-Vlan100)#ip address 192.168.100.1 255.255.255.0 DCRS-5650-01(Config-If-Vlan100)#no shutDCRS-5650-01(Config-If-Vlan100)#exit4.配置各PC的IP地址,注意配置⽹关验证PC之间是否连通:查看路由表,进⼀步分析上⼀步的现象原因。
三层交换机实现VLAN间通信三层交换机可以实现VLAN间通信,即不同VLAN之间的主机可以互相通信。
下面将从三层交换机的原理、实现方法以及优缺点等方面进行详细介绍。
三层交换机是在二层交换机的基础上增加了三层功能,即支持IP协议栈的路由功能。
它可以实现不同VLAN间的通信,通过将不同VLAN的信号进行路由处理,使得主机在不同VLAN间可以进行通信,实现了虚拟局域网之间的互通。
实现VLAN间通信的方法有两种:静态路由和动态路由。
静态路由是通过手动配置交换机的路由表来实现VLAN间通信。
管理员需要手动配置交换机上每个子网的网关地址,并设置路由表,指明从哪个接口出去到达目标VLAN。
这种方法配置简单,但不适合规模较大的网络,因为需要手动维护路由表。
动态路由是通过使用动态路由协议,如OSPF、RIPv2等,来自动学习和更新路由表,实现自动的VLAN间通信。
这种方法适合规模较大的网络,因为可以自动更新路由表,减少管理员的配置工作。
1. 提高网络性能:通过实现VLAN间的通信,可以减少广播域的范围,减少广播报文的传输,提高网络性能。
2. 增强网络安全性:通过划分不同的VLAN,可以实现不同VLAN的隔离,阻止不同VLAN间的流量传播,增强网络的安全性。
3. 提供灵活性:通过使用三层交换机的路由功能,可以将不同的VLAN划分到不同的子网中,提供更灵活的网络管理和更好的资源利用。
1. 成本较高:相比于二层交换机,三层交换机的成本较高,对于小型网络来说可能不划算。
2. 复杂性:三层交换机的配置相对复杂,需要管理员具备一定的网络知识和技能才能正确配置。
三层交换机可以实现VLAN间通信,通过路由功能将不同VLAN的信号进行路由处理,从而实现虚拟局域网之间的互通。
不同的实现方法有静态路由和动态路由,优点包括提高网络性能、增强网络安全性和提供灵活性,缺点包括成本较高和配置复杂。
三层交换简单地说,三层交换技术就是:二层交换技术+三层转发技术。
它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
下面我们结合本站有关思科及微软关于三层交换方面的文章为大家介绍这方面的资讯,更多更丰富的相关方面内容我们将在以后日子里进行补充。
部署第三层交换正迅速发展成可作为下一代应用启动平台的最适合的网络技术。
本文将详细介绍此项技术以及如何部署第三层交换才能获得最大效率。
第三层交换是局域网许多区域(包括核心和服务器集中点)的关键组件,因为该项技术能解决许多在性能、安全和控制等方面的问题。
然而,在一些网络区域,该项技术的使用效果并不十分显著,尤其是在桌面连接方面。
本文将会重点讨论这种网络性能较低的情况,特别是在新一代高级第四层桌面交换技术已经能够提供高性能和控制能力的今天。
本文也将详细阐述第二(四)层交换机是如何提供成本更低、更加简单、更易于管理的桌面解决方案。
概述任何一种新技术进入市场时,都要经历业界专业人员对伴随这种技术的新术语和“技术行话”进行筛选的阶段。
这些新的技术术语往往会造成迷惑,甚至自相矛盾,具体情况取决于供应商使用它们的方式。
“第三层交换”和有关的技术也不例外,随着越来越多交换机和路由器技术的推出,有关它们技术术语的迷惑只会增多。
比如,第三层交换、第四层交换、多层交换、多层数据包分类和路由交换机等新术语就令交换机和路由器之间的传统区别变得模糊起来。
此外,由于许多供应商在原本用于布线室的第二层交换机平台上提供了第三层交换技术,从而让人更加迷惑不解。
这些变化使网络设计人员很难了解如何部署高效的网络解决方案。
因此,必须去伪存真,并专注于基础知识,才能真正了解何时、何地以及为什么采用第三层交换。
了解网络各层为了充分认识第三层交换,在此有必要对目前使用的大多数网络体系结构的强大分层模型进行分析。
如图所示,网络基础架构设备(如网桥、路由器和交换机)在传统上一直按OSI 分层模型分类。
三层交换机原理详解首先,我们来了解一下三层网络的结构。
在一个三层网络中,存在三个层次:物理层、数据链路层和网络层。
物理层负责传输数据的物理媒介,比如网线、光纤等;数据链路层负责数据的传输,将数据分割成帧,并加上控制信息;网络层负责将数据包从源地址传输到目的地址,它使用IP地址来寻址和路由决策。
接下来,我们来看一下三层交换机的工作方式。
三层交换机在数据链路层和网络层之间进行数据包的转发和路由选择。
它不仅可以通过MAC地址进行数据包的转发,还能够根据IP地址进行数据包的路由选择。
三层交换机会维护一个路由表,其中包含了目的网络的IP地址和对应的下一跳路由器。
当接收到一个数据包时,三层交换机会检查目的IP地址,并根据路由表选择最佳的下一跳路由器,然后将数据包转发到相应的接口。
三层交换机的路由选择是通过路由协议来实现的。
常见的路由协议有静态路由和动态路由。
静态路由是管理员手动配置的路由信息,适用于较小的网络环境。
动态路由则是通过交换机之间的网络协议动态学习并更新路由信息,适用于较大的网络环境。
常见的动态路由协议有RIP、OSPF和BGP等。
对于三层交换机还有两个重要的概念需要提及:子网划分和VLAN。
子网划分是将一个大的网络划分成若干个较小的网络,以提高网络的性能和安全性。
三层交换机可以通过对子网进行划分,将不同的子网连接到不同的接口上。
而VLAN(虚拟局域网)则是将一个物理局域网划分成多个逻辑上的虚拟网络,实现不同用户群之间的逻辑隔离。
总结起来,三层交换机可以实现数据包的转发和路由选择。
它通过维护路由表和使用路由协议来选择最佳路径,并支持子网划分和VLAN等网络功能。
在复杂的网络环境中,三层交换机是一个重要的网络设备,能够提高网络的性能和可管理性。
三层交换机路由功能
三层交换机是在二层交换机的基础上增加了路由功能的设备。
它不仅可以实现二层交换机的快速转发功能,还可以实现网络层的路由功能,能够根据目的IP地址对数据包进行转发。
三层交换机具有以下路由功能:
1. 路由表管理:三层交换机内置了路由表,用于存储网络中所有可达的目的IP地址。
路由表的构建可以通过手动配置静态路由,也可以通过动态路由协议自动学习路由信息。
2. 路由选择:当三层交换机收到一个数据包时,根据目的IP 地址在路由表中查找下一跳地址,并将数据包转发到对应的端口。
路由选择可以根据最长前缀匹配规则进行。
3. 网络分割:三层交换机可以根据不同的IP地址段将网络划分为多个子网,实现不同子网之间的通信。
可以通过静态路由或动态路由协议来实现不同子网之间的路由。
4. 路由过滤:三层交换机可以通过路由过滤功能,对进出的数据包进行过滤和控制。
可以根据源IP地址、目的IP地址、协议类型等条件设置路由过滤规则,实现安全策略的控制。
5. 路由更新:三层交换机可以通过动态路由协议自动学习和更新路由信息。
通过与其他三层交换机或路由器之间的路由协议通信,可以获取最新的路由信息,并更新路由表。
三层交换机的路由功能能够增加网络的灵活性和可扩展性,使网络能够更加高效地进行数据包转发和路由选择。
它可以减轻核心路由器的负担,分担网络流量和提高网络性能。
同时,它还可以提供更多的网络安全和管理功能,保障网络的安全和稳定运行。