33角的概念、任意角三角函数
- 格式:doc
- 大小:338.50 KB
- 文档页数:4
三角函数知识点归纳总结三角函数一、任意角、弧度制及任意角的三角函数1.任意角角的概念可以推广为正角、负角、零角,根据旋转的方向不同。
同时也可以根据终边的位置分为象限角和轴线角。
对于一个角α,如果它的顶点与原点重合,始边与x轴的非负半轴重合,那么它就是一个象限角,终边落在第几象限就称它为第几象限角。
各象限角的集合分别为:第一象限角:α=k·360°+α,k∈Z,αXXX°<α< k·360°+90°第二象限角:α=k·360°+90°+α,k∈Z,αXXX°+90°<α< k·360°+180°第三象限角:α=k·360°+180°+α,k∈Z,αXXX°+180°<α< k·360°+270°第四象限角:α=k·360°+270°+α,k∈Z,αXXX°+270°<α< k·360°+360°终边在x轴上的角的集合为:α=k·180°,k∈Z终边在y轴上的角的集合为:α=k·180°+90°,k∈Z终边在坐标轴上的角的集合为:α=k·90°,k∈Z2.弧度制弧度制是另一种角度量方式,其中1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以相互换算,其中360°=2π弧度,180°=π弧度。
对于一个半径为r的圆,它的圆心角α所对的弧长为l,则角α的弧度数的绝对值是α=l/r(弧度制),它的周长为C=2r+l,面积为S=lr=αr²。
3.任意角的三角函数定义对于一个任意角α,它的终边上任意一点P(x,y),它与原点的距离为r=√(x²+y²),则角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
三角函数一. 任意角的概念与弧度制 (一)角的概念的推广 1.角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角.按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角.习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边.射线旋转停止时对应的边叫角的终边. 2.特殊命名的角的定义:(1)正角,负角,零角 :见上文.(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角. (3)轴线角:角的终边落在坐标轴上的角.终边在x 轴上的角的集合: {}|180,k k Z ββ=⨯︒∈ 终边在y 轴上的角的集合: {}|18090,k k Z ββ=⨯︒+︒∈终边在坐标轴上的角的集合:{}|90,k k Z ββ=⨯︒∈ (4)终边相同的角:与α终边相同的角:2,x k k Z απ=+∈ (5)与α终边反向的角:()21,x k k Z απ=++∈终边在y x =轴上的角的集合:{}|18045,k k Z ββ=⨯︒+︒∈ 终边在y x =-轴上的角的集合:{}|18045,k k Z ββ=⨯︒-︒∈(6)若角α与角β的终边在一条直线上,则角α与角β的关系:180,k k Z αβ=⨯︒+∈ (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:360,k k Z αβ=⨯︒-∈ 若角α与角β的终边关于y 轴对称,则角α与角β的关系:360180,k k Z αβ=⨯︒+︒-∈ 若角α与角β的终边互相垂直,则角α与角β的关系:36090,k k Z αβ=⨯︒+±︒∈注意: (1)角的集合表示形式不唯一; (2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1.弧度制的定义:lRα=2.角度与弧度的换算公式:180π︒= 3602π︒= 10.01745︒= 157.305718'=︒=︒注意: (1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;(2)一个式子中不能角度、弧度混用.二. 任意角三角函数 (一)三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy=αtan ,余切y x =αcot2.三角函数的定义域(二)单位圆与三角函数线 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线;OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.(三)同角三角函数的基本关系式(1)sin csc 1,cos sec 1,tan cot 1αααααα⋅=⋅=⋅= (2)商数关系:ααααααcot sin cos ,tan cos sin == (3)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=(四)诱导公式(奇变偶不变,符号看象限)()()()()sin sin cos cos tan tan cot cot πααπααπααπαα+=-+=-+=+= ()()()()s i n 2s i n c o s 2c o s t a n 2t a n c o t 2c o t πααπααπααπαα-=--=-=--=-()()()()s i n s i n c o s c o s t a n t a n c o t c o tπααπααπααπαα-=-=--=--=-sin cos 2cos sin 2tan cot 2πααπααπαα⎛⎫+= ⎪⎝⎭⎛⎫+=- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭ s i n c o s 2c o s s i n 2t a n c o t 2πααπααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭三. 三角函数的图象与性质(一)基本图象1.正弦函数2.余弦函数3.正切函数(二)函数图象的性质正弦、余弦、正切、余切函数的图象的性质四. 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+βαβαβαsinsin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+()s i n s i n c o sc o s s i nαβαβαβ-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五. 倍角公式和半角公式 (一)倍角与半角公式αααcos sin 22sin =2cos 12sin αα-±=ααααα2222sin211cos 2sin cos 2cos -=-=-= 2cos 12cos αα+±= ααα2tan 1tan 22tan -=s i n 1c o s t a n 21c o s s i n αααααα-==+(二)万能公式2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=六. 三角函数的积化和差与和差化积公式()()1s i n c o s s i n s i n 2αβαβαβ=++-⎡⎤⎣⎦ ()()1c o ss i n s i n s i n 2αβαβαβ=+--⎡⎤⎣⎦ ()()1c o s c o s c o s c o s 2αβαβαβ=++-⎡⎤⎣⎦ ()()1s i n s i n c o s c o s 2αβαβαβ=-+--⎡⎤⎣⎦ s i n s i n 2s i n c o s 22αβαβαβ+-+= 2c o s 2c o s 2c o s c o s βαβαβα-+=+s i n s i n 2c o s s i n 22αβαβαβ+--= co s c o s 2s i n s i n 22αβαβαβ+--=-sin15cos 754︒=︒=sin 75cos154︒=︒=tan15cot 752︒=︒=tan 75cot152︒=︒=+七. 辅助角公式(合一变形)()sin cos ,tan ,,22b a x b x x a ππϕϕϕ⎛⎫+=+=∈- ⎪⎝⎭一. 恒等变换 (一)基础题型1.(2015·福建)若5sin 13α=-,且α为第四象限角,则tan α=( ) A.125B.125- C.512D.512-2.已知α是第二象限的角,()4tan 23πα+=-,则tan α=________3.=________4.已知0θπ<<,1tan 47πθ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=________5.方程()233102x ax a a +++=>两根tan ,tan αβ,且,,22ππαβ⎛⎫∈- ⎪⎝⎭,则αβ+=________6.已知()tan 4cos 2,22ππθπθθ⎛⎫-=-< ⎪⎝⎭,则tan2θ=( )A.C.(二)诱导公式1.已知奇函数()f x 在[]1,0-上为单调减函数,若,αβ为锐角三角形内角,则( )A.()()cos cos f f αβ>B.()()sin sin f f αβ>C.()()sin cos f f αβ<D.()()sin cos f f αβ>2.已知,,2παβπ⎛⎫∈ ⎪⎝⎭且cos sin 0αβ+>,则下列各式中成立的是( )A.αβπ+<B.32παβ+>C.32παβ+=D.32παβ+<(三)互余互补sin cos 2πθθ⎛⎫-= ⎪⎝⎭ c o s s i n 2πθθ⎛⎫-= ⎪⎝⎭ sin()sin πθθ-= c o s ()c o sπθθ-=-1.已知4cos 35πθ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭________;2cos 3πθ⎛⎫+=⎪⎝⎭2.(2016·广州检测)已知1cos 123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+=⎪⎝⎭( )A.13 B.3C.13-D.3-3.(2017·合肥模拟)已知1cos cos ,,63432ππππααα⎛⎫⎛⎫⎛⎫+⋅-=-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求sin 2α的值; (2)求1tan tan αα-的值.(四)配凑角(已知条件会给θ范围)1.已知0,2πα⎛⎫∈ ⎪⎝⎭,若3cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫-= ⎪⎝⎭2.设()21tan ,tan 544παββ⎛⎫+=-= ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( )A.138B.322C.1318D.13223.(2017·成都模拟)若()sin 2,sin 510αβα=-=且3,,,42ππαπβπ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,则αβ+=( ) A.74πB.94πC.54π或74πD.54π或94π4.若()111cos ,cos ,0,,,71422ππααβααβπ⎛⎫⎛⎫=+=-∈+∈ ⎪ ⎪⎝⎭⎝⎭,则β=( )A.3π- B.6πC.3πD.6π-5.若3335,,0,,cos ,sin 44445413πππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫∈∈-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()sin αβ+=________6.已知sin sin 3παα⎛⎫++= ⎪⎝⎭cos 3πα⎛⎫-= ⎪⎝⎭( )A.45-B.35-C.45D.35(五)升角(一倍角、二倍角转换) 解题思路:2cos 212sin θθ=- 2c o s 22c o s 1θθ=-一) 升角+诱导公式1.(2016·宿州模拟)若1sin 43πα⎛⎫+= ⎪⎝⎭,则cos 22πα⎛⎫-= ⎪⎝⎭( )A.9B.9-C.79D.79-2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭=( )A.19-C. D.193.(2016·南昌三模)已知tan 24πα⎛⎫+= ⎪⎝⎭,则tan 2α=( )A.34B .35C.34-D.35-4.已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin 42cos3sin x x x -=( )A.79B.79-C.9D.9-二)升角+互余、互补1.已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin cos 233x x ππ⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭________2.(2017·江西新余三校联考)已知7cos 238x π⎛⎫-=- ⎪⎝⎭,则sin 3x π⎛⎫+= ⎪⎝⎭( )A.14B.78C.14±D.78±三)升角+配凑1.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A.19-B.9C.9-D.192.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则cos 24πα⎛⎫+= ⎪⎝⎭________3.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭________ (六)平方一)sin cos c θθ+=解题思路:2(sin cos )1sin 2θθθ±=± 1.已知4sin cos 3αα-=,则sin 2α=________2.已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα+=,则cos α=________3.已知1sin cos 3αα+=,则2sin 4πα⎛⎫-= ⎪⎝⎭( )A.118B.1718C.89D.94.已知()1sin cos ,,05x x x π+=∈-.(1)求sin cos x x -的值;(2)求2sin 22sin 1tan x xx+-的值.5.已知4sin cos 034πθθθ⎛⎫+=<< ⎪⎝⎭,则sin cos θθ-=________6.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α=( )A.118B.118-C.1718D.1718-7.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值为( )A.12-+B.12+ C.18.若,22sin sin =+βα则βαcos cos +的取值范围________二)sin cos a b c θθ+=1.已知2sin cos 2αα+=,则tan 2α=________2.(2016·厦门质检)若2sin 21cos2αα=-,则tan α=________3.(2016·开封模拟)已知12sin 5cos 13αα-=,则tan α=( )A.512- B.125-C.125±D.712±4.已知sin αα+=tan α=( )A.2C.2-D.(七)12tan tan sin 2θθθ+= (2016·青岛模拟)化简:211tan sin 22cos tan 2αααα⎛⎫+⋅-= ⎪⎝⎭________(八)齐次式 1.若tan 2α=,则2sin 3cos 4sin 9cos αααα-=-________;224sin 3sin cos 5cos αααα--=________2.(2015·广东)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.3.(2016·天一大联考)已知函数()()log 24a f x x =-+(0a >且1a ≠),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin 2cos sin cos αααα+=-________4.(广东省广州2017届高三下学期第一次模拟)已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则co s 2θ=( ) A.45B.35C.35-D.45-5.已知3tan 5α=-,则sin 2α=( )A.1517B.1517- C.817-D.8176.若sin 3sin 02παα⎛⎫++= ⎪⎝⎭,则cos2α=( )A.35-B.35C.45-D.45二. 三角函数图象的变换 (一)图象平移和伸缩1.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是( )A.12x π= B.6x π=C.3x π=D.12x π=-2.已知函数()()()sin cos 0,2f x x x πωϕωϕωϕ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减B.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递增3.将函数()()cos f x x x x R =∈的图象向左平移()0αα>个单位长度后,所得到的图象关于原点对称,则α的最小值为( )A.12πB.6πC.3πD.56π4.已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=______5.(2014·辽宁卷)将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减B.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增C.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增6.(2017·渭南模拟)由()y f x =的图象向左平移3π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,得到2sin 36y x π⎛⎫=- ⎪⎝⎭的图象,则()f x 的解析式为( )A.()32sin 26f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 66f x x π⎛⎫=- ⎪⎝⎭C.()32sin 23f x x π⎛⎫=+ ⎪⎝⎭D.()2sin 63f x x π⎛⎫=+ ⎪⎝⎭7.(2014·安徽)若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值为( ) A.8πB.4πC.38πD.5π48.(2016·广东汕头模拟)将函数()sin 6y x x R π⎛⎫=+∈ ⎪⎝⎭的图象上所有点的纵坐标不变,横坐标缩小到原来的12倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A.5sin 26y x π⎛⎫=+⎪⎝⎭B.1sin 26y x π⎛⎫=+ ⎪⎝⎭C.2sin 23y x π⎛⎫=+ ⎪⎝⎭D.15sin 212y x π⎛⎫=+ ⎪⎝⎭9.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A.奇函数且图象关于点,02π⎛⎫⎪⎝⎭对称B.偶函数且图象关于点(),0π对称C.奇函数且图象关于直线2x π=对称D.偶函数且图象关于点,02π⎛⎫⎪⎝⎭对称10.(2016·长沙四校联考)将函数()()sin 0,22f x x ωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度得到sin y x =的图象,则函数()f x 的单调递增区间为( ) A.52,2,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,2,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦11.为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin 2y x =的图象( )A.向左平移56π个单位长度 B.向右平移56π个单位长度 C.向左平移512π个单位长度D.向右平移512π个单位长度12.(2013·新课标全国卷Ⅱ)函数()()cos 2y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ=________二)图象求解析式1.若函数()f x 具有以下两个性质:①()f x 是偶函数;②对任意实数x ,都有44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()f x 的解析式可以是( ) A.()cos f x x =B.()cos 22f x x π⎛⎫=+ ⎪⎝⎭C.()sin 42f x x π⎛⎫=+ ⎪⎝⎭D.()cos6f x x =2.已知()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<在同一周期内当12x =时取最大值,当12x =时取最小值,与y 轴的交点为(,则()f x =____________3.已知函数)0,()sin()(πϕϕ<<∈+=R x x x f ,若点1,62π⎛⎫ ⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图象上,则ϕ=_________4.已知函数()()2sin f x x ωϕ=+,对于任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则6f π⎛⎫= ⎪⎝⎭________5.(2017·安徽江南十校联考)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,且对任意x R ∈,都有()3f x f π⎛⎫≤ ⎪⎝⎭成立,则()f x 图象的一个对称中心的坐标是( )A.2,03π⎛⎫- ⎪⎝⎭ B.,03π⎛⎫- ⎪⎝⎭C.2,03π⎛⎫⎪⎝⎭D.5,03π⎛⎫⎪⎝⎭6.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图象的对称中心完全相同,若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围________7.(2015·湖南)将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( ) A.512πB.3πC.4πD.6π8.(2016·安徽芜湖一模)函数()()sin ,0,2f x x x R ωϕωϕ⎛⎫=+∈>< ⎪⎝⎭的部分图象如图所示,若122,,63x x ππ⎛⎫∈ ⎪⎝⎭,且()()12f x f x =,则()12f x x +=( )A.2-B.12-C.12D.29.(2017·石家庄模拟)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则1124f π⎛⎫= ⎪⎝⎭( )A.2- B.2-C.2-D.1-10.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A.6π- B .6πC.3π-D.3π11.已知函数()()sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则6y f x ⎛⎫=+ ⎪⎝⎭取得最小值时x 的集合为________12.已知函数()()cos f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则6f π⎛⎫-= ⎪⎝⎭( ) A.23-B.12-C.23D.1213.(2016·泉州质检)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若tan 3α=,则8f πα⎛⎫+= ⎪⎝⎭( )A.35-B.45-C. D.三.特殊三角函数最值1.当06x π<≤时,函数()22cos cos sin sin xf x x x x=-的最小值为________2.求函数()2cos ,0,sin xy x xπ-=∈的最小值.3.(2016·全国Ⅱ)函数()cos 26cos 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为( )A.4B.5C.6D.74.函数273sin 2cos ,,66y x x x ππ⎡⎤=--∈⎢⎥⎣⎦的值域为________5.求函数2sin 12sin 1x y x +=-的值域.6.求函数sin 2cos xy x=-的最小值.7.求函数2cos y x=+的值域.8.若0,2πα⎛⎫∈ ⎪⎝⎭,则2214s in c o s αα+的最小值为________9.求函数()()1sin 3sin 2sin x x y x++=+的最值及对应的x 的集合.四.参数相关1.已知0ω>,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上是减函数,则ω的取值范围________2.(2016·全国乙卷)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A.11B.9C.7D.53.已知函数()()2sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭在区间,126ππ⎛⎤- ⎥⎝⎦则ϕ的取值范围( )A.0,3π⎡⎤⎢⎥⎣⎦B.,36ππ⎡⎤-⎢⎥⎣⎦C.,04π⎡⎫-⎪⎢⎣⎭D.,03π⎡⎤-⎢⎥⎣⎦4.若函数()()s i n 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=________5.已知0ω>, ()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围( )A.15,24⎡⎤⎢⎥⎣⎦B.13,24⎡⎤⎢⎥⎣⎦C.10,2⎛⎫⎪⎝⎭D.(]0,26.若已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围________7.已知()()sin 0,363f x x f f πππωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间错误!未找到引用源。
第一节任意角和弧度制及三角函数的概念【课程标准】1.了解任意角的概念和弧度制;2.能进行弧度与角度的互化;3.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【考情分析】考点考法:高考命题常以角为载体,考查扇形的弧长、面积、三角函数的定义;三角函数求值是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.(2)分类按旋转方向正角、负角、零角按终边位置象限角和轴线角(3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为__-α__.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.(2)公式角α的弧度数公式|α|=l r(弧长用l表示)角度与弧度的换算1°=180rad;1rad=(180)°弧长公式弧长l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数(1)任意角的三角函数的定义(推广):设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sinα=, cosα=,tanα=(x≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.(3)三角函数的定义域三角函数sinαcosαtanα定义域R R{α|α≠kπ+π2,k∈Z}【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列说法正确的是()A.-π3是第三象限角B.若角α的终边过点P(-3,4),则cosα=-35C.若sinα>0,则α是第一或第二象限角D.若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2【解析】选BD.因为-π3是第四象限角,所以选项A错误;由三角函数的定义可知,选项B正确;由sinα>0可知,α是第一或第二象限角或终边在y轴的非负半轴上,所以选项C错误;由扇形的面积公式可知,选项D正确.2.(必修第一册P175练习T1改题型)-660°等于()A.-133πB.-256πC.-113πD.-236π【解析】选C.-660°=-660×π180=-113π.3.(必修第一册P176习题T2改条件)下列与角11π4的终边相同的角的表达式中正确的是()A.2kπ+135°(k∈Z)B.k·360°+11π4(k∈Z)C.k·360°+135°(k∈Z)D.kπ+3π4(k∈Z)【解析】选C.与11π4的终边相同的角可以写成2kπ+3π4(k∈Z)或k·360°+135°(k∈Z),但是角度制与弧度制不能混用,排除A,B,易知D错误,C正确.4.(忽视隐含条件)设α是第二象限角,P(x,8)为其终边上的一点,且sinα=45,则x=()A.-3B.-4C.-6D.-10【解析】选C.因为P(x,8)为其终边上的一点,且sinα=45,所以sinα=45,解得x=±6,因为α是第二象限角,所以x=-6.【巧记结论·速算】α所在象限与2所在象限的关系α所在象限一二三四α2所在象限一、三一、三二、四二、四【即时练】设θ是第三象限角,且|cos2|=-cos2,则2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.因为θ是第三象限角,所以2的终边落在第二、四象限,又|cos2|= -cos2,所以cos2<0,所以2是第二象限角.【核心考点·分类突破】考点一象限角及终边相同的角[例1](1)(2023·宁波模拟)若α是第二象限角,则()A.-α是第一象限角B.2是第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或在y轴负半轴上【解析】选D.因为α是第二象限角,可得π2+2kπ<α<π+2kπ,k∈Z,对于A,可得-π-2kπ<-α<-π2-2kπ,k∈Z,此时-α位于第三象限,所以A错误;对于B,可得π4+kπ<2<π2+kπ,k∈Z,当k为偶数时,2位于第一象限;当k为奇数时,2位于第三象限,所以B错误;对于C,可得2π+2kπ<3π2+α<5π2+2kπ,k∈Z,即2(k+1)π<3π2+α<π2+2(k+1)π,k∈Z,所以3π2+α位于第一象限,所以C错误;对于D,可得π+4kπ<2α<2π+4kπ,k∈Z,所以2α是第三或第四象限角或在y轴负半轴上,所以D正确.(2)在-720°~0°内所有与45°终边相同的角为-675°和-315°.【解析】所有与45°终边相同的角可表示为β=45°+k×360°(k∈Z),当k=-1时,β=45°-360°=-315°,当k=-2时,β=45°-2×360°=-675°.【解题技法】1.知α确定kα,(k∈N*)的终边位置的步骤(1)写出kα或的范围;(2)根据k的可能取值确定kα或的终边所在位置.2.求适合某些条件的角的方法(1)写出与这个角的终边相同的角的集合;(2)依据题设条件,确定参数k的值,得出结论.【对点训练】已知角θ在第二象限,且|sin2|=-sin2,则角2在()A.第一象限或第三象限B.第二象限或第四象限C.第三象限D.第四象限【解析】选C.因为角θ是第二象限角,所以θ∈(π2+2kπ,π+2kπ),k∈Z,所以2∈(π4+kπ,π2+kπ),k∈Z,所以角2在第一或第三象限.又|sin2|=-sin2,所以sin2<0,所以角2在第三象限.考点二弧度制及其应用[例2]已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l.(2)(一题多法)若扇形的周长是16cm,当扇形的圆心角为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.【解析】(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)方法一:由题意知2R+l=16,所以l=16-2R(0<R<8),则S=12lR=12(16-2R)R=-R2+8R=-(R-4)2+16,当R=4cm时,S max=16cm2,l=16-2×4=8(cm),α==2,所以S的最大值是16cm2,此时扇形的半径是4cm,圆心角α=2rad.方法二:S=12lR=14l·2R≤14·(r22)2=16,当且仅当l=2R,即R=4cm时,S的最大值是16cm2.此时扇形的圆心角α=2rad.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)cm2.【解题技法】应用弧度制解决问题时的注意事项(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.(3)在解决弧长和扇形面积问题时,要合理地利用圆心角所在的三角形.【对点训练】若扇形的周长是16cm,圆心角是360π度,则扇形的面积(单位cm2)是16.【解析】设扇形的半径为r cm,圆心角弧度数为α=360π·π180=2,所以αr+2r=16即4r=16,所以r=4,所以S=12αr2=12×2×16=16.答案:【加练备选】已知弧长为60cm的扇形面积是240cm2,求:(1)扇形的半径;(2)扇形圆心角的弧度数.【解析】设扇形的弧长为l,半径为r,面积为S,圆心角为α.(1)由题意得S=12lr=12×60r=240,解得r=8(cm),即扇形的半径为8cm.(2)α==608=152,所以扇形圆心角的弧度数为152rad.考点三三角函数的定义及应用【考情提示】三角函数的定义主要考查利用定义求三角函数值及三角函数值符号的应用,常与三角函数求值相结合命题,题目多以选择题、填空题形式出现.角度1利用定义求三角函数值[例3](1)已知角α的终边经过点P(2,-3),则sinα=-31313,tanα=-32.【解析】因为x=2,y=-3,所以点P到原点的距离r=22+(-3)2=13.则sinα===-31313,tanα==-32.(2)若角60°的终边上有一点A(4,a),则a=43.【解析】由题设知:tan60°=4=3,即a=43.角度2三角函数值的符号[例4](1)若sinαtanα<0,且cos tan>0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.由sinαtanα<0,知α是第二象限或第三象限角,由cos tan>0,知α是第一象限或第二象限角,所以角α是第二象限角.(2)sin2cos3tan4的值()A.小于0B.大于0C.等于0D.不存在【解析】选A.因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0.所以sin2cos3tan4<0.【解题技法】与三角函数定义有关的解题策略(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.【对点训练】1.(多选题)设△ABC的三个内角分别为A,B,C,则下列各组数中有意义且均为正值的是()A.tan A与cos BB.cos B与sin CC.tan2与cos2D.tan2与sin C【解析】选CD.因为A,B的范围不确定,所以A选项不满足条件;cos B与sin C都有意义,但cos B不一定为正值,故B选项不满足条件;因为B,C∈(0,π),所以2,2∈(0,π2),所以C选项满足条件;因为0<A<π,所以0<2<π2,所以tan2>0,又因为0<C<π,所以sin C>0,故D选项满足条件.2.已知角θ的终边经过点(2a+1,a-2),且cosθ=35,则实数a的值是()A.-2B.211C.-2或211D.1【解析】选B.由题设可知=35且2a+1>0,即a>-12,所以42+4r152+5=925,则11a2+20a-4=0,解得a=-2或a=211,又a>-12,所以a=211.【加练备选】已知角α的终边上一点P的坐标为(sin5π6,cos5π6),则角α的最小正值为5π3.【解析】因为sin5π6>0,cos5π6<0,所以角α的终边在第四象限,根据三角函数的定义,可知sinα=cos5π6=-32,故角α的最小正值为α=2π-π3=5π3.。
三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。
=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。
是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。
的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。
第24讲 三角函数概念及定义5种题型总结【知识点梳理】知识点一:三角函数基本概念 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. (4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα. (2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα 三角函数的性质如下表:三角函数定义域第一象限符号 第二象限符号 第三象限符号 第四象限符号 αsinR + + - - αcosR+--+αtan }2|{Z k k ∈+≠,ππαα + - + -记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. 【题型目录】题型一:与角α终边相同的角的集合的表示 题型二:判断等分角的象限问题 题型三:扇形的弧长、面积公式的计算 题型四:任意角三角函数的定义 题型五:三角函数值的正负判断 【典例例题】题型一:与角α终边相同的角的集合的表示【例1】(2022·全国·高一课时练习)将-1485°化成()202,k k απαπ+≤<∈Z 的形式是( ) A .π8π4-B .784π-πC .104π-πD .7104π-π【答案】D【分析】由3602rad π︒=或180rad π︒=转换.【详解】因为14855360315-︒=-⨯︒+︒,3602rad π︒=,7315rad 4π︒=,所以-1485°可化成7104π-π.故选:D .【例2】(2022·陕西渭南·高一期末)与2022︒终边相同的角是( ) A .488-︒ B .148-︒C .142︒D .222︒【答案】D【分析】与α终边相同的角可表示为2,Z k k απ+∈. 【详解】∵20225360222︒=⨯︒+︒, ∵与2022︒终边相同的角是222︒. 故选:D【例3】(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是( ) A .245k π+,k Z ∈ B .93604k π⋅+,k Z ∈ C .360315k ⋅-,k Z ∈ D .54k ππ+,k Z ∈ 【答案】C【分析】 要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可. 【详解】首先角度制与弧度制不能混用,所以选项AB 错误; 又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确. 故选:C .【例4】(2022·河南南阳·高一期末)已知角2022α=,则角α的终边落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】利用象限角的定义判断可得出结论.【详解】因为20222225360α==+⨯,而222是第三象限角,故角α的终边落在第三象限. 故选:C.【例5】(2022·全国·高一课时练习)终边落在直线3y x =上的角α的集合为( ) A .{}18030,Z k k αα=⋅︒+︒∈ B .{}18060,Z k k αα=⋅︒+︒∈ C .{}36030,k k αα=⋅︒+︒∈Z D .{}36060,Z k k αα=⋅︒+︒∈【答案】B【分析】先确定3y x =的倾斜角为60,再分当终边在第一和三象限时角度的表达式再求解即可. 【详解】易得3y x =的倾斜角为60,当终边在第一象限时,60360k α=︒+⋅︒,k ∈Z ;当终边在第三象限时,240360k α=︒+⋅︒,k ∈Z .所以角α的集合为{}18060,Z k k αα=⋅︒+︒∈. 故选:B【例6】(2022·全国·高三专题练习(多选题))如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为( ) A .90︒ B .360︒C .450︒D .2330︒【答案】AC根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项. 【详解】因为角α与角45γ+︒的终边相同,故45360k γα,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈, 故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确, 令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ; 故BD 错误. 故选:AC.【例7】(2022·全国·高一课时练习)下列说法中正确的是( ) A .第二象限角大于第一象限角B .若()360360180k k k α⋅︒<<⋅︒+︒∈Z ,则α为第一或第二象限角C .钝角一定是第二象限角D .三角形的内角是第一或第二象限角 【答案】C【分析】利用任意角的知识,对选项分别判断即可. 【详解】对A 选项,如21030-︒<︒,故A 错误.对B 选项,α为第一或第二象限角或终边落在y 轴正半轴上的角.故B 错误. 对C 选项,因为钝角大于90°且小于180°,所以钝角一定是第二象限角,故C 正确. 对D 选型,当三角形的一个内角为90°时,不是象限角,故D 错误. 故选: C.【例8】(2022·全国·高一课时练习)已知{}4536090360k k ααα∈︒+⋅︒≤≤︒+⋅︒,则角α的终边落在的阴影部分是( )A .B .C .D .【答案】B【分析】令0k =即可判断出正确选项.【详解】令0k =,得4590α︒≤≤︒,则B 选项中的阴影部分区域符合题意. 故选:B . 【题型专练】1.(2022·河南安阳·高一期末)把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-【答案】B【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】∵37515360-=-︒-︒︒,∵π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B2.(2022·广西·北海市教育教学研究室高一期末)下列各角中,与1840︒ 角终边相同的角是( ) A .40︒ B .220︒C .320︒D .400-︒【答案】A【分析】将1840︒化为405360︒+⨯︒,即可确定答案.【详解】因为1840405360︒=︒+⨯︒,故40︒角的终边与1840︒的终边相同, 故选:A3.(2022·全国·高一课时练习)与2022︒终边相同的角可以为___________.(填写一个符合题意的角即可) 【答案】222︒(答案不唯一)【分析】终边相同的角,相差360︒的整数倍,据此即可求解【详解】∵()2022360k k α︒=︒⨯+∈Z ,当5k =时,222α=︒,∵与2022︒终边相同的角可以为222︒, 故答案为:222°(答案不唯一)4.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为( )A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭ZB .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭ZD .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z【答案】D 【解析】 【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解. 【详解】 解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D. 【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.5.(2022·全国·高一课时练习)如图,用弧度制表示终边落在阴影部分(包括边界)的角的集合:______.【答案】π5π2π2πZ 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭,【分析】将角度化为弧度,结合任意角概念表示出来即可. 【详解】因为π5π757518012︒=⨯=,π306-︒=-,结合图像可看作π5π,612⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角的概念可表示为π5π2π2π,Z 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭.故答案为:π5π2π2π,Z 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭.6.(2022·西藏·林芝市第二高级中学高一期末)5π3-的角化为角度制的结果为_______.【答案】300-【分析】利用角度与弧度的互化即可求得5π3-对应角度制的结果【详解】55π=18030033⎛⎫--⨯=- ⎪⎝⎭故答案为:300-7.(2022·全国·高三专题练习(多选题))下列条件中,能使α和β的终边关于y 轴对称的是( ) A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z【答案】BD 【解析】 【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可. 【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意; 选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称. 故选:BD.8.(2022·全国·高一课时练习)如果角α与角x +45°具有相同的终边,角β与角x -45°具有相同的终边,那么α与β之间的关系是( ) A .0αβ+=︒B .90αβ-=︒C .()360k k αβ+=⋅︒∈ZD .()36090k k αβ-=⋅︒+︒∈Z【答案】D【分析】先根据终边相同的角分别表达出,αβ,再分析αβ+,αβ-即可.【详解】利用终边相同的角的关系,得()36045n x n α=⋅︒++︒∈Z ,()36045m x m β=⋅︒+-︒∈Z . 则()()3602,m n x n m αβ+=+⋅︒+∈∈Z Z 与x 有关,故AC 错误;又()()36090,n m n m αβ-=-︒+︒∈∈Z Z .因为m ,n 是整数,所以n -m 也是整数,用()k k ∈Z 表示,所以()36090k k αβ-=⋅︒+︒∈Z .故选:D .9.(2022·全国·高一课时练习)若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称【答案】C【分析】根据角θ与角θ-的终边关于x 轴对称即可得解.【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C10.(2023·全国·高三专题练习)集合|,4k k k Z παπαπ⎧⎫≤≤+∈⎨⎬⎩⎭中的角所表示的范围(阴影部分)是( )A .B .C .D .【答案】B【分析】对k 按奇偶分类讨论可得.【详解】当k =2n (n ∵Z )时,2n π≤α≤2n π+4π(n ∵Z ),此时α的终边和0≤α≤4π的终边一样,当k =2n +1(n ∵Z )时,2n π+π≤α≤2n π+π+4π (n ∵Z ),此时α的终边和π≤α≤π+4π的终边一样.故选:B .题型二:判断等分角的象限问题【例1】(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈,则α的终边在( ) A .第一、三象限 B .第一、二象限 C .第二、四象限 D .第三、四象限【答案】A 【解析】 【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限. 【详解】解:因为18045,k k Z α=⋅+∈,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈,其终边在第三象限; 当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈,其终边在第一象限. 综上,α的终边在第一、三象限. 故选:A.【例2】(2022·江西上饶·高一阶段练习多选)若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角【答案】AB【分析】由α与α-关于x 轴对称,即可判断AD ;由已知可得222k k ππαππ+<<+,Z k ∈,再根据不等式的性质可判断B ;由32πα+是第一象限角判断C . 【详解】解:因为α与α-关于x 轴对称,而α是第二象限角,所以α-是第三象限角, 所以πα-是第一象限角,故A 正确,D 错误; 因为α是第二象限角,所以222k k ππαππ+<<+,k Z ∈,所以422k k παπππ+<<+,Z k ∈,故2α是第一或第三象限角,故 B 正确; 因为α是第二象限角,所以32πα+是第一象限角,故C 错误. 故选:AB . 【题型专练】1.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可. 【详解】∵角α的终边在第一象限, ∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈, 当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限, 当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限, 故选:D.2.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是( )A .sin 2θB .cos2θ C .sin 2θ D .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角, 所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0. 而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .3.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】 【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由cos cos 22αα=-,知cos 02α≤,由此能判断出2α所在象限. 【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈, 所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角; 当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角, 因为cos cos 22αα=-,所以cos 02α≤,所以2α为第三象限角.故选:C .题型三:扇形的弧长、面积公式的计算【例1】(2022·河南·郑州四中高三阶段练习(文))已知扇形OAB 的圆心角为2,弦长2AB =,则扇形的弧长等于( ) A .1sin1B .2sin1C .1cos1D .2cos1【答案】B【分析】求得扇形的半径,从而求得扇形的弧长.【详解】扇形的半径112sin1sin1ABr ==, 所以扇形的弧长等于122sin1sin1r α⨯=⨯=. 故选:B【例2】(2022·浙江·高三开学考试)如图是杭州2022年第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4【答案】C【分析】通过弧长比可以得到OA 与OB 的比,接着再利用扇形面积公式即可求解 【详解】解:设AOD θ∠=,则12,l OA l OB θθ=⋅=⋅,所以122l OA l OB==,即2OA OB =, 所以12221222111222231122OA l OB l OB l OB l S S OB l OB l ⋅-⋅⋅-⋅===⋅⋅, 故选:C【例3】(2022·全国·高三专题练习)已知扇形的周长为4 cm ,当它的半径为________ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm 2. 【答案】 1 2 1 【解析】 【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα,所以答案为1;2;1.【例4】(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】 2sin1; 211sin 1tan1-. 【解析】 【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可. 【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S , 故答案为:2sin1;211sin 1tan1-. 【例5】(2022·全国·高一课时练习多选题)中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,如图,设扇形的面积为1S ,其圆心角为θ,圆面中剩余部分的面积为2S ,当1S 与2S 51-时,扇面为“美观扇面”5 2.236)( )A .122S S θπθ=- B .若1212S S =,扇形的半径3R =,则12S π= C .若扇面为“美观扇面”,则138θ≈D .若扇面为“美观扇面”,扇形的半径20R =,则此时的扇形面积为(20035 【答案】AC【分析】首先确定12,S S 所在扇形的圆心角,结合扇形面积公式可确定A 正确;由12122S S θπθ==-可求得θ,代入扇形面积公式可知B 错误;由125122S S θπθ-==-即可求得θ,知C 正确;由扇形面积公式可直接判断出D 错误.【详解】对于A ,1S 与2S 所在扇形的圆心角分别为θ,2πθ-,()2122121222r S S r θθπθπθ⋅⋅∴==--⋅,A 正确; 对于B ,12122S S θπθ==-,23πθ∴=,2111293223S R πθπ∴=⋅⋅=⨯⨯=,B 错误; 对于C ,125122S S θπθ-==-,()35θπ∴=-,()3 2.236180138θ∴≈-⨯≈,C 正确; 对于D ,()()2111354002003522S R θππ=⋅⋅=⨯-⨯=-,D 错误.故选:AC.【题型专练】1.(2022·上海市松江二中高一期末)已知扇形的圆心角为135︒,扇形的弧长为3π,则该扇形所在圆的半径为___________. 【答案】4【分析】利用弧长公式直接求得. 【详解】扇形的圆心角为135︒,为34π,设半径为r , 由弧长公式可得:334r ππ=,解得:4r =. 故答案为:42.(2022·全国·高一学业考试)已知扇形的周长是12,面积是8,则扇形的圆心角的弧度数可能是( ) A .1 B .4C .2D .3【答案】AB【分析】利用扇形的弧长与面积公式建立方程组求解,再利用圆心角公式.【详解】设扇形的半径为r ,弧长为l ,面积为S ,圆心角为α,则212l r +=,182S lr ==,解得2r =,8l =或4r =,4l ,则4lrα==或1.故C ,D 错误. 故选:AB .3.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A 1133-B 1143-C 933-D 943-【答案】B 【解析】 【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案. 【详解】解:如图,连接OC , 因为C 是AB 的中点, 所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线, 即2OD OA OB ===, 又60AOB ∠=︒, 所以2AB OA OB ===, 则3OC =23CD = 所以(2223114322CD s AB OA -=+=+=故选:B.4.(2022·全国·高三专题练习)玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.某扇形玉雕壁面尺寸(单位:cm )如图所示,则该玉雕壁画的扇面面积约为( )A .2160cmB .23200cmC .23350cmD .24800cm【答案】D【分析】根据扇形的面积公式,利用大扇形面积减去小扇形面积即可求解. 【详解】易知该扇形玉雕壁画可看作由一个大扇形剪去一个小扇形得到, 设大、小扇形所在圆的半径分别为1r ,2r ,相同的圆心角为θ, 则1216080r r θ==,得122r r =,又因为1240r r -=, 所以180r =,240r =,该扇形玉雕壁画面积12111608022S r r =⨯⨯-⨯⨯()2111608080404800cm 22=⨯⨯-⨯⨯=. 故选:D .5.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB 51-,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB 51-.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为( )A 51- B 51-C 352D 52【答案】D 【解析】 【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果. 【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,2151S S -=,2S r π=, 所以)122515124S Sr αππ-==, 因为剪下扇形OAB 51-, 所以2512r r r παπ--=(35απ=, 所以))(2515135355355244S S απππ--+===.故选:D.6.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】 【分析】计算AOD ∠,再利用扇形的面积公式求解. 【详解】由题意可知,圆O 的半径为1,即1OA OD ==, 又1AD =,所以OAD △为正三角形,∵3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π7.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π 【解析】 【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解. 【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长2222290060C r l rl ππ=+≥=,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立, 所以()15BD DA cm π+=.又2BD DA =, 所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=. 故答案为:10π题型四:任意角三角函数的定义【例1】(2021·天津市武清区杨村第一中学高一阶段练习)已知函数()log 23a y x =++的图象恒过定点A ,若角α的顶点与原点重合,始边与x 轴的非负半轴重合,且点A 在角α的终边上,则sin α的值为( )A .17B 417C 310D .10【答案】C【分析】先由对数函数图象的特征求出定点()1,3A -,再由三角三函数的定义求解即可 【详解】函数()log 23a y x =++的图象恒过定点()1,3A -, 且点()1,3A -在角α的终边上, 所以()223sin 1331010α==-+,故选:C【例2】(2022·黑龙江·大庆市东风中学高一期末)已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( ) A .3B .12-C 3D .12【答案】C【分析】根据三角函数的定义即可求出.【详解】因为角α的终边与单位圆交于点13,22P ⎛⎫- ⎪⎝⎭,所以根据三角函数的定义可知,3sin 2y α==. 故选:C .【例3】(2022·陕西渭南·高一期末)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12 B .1 C .2D .52【答案】C【分析】由三角函数定义求得m 值. 【详解】由题意31tan 2m m θ-==,解得2m =. 故选:C .【题型专练】1.(2022·陕西渭南·高一期末)已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22 B .225 C .434 D 434【答案】D【分析】根据sin 0θ>,可判断点()2,P y -位于第二象限,利用正弦函数的定义列方程求解即可.【详解】解:因为()2,P y -是角θ终边上一点,22sin 05θ=>,故点()2,P y -位于第二象限, 所以0y >,2222sin 5(2)yy θ==-+, 整理得:21732y =,因为0y >,所以43417y =. 故选:D.2.(2022·陕西渭南·高一期末)已知角α的终边经过点()2,1P -,则sin α=( )A 5B 5C .12-D .-2【答案】A【分析】根据三角函数的定义即可得解.【详解】解:因为角α的终边经过点()2,1P -,所以15sin 541α==+. 故选:A.3.(2022·江苏省如皋中学高一期末多选)已知函数()()log 2401a f x x a a =-+>≠且的图象经过定点A ,且点A 在角θ的终边上,则11tan sin θθ+的值可能是( ) A .2B .3C 171+D 171+【答案】AC【分析】先由函数可知点A 的坐标,再由三角函数的定义可求解.【详解】由题意,可知(3,4)A 或(1,4)A ,当点是(3,4)A 时,由三角函数的定义有22444tan ,sin 3534θθ===+,所以11352tan sin 44θθ+=+=; 当点是(1,4)A 时, 由三角函数的定义有22444tan 4,sin 11714θθ====+, 所以11117171tan sin 444θθ++=+=. 故选:AC4.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin α=,则m 的值为______. 【答案】5±或0【分析】根据三角函数的定义列方程即可求解.【详解】由题意可知()222sin 43m m m α==-+,解得5m =±或0. 故答案为:5±或05.(2023·全国·高三专题练习)已知角α的终边与单位圆的交点为P 1(,)2y -,则sin tan αα=______. 【答案】32- 【分析】根据单位圆求出y ,然后由三角函数定义求得sin ,tan αα,再相乘可得.【详解】由题意2114y +=,32y =±, 32y =时,3sin 2α=,tan 3α=-,3sin tan 2αα=-, 32y =-时,3sin 2α=-,tan 3α=,3sin tan 2αα=-, 综上,3sin tan 2αα=-. 故答案为:32-. 题型五:三角函数值的正负判断【例1】(2022·浙江·诸暨市教育研究中心高二学业考试)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】直接由各象限三角函数的符号判断即可.【详解】由sin 0θ<可知θ的终边在第三象限或第四象限,又tan 0θ>,则θ的终边在第三象限.故选:C.【例2】(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 【答案】-1【分析】根据在第四象限三角函数的符号,化简计算y 值.【详解】因为角θ是第四象限角,所以sin 0θ<,cos 0θ>,tan 0θ<,所以sin cos tan 1111sin cos tan y θθθθθθ=++=-+-=-. 故答案为:-1.【例3】(2023·全国·高三专题练习)已知角θ在第二象限,且sinsin 22θθ=-,则角2θ在( ) A .第一象限或第三象限B .第二象限或第四象限C .第三象限D .第四象限 【答案】C 【分析】由题可得角2θ在第一或第三象限,再结合三角函数值的符号即得. 【详解】∵角θ是第二象限角,∵θ∵(2,2),Z 2k k k ππππ++∈,∵(,)242k k θππππ∈++,Z k ∈, ∵角2θ在第一或第三象限, ∵sinsin 22θθ=-,∵sin 02θ<, ∵角2θ在第三象限. 故选:C.【例4】(2022·全国·高一课时练习)(多选)下列三角函数值中符号为负的是( )A .sin100︒B .()cos 220-︒C .()tan 10-D .cos π 【答案】BCD【分析】根据各交所在象限判断三角函数的正负情况.【详解】因为90100180︒<︒<︒,所以sin100︒角是第二象限角,所以sin1000︒>;因为270220180-︒<-︒<-︒,220-︒角是第二象限角,所以()cos 2200-︒<;因为71032ππ-<-<-,所以角10-是第二象限角,所以()tan 100-<;cos 10π=-<;故选:BCD .【例5】(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】 sin cos 0αα⋅<,α是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.【例6】(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.【题型专练】1.(2022·全国·高一课时练习)在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点()1,P m -()0m ≠,则下列各式的值一定为负的是( )A .cos αB .sin cos αα-C .sin cos ααD .sin 2πα⎛⎫- ⎪⎝⎭ 【答案】AD【分析】由已知角终边上的点可得2sin 1m m α=+,21cos 1m α=-+,tan m α=-,结合诱导公式判断各项的正负,即可得答案.【详解】由题意知:2sin 1m m α=+,21cos 01m α=-<+,tan m α=-.∵不确定m 的正负,∵sin cos αα-与sin cos αα的符号不确定. ∵sin cos 02παα⎛⎫-=< ⎪⎝⎭, ∵一定为负值的是A ,D 选项.故选:AD2.(2022河南开封·高一期末)已知点()tan ,sin P αα在第三象限,则角α在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】∵点()tan ,sin P αα在第三象限,∵tan 0sin 0αα<⎧⎨<⎩,∵α在第四象限.故选:D. 3.(2022全国高一课时练习)在ABC 中,A 为钝角,则点()cos ,tan P A B ( )A .在第一象限B .在第二象限C .在第三象限D .在第四象限 【答案】B【解析】在ABC 中,A 为钝角,则B 为锐角,则cos 0,tan 0A B <>,则点()cos ,tan P A B 在第二象限, 故选:B4.(2021·全国高一课时练习)“角θ是第一或第三象限角”是“sin cos 0>θθ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】角θ是第一象限角时,sin 0,cos 0θθ,则sin cos 0>θθ;若角θ是第三象限角,sin 0,cos 0θθ<<,则sin cos 0>θθ.故“角θ是第一或第三象限角”是“sin cos 0>θθ”的充分条件.若sin cos 0>θθ,即sin 0,cos 0θθ或sin 0,cos 0θθ<<,所以角θ是第一或第三象限角.故“角θ是第一或第三象限角”是“sin cos 0>θθ”的必要条件.综上,“角θ是第一或第三象限角”是“sin cos 0>θθ”的充要条件.故选:C.5.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.【详解】解:∵cos 0θ<,且tan 0θ<,∵θ是第二象限角, ∵sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.6.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要 【答案】B【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.。
三角函数任意角的概念三角函数是数学中重要的概念之一,用于描述角的关系和性质。
在三角函数中,我们通常只考虑在直角三角形中的角度范围,即0 到90 度。
然而,在实际应用中,我们常常需要计算其他角的三角函数值。
为此,引入了任意角的概念。
任意角指的是大于90 度并小于180 度的角。
在三角函数中,我们将角的终边与x 轴正半轴的交点设为顶点O,角的始边与x 轴正半轴的交点设为顶点A。
以角度为单位来衡量。
为了方便计算,我们将角度单位转换为弧度单位。
以弧度单位来表示的角称为弧度角。
在三角函数中,最基本的三个函数是正弦函数sinθ,余弦函数cosθ和正切函数tanθ。
这些函数与角的关系如下:1. 正弦函数sinθ。
定义为角的终边上的点到x 轴的距离与半径的比值。
即sin θ= y/r,其中y 表示角的终边上的点到x 轴的距离,r 表示半径。
2. 余弦函数cosθ。
定义为角的终边上的点到y 轴的距离与半径的比值。
即cosθ= x/r,其中x 表示角的终边上的点到y 轴的距离,r 表示半径。
3. 正切函数tanθ。
定义为角的终边上的点到y 轴的距离与角的终边上的点到x 轴的距离的比值。
即tanθ= y/x。
在任意角中,三角函数的值与正弦函数、余弦函数和正切函数的正负有关。
根据象限的不同,三角函数的值会有不同的正负号。
具体来说:1. 在第一象限(0到90度)中,sinθ、cosθ和tanθ的值都是正数。
2. 在第二象限(90到180度)中,sinθ的值是正数,cosθ和tanθ的值都是负数。
3. 在第三象限(180到270度)中,sinθ和tanθ的值都是负数,cosθ的值是正数。
4. 在第四象限(270到360度)中,sinθ的值是负数,cosθ和tanθ的值都是正数。
除了正弦函数、余弦函数和正切函数,还存在其他一些三角函数。
其中,正割函数secθ是余弦函数的倒数,即secθ= 1/cosθ;余割函数cscθ是正弦函数的倒数,即cscθ= 1/sinθ;余切函数cotθ是正切函数的倒数,即cotθ= 1/tanθ。
2015届高考数学一轮复习角的概念及任意角三角函数学案理知识梳理: (阅读教材必修4第2页—第17页)(一)、角的概念的推广1、角的概念:2、正角、负角和零角:3、象限角:4、终边相同的角:所在与终边相同的角,连同在内的角可以构成一个集合5、终边落在x轴上的角的集合:;终边浇在y轴上的角的集合:。
(二)、弧度制1、角的度量:角度制:弧度制:2、正角的弧度数是一个正数,负角的弧度是一个负数,零角的弧度数是0。
3、角度制与弧度制之间的换算关系:==;1rad=(4、弧度制下的弧公式与扇形的面积公式:(三)任意角的三角函数:1、设任意角的终边上任意一点p(除原点外)的坐标为(x,y),它到原点的距离为r=。
(1)、比值 叫做的正弦,记作sin ,即(2)、比值 叫做的余弦,记作cos ,即(3)、比值 叫做的正切,记作tan ,即s 2、单位圆中的三角函数线如图: Sin =MP ,cos =OM ,tan =AT一、 题型探究:探究一:终边相同的角的集合的表示 例1:如图: 分别为终边落在OM 、ON ,位置上的两个角,且=,。
(1)、求终边落在圆阴影部分(含边界)时所有角的集合; (2)、求终边落在圆阴影部分(含边界),且满足条件{x|}的所有角的集合;X探究二:象限角的意义:X例 2:若是第二象限角,试确定2, 的终边所在的位置探究三:扇形的面积:例3:1弧度的圆心角所对的弦长为2,求此圆心角所夹扇形 的面积。
探究四:任意角的三角函数的定义:例4 【2014安徽理科】 .设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D.21-例5:(2014新课标I). 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直例6:若sin tan cot ()22ππαααα>>-<<,则α∈( B )()A (,)24ππ-- ()B (,0)4π- ()C (0,)4π ()D (,)42ππ二、方法提升:1、 要确定所在的象限,只要把表示为=2k +,02),就可以由所在的象限判定所在的象限,则已知角的范围求未知角的范围是,通常要用不等式的性质来解决,切忌不要扩大角的范围。