用提公因式法分解因式
- 格式:ppt
- 大小:736.00 KB
- 文档页数:3
提取公因式法分解因式的步骤公因式法是一种常用的因式分解方法,它通过提取多个代数式的公因式,将其进行合并简化,从而得到原始代数式的因式分解形式。
下面将介绍公因式法分解因式的具体步骤。
1.观察多项式中的各个项,寻找它们之间的公因式。
公因式是指可以同时整除多个项的代数式。
2.将找到的公因式提取出来,并用括号括起来。
提取公因式时,需要将公因式的系数和变量一同提取出来。
3.将原始多项式中的每一项除以提取出来的公因式。
这一步可以通过将每一项的系数与公因式的系数进行除法运算来实现。
4.将提取出来的公因式与上一步得到的商相乘,并将结果写在括号外面。
这一步是将公因式和商相乘,重新得到原始多项式。
5.最后,将括号外面的结果与原始多项式进行比较,确保两者相等。
这一步是为了验证因式分解的正确性。
通过以上步骤,我们可以完成对多项式的因式分解。
下面通过一个具体的例子来说明公因式法的应用。
假设我们要对多项式3x^2 - 6x进行因式分解。
第一步,观察多项式中的各个项,发现它们之间的公因式是3x。
第二步,将公因式3x提取出来,并用括号括起来,得到3x( ).第三步,将原始多项式中的每一项除以公因式3x,得到(3x^2)/(3x) - (6x)/(3x)。
第四步,将提取出来的公因式3x与上一步得到的商相乘,并将结果写在括号外面,得到3x((3x^2)/(3x) - (6x)/(3x))。
第五步,化简括号内的表达式,得到3x(x - 2)。
将括号外面的结果与原始多项式进行比较,发现它们相等,因此得到的因式分解形式为3x(x - 2)。
通过以上步骤,我们成功地将多项式3x^2 - 6x分解为公因式3x和商(x - 2)的乘积形式。
总结起来,提取公因式法分解因式的步骤包括观察多项式中的各个项,寻找公因式,提取公因式并用括号括起来,将每一项除以公因式得到商,将公因式与商相乘得到因式分解形式,最后验证分解结果的正确性。
这一方法简单实用,可以帮助我们快速进行因式分解运算。
因式分解———提公因式公式法因式分解是数学中的一个重要的方法,它可以将一个多项式拆分成更简单的乘积形式。
常用的因式分解方法有提公因式法和公式法。
一、提公因式法提公因式法是一种常用的因式分解方法,它的基本思想是找出多项式中的公因式,并将其提取出来。
下面以一个具体的例子来说明:例题:将多项式3x^2+9x分解因式。
解题步骤:1.观察多项式中的每个项,找出它们的公因式。
在这个例子中,3和9都是3的倍数,所以可以提取出公因式3来,即3x^2+9x=3(x^2+3x)。
2.检查提取出的公因式是否是多项式的最大公因子。
这一步其实是用求最大公因子的方法来验证的。
在这个例子中,公因式3是最大公因子,因为3x^2和3x都可以被3整除,而且没有其他的公因子。
3.将提取出来的公因式和剩下的部分组合在一起。
在这个例子中,可以将公因式3和剩下的部分(x^2+3x)组合在一起,即3(x^2+3x)。
综上所述,多项式3x^2+9x可以分解因式为3(x^2+3x)。
二、公式法公式法是因式分解中的另一种常用方法,它适用于具有特定形式的多项式。
下面以一个具体的例子来说明:例题:将多项式x^2+4x+4分解因式。
解题步骤:1.观察多项式的各个项的系数。
在这个例子中,x^2的系数为1,4x的系数为4,4的系数为42.检查多项式是否具有特定形式。
在这个例子中,多项式的形式为x^2+4x+4,它的形式和公式(a+b)^2非常相似。
3.根据公式(a+b)^2,将多项式进行分解。
根据公式(a+b)^2 = a^2 + 2ab + b^2,可以将多项式x^2 + 4x + 4分解为(x+2)^2综上所述,多项式x^2+4x+4可以分解因式为(x+2)^2综合练习:1.将多项式6x^2+9x+3分解因式。
解:可以观察到,多项式的各个项的系数都是3的倍数,所以可以提取公因式3,即6x^2+9x+3=3(2x^2+3x+1)。
2.将多项式x^3-8分解因式。
用提公因式法进行因式分解“三步曲”提公因式法是因式分解的基本方法.为了避免出现错误,我们常常采取“三步走”的方法,即:“一定、二提、三看”的方法进行因式分解:1、“一定”就是确定公因式,其方法是:系数取各项整数系数的最大公约数;字母取各项含有的相同字母(有时是多项式);各字母次数取各相同字母的最低次数。
2、“二提”就是将各项的公因式提出,并同时确定各项的另一个因式,这个过程实质上是用原多项式除以公因式的过程。
3、“三看”就是提取公因式后,要对结果认真观察:括号内有同类项时要合并同类项;括号内的多项式化简后如果产生了新的公因式要继续提取;有相同的因式相乘时要写成幂的形式。
例1 把多项式y x y x y x 22236126-+因式分解分析:6、12、6的最大公约数是6,各项都有相同的字母xy ,字母x 最低次数为2,字母y 的最低次数是1,所以多项式y x y x y x 22236126-+的公因式是y x 26解 原式=y x 26()12++y x注意:当一个多项式的各项公因式是其中的单独一项时,提取公因式后该项应用1补上,不能漏掉。
例2 把多项式m mn m 182792-+-分解因式.分析:9、27、18的最大公约数是9,各项都有相同的字母m ,字母m 的最低指数是1,同时由于多项式的首项是负的,所以m mn m 182792-+-可确定提取公因式m 9-解:原式=m 9-()23+-n m注意:如果多项式按一定顺序排列后,首项为负时,一般要连同 “-”号提出,使括号内的第一项的系数为正的,但在提出“-”后括在括号内的各项与原来相比要改变符号。
例3 把多项式()()()b a b b a b a +-++32分解因式分析:在确定公因式时,要充分关注“多项式”公因式,本题中()b a -可作为一个整体,作为公因式提出。
解:原式=()()b b a b a -++32=()()b a b a 22++=()22b a + 注意:提取公因式后要对括号内的项进行适当的化简,有同类项时要合并同类项;又产生了新的公因式时要再次提取,相同的多项式要写成幂的形式。
分解因式的几种常用方法因式分解的主要方法有: 1. 十字相乘法 2. 提取公因式法 3. 公式法 4. 分组分解法 5. 求根法 6. 待定系数法高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++.要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号; (2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即21a a a =,常数项c 可以分解成两个因数之积,即21c c c =,把2121c c a a ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号 里面的二次三项式,最后结果不要忘记把提出的负号添上.典型考题【典型例题】阅读与思考:将式子分解因式.法一:整式乘法与因式分解是方向相反的变形. 由,; 分析:这个式子的常数项,一次项系数,所以.解:.法二:配方的思想..请仿照上面的方法,解答下列问题: (1)用两种方法分解因式:;(2)任选一种方法分解因式:.【答案】(1);(2)【解析】(1)法一:,法二:,(2).或.【变式训练】阅读材料题:在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).运用上述方法分解因式:(1)x2+6x+8;(2)x2﹣x﹣6;(3)x 2﹣5xy+6y 2;(4)请你结合上述的方法,对多项式x 3﹣2x 2﹣3x 进行分解因式. 【答案】(1)(2);(3)(4).【解析】 解:; ;; .故答案为:(1)(2);(3)(4).【能力提升】由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0. 【答案】(1) (x+2)(x +4);(2) x =4或x =-1. 【解析】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
提公因式法分解因式教学反思反思一:提公因式法分分解因式在引入“因式分解解”这一概念时是通过复习小小学知识“因数分解”,接着着让学生类比得到的。
此处的的设计意图是类比方法的渗透透。
因式分解与整式乘法的的区别则通过把等号两边的式式子互相转换位置而直观得出出。
在学习提取公因式时首首先让学生通过小组讨论得到到公因式的结构组成,并且引引导学生得出提取公因式法这这一因式分解的方法其实就是是将被分解的多项式除以公因因式得到余下的因式的计算过过程。
此处的意图是充分让学学生自主探索,合作学习。
而而实际上,学生的学习情绪还还是调动起来了的。
通过小组组讨论学习,尽管语言的组织织方面不够完善,但是均可以以得出结论。
接着通过例题讲讲解,最后让学生自主完成练练习题,老师当堂讲评。
上完完本课,教学目的能够完成,,教学重难点也能逐个突破。
不足之处:本课的教学设设计引入的过程可以简化。
对对于因式分解的概念,学生可可通过自己的一系列练习实践践去体会到此概念的特点,故故不需在开头引入的地方多加加铺垫,浪费了一定的时间。
在设计的时候脚手架的搭建建层次也不够分明。
教学过过程中,能做到及时向学生反反馈信息。
能走下讲台,做到到课内批改大部分学生的练习习,且对于个别学习本课新知知识有困难的学生能单独予以以辅导。
在批改过程中,发现现大部分学生都做错及存在的的问题能充分利用多媒体向学学生展示,或是马上板演为全全体学生讲解清楚。
教学过程程中,教学基本功比较扎实。
反思二:提公因式法分解解因式教学反思这节课主要要是通过确定多项式各项的公公因式,然后提取公因式,将将一个多项式转化成几个整式式的积的形式。
教学这节课课时,我先由分解质因数引入入“分解因式”的概念,通过过比较发现分解因式与整式乘乘法互为逆运算;然后讨论如如何找一个多项式各项的公因因式,最后设计了典型的范例例使学生掌握“提公因式法分分解因式”。
一节课自始至至终学生积极性比较高,课堂堂效率也较理想。
因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 2 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 2+b 2+c 2-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是()A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式))(()(2q x p x pq x q p x ++=+++进行分解。
例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --练习8、分解因式(1)2223y xy x +- (2)2286n mn m +-(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a思考:分解因式:abc x c b a abcx +++)(2222五、换元法。