有理数的混合运算-2020-2021学年七年级数学上册尖子生同步培优题典(原卷版)【浙教版】
- 格式:docx
- 大小:27.00 KB
- 文档页数:4
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.1有理数姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•商河县期末)现实生话中,如果收人100元记作+100元,那么﹣800表示()A.支出800元B.收入800元C.支出200元D.收入200元【分析】根据相反意义的量可以用正负数来表示,收人100元记作+100元,那么支出则为负,【解答】解:收人100元记作+100元,那么﹣800表示“支出800元”,故选:A.2.(2019秋•建湖县期中)冰箱冷藏室的温度零上2℃,记作+2℃,则冷冻室的温度零下16℃,记作()A.18℃B.﹣18℃C.16℃D.﹣16℃【分析】用正数表示零上,则负数表示零下,【解答】解:零上2℃,记作+2℃,则零下16℃,记作﹣6℃,故选:D.3.(2020•唐山一模)如图某用户微信支付情况,3月28日显示+150的意思()A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包【分析】根据用正负数表示两种具有相反意义的量解答即可.【解答】解:如图某用户微信支付情况,3月28日显示+150的意思是收入了150元故选:B.4.(2020•温岭市校级一模)规定:(→3)表示向右移动3,记作+3,则(←2)表示向左移动2,记作()A.+2B.﹣2C.+12D.−12【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以(←2)表示向左移动2记作﹣2.【解答】解:(←2)表示向左移动2,记作﹣2.故选:B.5.(2019秋•宜兴市校级月考)数0是()A.最小的有理数B.整数C.正数D.负数【分析】根据有理数的分类判定即可.【解答】解:有理数分为正有理数,0以及负有理数,0比负有理数大,故选项A不合题意;0是整数,故选项B符合题意;0既不是正数,也不是负数,故选项C、D不合题意.故选:B.6.(2019•武汉模拟)下列各数中,属于正有理数的是()A.πB.0C.﹣1D.2【分析】根据正有理数的定义即可得出答案.【解答】解:由题意得:π是无理数,故选项A错误;0是有理数,但不是正数,故选项B错误;﹣1是负有理数,故选项C错误;2是正有理数,故选项D正确;故选:D.7.(2019秋•曲阜市校级月考)下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.4【分析】整数和分数统称为有理数,根据有理数的分类进行判断即可.【解答】解:①一个有理数不是整数就是分数,正确;②一个有理数不是正数就是负数,错误,还可能是0;。
第4讲 有理数的混合运算⎧⎧⎪⎨⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩常规计算计算规律型有理数的混合运算实际应用应用流程图新定义知识点1 常规计算有理数混合运算的运算顺序: 1、 先乘方,再乘除,最后加减; 2、 同级运算,从左到右进行;3、 如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.【典例】1.计算:(1)(﹣1)3﹣14×[2﹣(﹣3)2]; (2)﹣22+|5﹣8|+24÷(﹣3)×13;(3)−18×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×34+1|.【方法总结】根据有理数的混合运算顺序和运算法则计算即可.本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键. 注意:绝对值符号有括号的作用.【随堂练习】1.(2017秋•罗平县期末)计算 (1)[1﹣(﹣+)×24]÷(﹣5);(2)﹣12018+|2﹣11|×(﹣)2﹣(﹣2)÷2.(2017秋•江阴市期末)计算:(1)(+)+(﹣)﹣|﹣3|(2)﹣22+3×(﹣1)2017﹣9÷(﹣3)3.(2017秋•滨海新区期末)计算: (Ⅰ)4×()×5;(Ⅱ)2﹣23÷|﹣2|×(﹣7+5)4.(2017秋•鄂城区期末)计算: (1)×(﹣9)﹣36×()(2)()×(﹣6)+(﹣)2÷(﹣)3知识点2 运算律、规律计算有理数的混合运算中,常用的运算律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、加法对乘法的分配律.【典例】1.计算:(1)﹣14﹣(23﹣34+16)×24; (2)722×(﹣5)+(﹣722)×9﹣722×8;(3)|4﹣412|+(−12+23−16)÷112−22﹣(+5).【方法总结】本题主要考察了有理数混合运算的运算顺序和分配律的使用,(1)和(3)是乘法分配律的正用,(2)是乘法分配律的逆用,熟练掌握运算律的使用是解本题的关键. 2.探索规律:观察下面由※组成的图案和算式,并解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;(1)试猜想1+3+5+7+9+…+19=_________;(2)试猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=_________;(3)请用上述规律计算:1001+1003+1005+…+2015+2017.【方法总结】通过观察不难发现,从1开始的连续奇数的和等于首尾两个奇数的和的一半的平方,根据此规律可解答(1)(2)两题;用从1开始到2011的和减去从1开始到999的和,然后列式进行计算即可得第(3)题的答案.本题是对数字变化规律的考查,观察出平方的底数与等式左边首尾两个奇数的关系是解题的关键,也是本题的难点.【随堂练习】1.(2018•合肥模拟)阅读材料:求31+32+33+34+35+36的值解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3∴2S=37﹣3,即S=∴31+32+33+34+35+36=以上方法我们成为“错位相减法”,请利用上述材料,解决下列问题:(一)棋盘摆米这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行”国王以为要不了多少粮食,就随口答应了,结果国王输了(1)国际象棋共有64个格子,则在第64格中应放_____粒米(用幂表示)(2)设国王输给阿基米德的米粒数为S,求S(二)拓广应用:1.计算:+++…+(仿照材料写出求解过程)2.计算:+++…+=________(直接写出结果)2.(2017秋•宿州期末)观察下列计算,,,……(1)第5 个式子是;_________;(2)第n 个式子是_________(3)从计算结果中找规律,利用规律计算3.(2017秋•娄星区期末)观察下列等式:=1﹣,=﹣,=﹣.可得:++=1﹣+﹣+﹣=1﹣=(1)猜想并写出:=_____﹣_______.(2)利用上述猜想计算:+++…+.(3)探究并计算:+++…+.知识点3 求代数式的值重要结论:互为相反数的两数和为0,相反数等于自身的数是0;互为倒数的两数积为1,倒数等于自身的数有-1,1,倒数等于自身的自然数是1;最大的负整数是-1,最小的正整数是1,绝对值最小的有理数是0;【典例】1.已知a,b互为相反数,c,d互为倒数,x是最大的负整数,m是绝对值最小的数.试求x2+(a+b+cd)x+(a+b)2017+(﹣cd)2017﹣m2017的值.【方法总结】首先根据a,b互为相反数,c,d互为倒数,x是最大的负整数,m是绝对值最小的数,可得:a+b=0,cd=1,x=﹣1,m=0;然后代入代数式计算即可.此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序和运算法则.【随堂练习】1.(2017秋•虎林市校级期中)已知a、b互为相反数且a≠0,c,d互为倒数,m 的绝对值是最小的正整数,求m2﹣﹣cd的值.2.(2017秋•泗阳县期中)已知a、b互为倒数,x、y互为相反数,m是平方后得16的数.求代数式(ab)2017﹣﹣m3的值.知识点4 实际应用利用有理数混合运算解决实际问题的一般步骤:1. 审:审清题意,找出数量关系;2. 列:根据所找的数量关系列出算式;3. 算:根据运算法则计算出算式的结果;4. 答:给出题目要求的答案.【典例】1.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知小明妈妈星期三生产玩具__________个;(2)根据记录的数据可知小明妈妈本周实际生产玩具__________个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.【方法总结】(1)根据记录可知,小明妈妈星期三生产玩具20﹣4=16(个);(2)先分别把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;(4)先计算超额完成了几个玩具,然后再计算工资.本题考查了正数与负数、有理数加减混合运算,读懂表格数据、根据题意准确列式是解题的关键.【随堂练习】1.(2017秋•无锡期中)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产值+10﹣12﹣4+8﹣1+60(1)根据记录的数据可知小明妈妈星期三生产玩具____个;(2)根据记录的数据可知小明妈妈本周实际生产玩具_____个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.2.(2017秋•简阳市期中)“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)日期1日2日3日4日5日6日7日+1.8﹣0.6+0.2﹣0.7﹣1.3+0.5﹣2.4人数变化单位:万人(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为___万人;(2)七天中旅客人数最多的一天比最少的一天多_____万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?3.(2017秋•天宁区校级月考)气象统计资料表明,某一地区当高度每增加100米,气温就降低大约0.6℃.(1)若测得该地区某山在山脚的气温是2℃,则距离山脚有600米高的山腰气温是____℃.(2)在一次社会实践中,小明和小林欲考证该地区某山顶的海拔高度.他俩进行实地测量,小明在山下一海拔高度为11米的小山坡上测得气温为24℃,小林在最高位置测得气温为14.4℃.根据测量的数据,请你列式计算该山顶的海拔高度.知识点5 流程图计算初中阶段的流程图一般由方框和带箭头的线(直线和折线)组成.方框里是逻辑运算,箭头表示进行运算的顺序.箭头指向某个方框说明需要将上一步的结果进行方框里的逻辑运算.【典例】1.如图,是一个简单的数值计算程序,当输入的值为5,则输出的结果为________.【方法总结】此题主要考查了流程图的计算,解题的关键在于弄懂流程图每一步是做什么运算.注意:流程图的每个逻辑运算都是独立的,一定要按箭头方向一步一步计算.将流程图转化为算式的时候,应该加括号的地方要补上括号,不要弄错运算顺序.【随堂练习】1.(2017秋•港闸区期末)如图,按下列程序进行计算,经过三次输入,最后输.出的数是12,则最初输入的数是_____.2.按如图程序计算:输入x=2,则输出的答案是______3.(2017秋•安徽月考)按照如图所示的操作步骤,若输入值为﹣3,则输出的值为_____.3.(2017秋•台州期中)如图所示的运算程序中,用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条)(1)①如图1,当输入数x=﹣4时,输出数y=____;②如图2,第一个运算框“”内,应填____;第二个运算框“”内,应填___;(2)①如图3,当输入数x=﹣2时,输出数y=___;②如图4,当输出的值y=26,则输入的值x=____.;(3)某市为鼓励居民节约用电,决定对居民用电实行“阶梯价”:当每户每月用电量不超过190度时(含100度),以0.5元/度的价格收费;当每户每月用电量超过100度时,其中100度以0.5元/度的价格收费,超过部分以0.8元/度的价格收费.请设计出一个如题中的“计算框图”,使得输入数为用电量x(度),输出数为电费y(元)知识点6 新定义定义新运算是指用一个符号和已知运算表达式表示一种新的运算.解定义新运算问题,关键是要正确地理解新定义运算的算式含义,然后严格按照新定义运算的计算程序,将数值代入,转化为常规的四则运算算式进行计算.【典例】1.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,____________________________________.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,_________________.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”【方法总结】(1)根据题目给出的❈(加乘)运算的算式,结合之前所学的加减乘除四则运算的运算法则,即可归纳出❈(加乘)运算的运算法.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,即可求出[(﹣2)❈(+3)]❈[(﹣12)❈0]的值.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,任取两个数a,b,通过计算说明a❈b= b❈a(或任取三个数a,b,c,通过计算说明a❈b❈c= a❈(b❈c))即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握有理数混合运算顺序并注意运算定律的应用.【随堂练习】1.(2017秋•余姚市期末)给定一列数,我们把这列数中的第一个数记为a1,第二个数记为a2,第三个数记为a3,依此类推,第n个数记为a n(n为正整数),如下面这列数2,4,6,8,10中,a1=2,a2=4,a3=6,a4=8,a5=10.规定运算sum(a1:a n)=a1+a2+a3+…+a n.即从这列数的第一个数开始依次加到第n个数,如在上面的一列数中,sum(a1:a3)=2+4+6=12.(1)已知一列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,则a3=___,sum (a1:a10)=_____.(2)已知这列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,…,按照规律可以无限写下去,则a2018=____,sum(a1:a2018)=______.(3)在(2)的条件下否存在正整数n使等式|sum(a1:a n)|=50成立?如果有,写出n的值,如果没有,说明理由.2.(2017秋•朝阳区期末)对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=______(用含m,n的式子表示).综合集训1.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为﹣2,则输出的结果为__________.2.如图,这是一个运算的流程图,输入正整数x的值,按流程图进行操作并输出y的值.例如,若输入x=10,则输出y=5.若输出y=3,则输入的x的值为___________.3.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m﹣cd+a+bm值为_________.4.计算:(1)﹣|﹣7+1|+3﹣2÷(﹣13);(2)(−56+23)÷(﹣712)×72;(3)﹣14﹣(1﹣0.5)÷17×[2﹣(﹣3)2];(4)(−2)3−13÷[−(−12)2]0.125×8+[1−32×(−2)].5.阅读下面的文字,完成后面的问题,我们知道:11×2=1﹣12,12×3=12﹣13,13×4=13﹣14,14×5=14﹣15,…… 那么: (1)12016×2017=_________;(2)用含有n (n 为正整数)的式子表示你发现的规律__________; (3)计算:11×2+12×3+13×4+ (1)2017×2018.6.观察下列各式:13=12;13+23=32;13+23+33=62;13+23+33+43=102;… (1)请写出第5条等式;(2)说出等式左边各个幂的底数与右边幂的底数之间有什么关系? (3)利用上述规律,计算13+23+33+43+…+1003的值.7.为了保护环境节约水资源,我市按照居民家庭年用水量实行阶梯水价,水价分档递增.居民用户按照以下的标准执行:第一阶梯上限180立方米,水费价格为5元/每立方米;第二阶梯为181﹣260立方米之间,水费价格7元/每立方米;第三阶梯为260立方米以上用水量,水价为9元/每立方米.如表所示:根据以上材料解决问题:若小明家在2017年共用水200立方米,准备1000元的水费够用吗?说明理由.8.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地, 把n a a a a a ÷÷÷÷L 1442443个相除(a≠0)记作a ⓝ,读作“a 的圈 n 次方”. 【初步探究】(1)直接写出计算结果:2③=_______,(﹣12)⑤=_______;(2)关于除方,下列说法错误的是_______, A.任何非零数的圈2次方都等于1; B.对于任何正整数n ,1ⓝ=1; C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (﹣3)④=_____________; 5⑥=_________;(﹣12)⑩=_________________.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于_____________________; (3)算一算:122÷(﹣13)④×(﹣2)⑤﹣(﹣13)⑥÷33.。
2021-2022学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的加减混合运算(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共24题,解答24道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题(本大题共24小题,解答时应写出文字说明、证明过程或演算步骤)1.(2020秋•台江区校级月考)计算(1)﹣28+(﹣35);(2)﹣12﹣23;(3)﹣25﹣(﹣13);(4)(−23)+(−16)−(−14)−(+12).【分析】(1)利用加法法则运算;(2)利用减法法则运算;(3)利用减法法则运算;(4)加减法统一成加法运算即可.【解析】 (1)原式=﹣63;(2)原式=﹣12+(﹣23)=﹣35;(3)原式=﹣25+13=﹣12;(4)原式=−23−16+14−12=−812−212−612+312=−1312.2.(2020秋•成都月考)计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)312−(−13)−23+(−12). 【分析】(1)利用加法的结合律和交换律,把互为相反数结合,正负数分别结合,然后进行计算即可;(2)利用加法的结合律和交换律,把同分母的结合在一起,然后计算即可.【解析】 (1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[312+(−12)]﹣[(−13)+23]=3−13=223. 2.(2020秋•新都区校级月考)计算:(1)﹣3+(﹣7)﹣(+15)﹣(﹣5);(2)1.5+234−10512−4.75.【分析】(1)先将减法转化为加法,再依据法则计算可得;(2)根据加减混合运算顺序和运算法则计算可得.【解析】 (1)原式=﹣3﹣7﹣15+5=﹣25+5=﹣20;(2)原式=1.5+2.75−10512−4.75 =−12−10512 =−101112.4(2020秋•青羊区校级月考)计算.(1)25+(﹣78);(2)(﹣118)+(﹣2.875); (3)75+(﹣1.4); (4)(﹣1.73)+0;(5)﹣30﹣(﹣85);(6)75−(−110); (7)(+5)+(﹣13)+9+4+(﹣6);(8)47+(﹣313)+107−23. 【分析】先去括号,再进行计算即可.能够简便计算的就简便计算.【解答】(1)原式=25﹣78=﹣53.(2)原式=−118−278=−98−238=−4. (3)原式=75+(−75)=0.(4)原式=﹣1.73.(5)原式=﹣30+85=55.(6)原式=75−(−110)=75+110=1510=32. (7)原式=5﹣13+9+4﹣6=﹣1.(8)原式=47−313+107−23=147−123=−2. 5.(2020秋•海淀区校级月考)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣314)+(﹣2.75)+(+712). 【分析】(1)从左向右依次计算即可.(2)根据加法交换律、加法结合律计算即可.【解析】 (1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣314)+(﹣2.75)+(+712) =[﹣0.5+(+712)]+[(﹣314)+(﹣2.75)] =7+(﹣6)=1.6(2020秋•灞桥区校级月考)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣314)+2.75﹣(+712); (4)25−|﹣112|﹣(+214)﹣(﹣2.75). 【分析】(1)先同号相加,再异号相加;(2)变形为(﹣26.54+18.54)+(6.4﹣6.4)进行计算即可求解;(3)变形为(﹣0.5﹣712)+(314+2.75)进行计算即可求解; (4)先算绝对值,再变形为25+(﹣112−214+2.75)进行计算即可求解. 【解析】 (1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣314)+2.75﹣(+712) =(﹣0.5﹣712)+(314+2.75) =﹣8+6=﹣2;(4)25−|﹣112|﹣(+214)﹣(﹣2.75) =25−112−214+2.75 =25+(﹣112−214+2.75) =25−1=−35.7.(2020秋•沙坪坝区校级月考)计算:(1)﹣27+(﹣32)+(﹣8)+72;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4).【分析】(1)先同号相加,再异号相加;(2)变形为(+4.3﹣2.3)+(4﹣4)进行计算即可求解.【解析】 (1)﹣27+(﹣32)+(﹣8)+72=(﹣27﹣32﹣8)+72=﹣67+72=5;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=(+4.3﹣2.3)+(4﹣4)=2+0=2.8.(2020秋•雁塔区校级月考)计算:(1)﹣5﹣(﹣3)+(﹣4)﹣[﹣(﹣2)];(2)−(−32)+(−56)+[114−(−38)−(+143)].【分析】(1)先化简后同号相加,再异号相加;(2)先通分,再计算即可求解.【解析】 (1)﹣5﹣(﹣3)+(﹣4)﹣[﹣(﹣2)]=﹣5+3﹣4﹣2=(﹣5﹣4﹣2)+3=﹣11+3=﹣8;(2)−(−32)+(−56)+[114−(−38)−(+143)] =3624−2024+6624+924−11224 =36−20+66+9−11224=−78.9.(2020秋•郫都区校级月考)计算:(1)(﹣6)+8+(﹣4);(2)23﹣17+(﹣16);(3)137+(﹣213)+247+(﹣123); (4)(+56)+(−23)+(+116)+(−13). 【分析】(1)先同号相加,再异号相加;(2)先同号相加,再异号相加;(3)先算同分母分数,再相加即可求解;(4)先算同分母分数,再相加即可求解.【解析】 (1)(﹣6)+8+(﹣4)=(﹣6﹣4)+8=﹣10+8=﹣2;(2)23﹣17+(﹣16)=23+(﹣17﹣16)=23﹣33=﹣10;(3)137+(﹣213)+247+(﹣123) =(137+247)+(﹣123−213) =4﹣4=0;(4)(+56)+(−23)+(+116)+(−13) =(+56+116)+(−23−13) =2﹣1=1.10.(2020秋•青羊区校级月考)计算:(1)(﹣7)+(+15)﹣(﹣25);(2)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16);(3)(+56)+(−23)+(+116)+(−13); (4)(+1.9)+3.6﹣(﹣10.1)+1.4;(5)123+212−334+13−4.25;(6)3712+(﹣114)+(﹣3712)+114+(﹣418). 【分析】(1)先化简,再计算加减法;(2)先化简,再计算加减法;(3)先算同分母分数,再相加即可求解;(4)变形为(+1.9+10.1)+(3.6+1.4)简便计算;(5)先算同分母分数,再相加即可求解;(6)先算同分母分数,再相加即可求解.【解析】 (1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=33;(2)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16)=﹣13﹣7﹣20+40+16=16;(3)(+56)+(−23)+(+116)+(−13) =(+56+116)+(−23−13) =2﹣1=1;(4)(+1.9)+3.6﹣(﹣10.1)+1.4=(+1.9+10.1)+(3.6+1.4)=12+5=17;(5)123+212−334+13−4.25 =(123+13)+212+(﹣334−4.25)=2+212−8 =﹣312; (6)3712+(﹣114)+(﹣3712)+114+(﹣418) =(3712−3712)+(﹣114+114)+(﹣418) =0+0+(﹣418)=﹣418. 11.(2020秋•沙河口区期中)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)12+(−23)−(+45)−(−12)+(−13). 【分析】(1)(2)先把减法化为加法,再利用加法的交换律和结合律.【解析】 (1)原式=12+18﹣7﹣15=30﹣22=8;(2)12−23−45+12−13 =(12+12)+(−23−13)−45 =1﹣1−45=−45.12(2020秋•临漳县期中)计算:(1)﹣6.25﹣1.4+(﹣7.6)+5.25;(2)−18+14−|−12|+38.【分析】(1)根据加法交换律和结合律简便计算;(2)先计算绝对值,再相加即可求解.【解析】 (1)原式=(﹣6.25+5.25)+[﹣1.4+(﹣7.6)]=﹣1+(﹣9)=﹣10;(2)原式=−18+38+14−12=14+(−14)=0.13.(2020秋•枣庄月考)计算:(1)31+(﹣28)+28+69;(2)(﹣32)﹣(﹣27)﹣(﹣72)﹣87;(3)(−5)−(−12)+7−73;(4)(−12)−(−65)+(−8)−710.【分析】(1)(2)(4)运用有理数的加法交换结合律进行计算即可;(3)先去掉括号,再利用有理数的加法交换结合律进行计算.【解析】 (1)31+(﹣28)+28+69;=(31+69)+(﹣28+28)=100+0=100;(2)(﹣32)﹣(﹣27)﹣(﹣72)﹣87=(﹣32﹣87)+(27+72)=﹣119+99=﹣20;(3)(−5)−(−12)+7−73=﹣5+12+7−73=(﹣5+7)+36−146 =2+36−146=16;(4)(−12)−(−65)+(−8)−710=(﹣12﹣8)+(65−710)=﹣20+0.5=﹣19.5.14.(2020秋•南开区校级月考)(1)13+0.5+16+12.5%−1−38. (2)613+(−4.6)+(−25)−(−23).(3)−12+[13−(14−16)].(4)213+(−316)−|(−314)−(+0.25)|.【分析】(1)(2)运用有理数的加法交换结合律进行计算即可.(3)先去括号,按照有理数的加减混合运算法则计算,再将同分母的先计算,最后进行异分母的减法运算.(4)先去括号,同时对绝对值进行化简,再按照有理数的加减混合运算法则计算即可.【解析】 (1)13+0.5+16+12.5%−1−38 =(13+0.5+16)+(12.5%−38)﹣1=1﹣1−14=−14.(2)613+(−4.6)+(−25)−(−23)=(613+23)+(﹣4.6﹣0.4) =7﹣5=2.(3)−12+[13−(14−16)]=−12+13−14+16=−16+16−14=−14.(4)213+(−316)−|(−314)−(+0.25)|=213−316−312 =﹣413. 15.(2020秋•山阳区校级月考)(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11);(2)(﹣112)+(﹣571320)﹣(﹣112)+42720; (3)0.25+(−18)−34−|−78|;(4)56+(﹣212)﹣(﹣116)﹣(+0.5). 【分析】(1)从左向右依次计算即可.(2)(3)(4)根据加法交换律、加法结合律计算即可.【解析】 (1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)=﹣16﹣29+7﹣11(2)(﹣112)+(﹣571320)﹣(﹣112)+42720 =[(﹣112)﹣(﹣112)]+[(﹣571320)+42720] =0﹣15.3=﹣15.3.(3)0.25+(−18)−34−|−78|=(0.25−34)+[(−18)﹣|−78|]=﹣0.5﹣1=﹣1.5.(4)56+(﹣212)﹣(﹣116)﹣(+0.5) =[56−(﹣116)]+[(﹣212)﹣(+0.5)] =2﹣3=﹣1.16.(2020秋•赤壁市校级月考)计算下列各式的值.(1)0.85+(+0.75)﹣(+234)+(﹣1.85)﹣3; (2)(﹣1.5)+414+2.75+(﹣512); (3)27.45﹣(﹣32.39)+72.55+(﹣12.39);(4)113+(−25)+415−(+43)+(−15). 【分析】(1)(2)(3)(4)根据加法交换律、加法结合律计算即可.【解析】 (1)0.85+(+0.75)﹣(+234)+(﹣1.85)﹣3 =[0.85+(﹣1.85)]+[(+0.75)﹣(+234)]﹣3 =﹣1﹣2﹣3(2)(﹣1.5)+414+2.75+(﹣512) =[(﹣1.5)+(﹣512)]+(414+2.75) =﹣7+7=0.(3)27.45﹣(﹣32.39)+72.55+(﹣12.39)=(27.45+72.55)+[﹣(﹣32.39)+(﹣12.39)]=100+20=120.(4)113+(−25)+415−(+43)+(−15) =[113−(+43)]+[(−25)+415+(−15)]=0+(−13)=−13.17.(2020秋•清镇市校级月考)计算题:(1)(﹣3)+(﹣4)+(+11)+(﹣9);(2)−12−(−23)−(−52)−53;(3)(﹣1.5)+(−12)﹣(−34)﹣(+134). 【分析】根据有理数加减混合运算的方法计算解答【解析】 (1)(﹣3)+(﹣4)+(+11)+(﹣9)=﹣3﹣4+11﹣9=﹣3﹣4﹣9+11=﹣5;(2)−12−(−23)−(−52)−53=−12+23+52−53=−12+52+23−53=1;(3)(−1.5)+(−12)−(−34)−(+134)=−1.5−0.5+34−134=﹣3.18.(2020秋•和平区校级月考)(1)(﹣25)+34+156+(﹣65);(2)|﹣213|+|﹣323|; (3)27+18﹣(﹣3)﹣18;(4)﹣0.5﹣(﹣314)+2.75﹣(+712). 【分析】根据有理数加减混合运算的方法解答即可.【解析】 (1)(﹣25)+34+156+(﹣65)=﹣25+34+156﹣65=﹣25﹣65+34+156=﹣90+190=100;(2)|−213|+|−323|=213+323=6;(3)27+18﹣(﹣3)﹣18=27+18+3﹣18=27+3+18﹣18=30;(4)−0.5−(−314)+2.75−(+712)=−12+314+234−712=−12−712+314+234=﹣8+6=﹣2.19.(2020秋•皇姑区校级月考)(1)|﹣212|﹣(﹣2.5)+1﹣|1﹣212|; (2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12);(3)(﹣312)+(+56)+(﹣0.5)+45+316; (4)简便运算:(﹣301)+125+301+(﹣75);(5)27﹣18+(﹣7)﹣32;(6)15﹣(+556)﹣(+337)+(﹣216)﹣(+647). 【分析】根据有理数加减混合运算的方法解答.【解析】 (1)|−212|−(−2.5)+1−|1−212|=212+2.5+1+1−212=4.5;(2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣8﹣9+15+12=10;(3)(−312)+(+56)+(−0.5)+45+316=−3.5−0.5+56+316+45=−4+4+45=45;(4)(﹣301)+125+301+(﹣75)=﹣301+301+125﹣75=50;(5)27﹣18+(﹣7)﹣32=27﹣7﹣18﹣32=20﹣50=﹣30;(6)15−(+556)−(+337)+(−216)−(+647)=15−556−216−337−647=15﹣8﹣10=﹣3.20.(2020秋•和平区校级月考)(1)−313−(−587)+(−97)﹣(+323); (2)(﹣479)﹣(﹣316)﹣(+29)+(616).【分析】(1)根据有理数加减混合运算的方法解答;(2)根据有理数加减混合运算的方法解答.【解析】 (1)−313−(−587)+(−97)−(+323)=−313+587−97−323=−313−323+587−97=﹣21+7=﹣14;(2)(−479)−(−316)−(+29)+(+616)=−479−29+316+616=−5+913=413.21.(2020秋•荥阳市校级月考)用适当的方法计算(能用简便运算的就用简便运算)(1)﹣16﹣(﹣12)﹣24+18;(2)29−(﹣156)+(﹣129)−13; (3)|﹣114|﹣(﹣1)﹣|12−1|﹣(−34). 【分析】利用加法的交换律、结合律,逐题进行计算即可.【解析】 (1)﹣16﹣(﹣12)﹣24+18=(﹣16)+12+(﹣24)+18=[(﹣16)+(﹣24)]+(12+18)=(﹣40)+30=﹣10;(2)29−(﹣156)+(﹣129)−13 =[29+(﹣129)]+(156−13) =(﹣1)+112 =12;(3)|﹣114|﹣(﹣1)﹣|12−1|﹣(−34) =114+1−12+34 =(114+34)+(1−12) =2+12=212. 22.(2020秋•顺德区校级月考)计算:(1)8+(﹣6)+5+(﹣8).(2)0.47﹣456−(﹣1.53)﹣116. 【分析】(1)利用加法的交换律和结合律计算可得;(2)减法转化为加法,再利用加法的交换律和结合律计算可得.【解析】 (1)原式=8+(﹣8)+(﹣6)+5=0+(﹣1)=﹣1;(2)原式=0.47+1.53﹣(456+116) =2﹣6=﹣4.23.(2020秋•岳麓区校级月考)计算题(1)(﹣6)+(+11)(2)﹣28+(﹣4)+29+(﹣24)(3)(﹣0.6)﹣(314)﹣(+725)+234−2 (4)12.32﹣14.17﹣|﹣2.32|+(﹣5.83)【分析】(1)根据加法法则即可得;(2)将同号两数相加后,再计算异号两数的和即可得;(3)先计算同分母的分数加减,再计算减法可得;(4)利用加法的交换律和结合律简便计算可得.【解析】 (1)原式=11﹣6=5;(2)原式=﹣(28+4+24)+29=﹣56+29=﹣27;(3)原式=−35+(﹣725)+234−314−2=﹣8−12−2=﹣1012;(4)原式=12.32﹣2.32﹣(14.17+5.83)=10﹣20=﹣10.24(2020秋•台儿庄区期中)在下面的集合中选出两个整数和两个分数进行加减运算,并使运算结果符合下列要求.(要求写出运算过程及运算结果)(1)运算结果为正整数;(2)运算结果为负整数;(3)运算结果为正分数;(4)运算结果为负分数;【分析】(1)根据运算结果为正整数,列出算式计算即可求解;(2)根据运算结果为负整数,列出算式计算即可求解;(3)根据运算结果为正分数,列出算式计算即可求解;(4)根据运算结果为负分数,列出算式计算即可求解.【解析】 (1)0﹣(﹣7)+(﹣212)−12=0+7﹣212−12 =4;(2)0+(﹣7)+(﹣212)−12=0﹣7﹣212−12 =﹣10;(3)26+(﹣24)﹣(﹣212)+(﹣0.3) =26﹣24+212−0.3 =4.2;(4)﹣24+(﹣7)+2.4−12=﹣24﹣7+2.4−12=﹣29.1.。
2020-2021学年七年级数学上册尖子生同步培优题【人教版】专题1.6有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有( ) (1)(﹣5)+5=0; (2)﹣10+(+7)=﹣3; (3)0+(﹣4)=﹣4; (4)(−27)﹣(+57)=−37. A .1个B .2个C .3个D .4个2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是( ) A .20﹣3+5﹣7B .﹣20﹣3+5+7C .﹣20+3+5﹣7D .﹣20﹣3+5﹣73.(2019秋•麻城市校级期中)下列各式中,正确的是( ) A .﹣4﹣2=﹣2 B .﹣5﹣4﹣(﹣4)=﹣5C .10+(﹣8)=﹣2D .3﹣(﹣3)=04.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有( ) A .340元B .240元C .540元D .600元5.(2018秋•拱墅区期末)下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3C .(﹣11)﹣7=﹣4D .(﹣7)﹣(﹣8)=﹣16.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是( ) A .﹣5﹣4+7﹣2B .5+4﹣7﹣2C .﹣5+4﹣7﹣2D .﹣5+4+7﹣27.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣38.(2019秋•通州区期末)下列运算正确的是( ) A .﹣2+(﹣5)=﹣(5﹣2)=﹣3 B .(+3)+(﹣8)=﹣(8﹣3)=﹣5 C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+109.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( ) A .15mB .7mC .﹣18mD .﹣25m10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( ) A .﹣1+(﹣3)+(+6)﹣(﹣8) B .﹣1﹣3+6﹣8C .﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D .﹣1﹣(﹣3)﹣6﹣(﹣8)二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13= .12.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是 . 13.(2016秋•渝中区校级期中)规定a ﹡b =a +b ﹣1,则(﹣4)﹡6的值为 . 14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8= .15.(2019秋•沙坪坝区校级月考)x 是最大负整数,y 是最小的正整数,z 是最小的自然数,则代数式x ﹣y +z 的值为 .16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = .17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= .18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•城厢区校级月考)计算 (1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323. 20.(2019秋•凉州区校级月考)计算 (1)﹣17+(﹣33)﹣10﹣(﹣16). (2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)21.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.6有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(−27)﹣(+57)=−37.A.1个B.2个C.3个D.4个【分析】根据有理数的加减运算法则分别计算即可.【解析】(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(−27)﹣(+57)=37.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7【分析】先把加减法统一成加法,再省略括号和加号.【解析】(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.3.(2019秋•麻城市校级期中)下列各式中,正确的是()A.﹣4﹣2=﹣2B.﹣5﹣4﹣(﹣4)=﹣5C.10+(﹣8)=﹣2D.3﹣(﹣3)=0【分析】根据有理数加减法的运算方法,以及有理数加减混合运算的方法,逐项判断即可.【解析】A、﹣4﹣2=﹣6,故此选项不合题意;B、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.C、10+(﹣8)=2,故此选项不合题意;D、3﹣(﹣3)=6,故此选项不合题意.故选:B.4.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有()A.340元B.240元C.540元D.600元【分析】根据有理数的混合运算的方法,用小明存折中原有的钱数减去取出的钱数,再加上又存入的钱数,求出现在存折中还有多少元即可.【解析】450﹣260+150=190+150=340(元)∴现在存折中还有340元.故选:A.5.(2018秋•拱墅区期末)下列计算正确的是()A.5+(﹣6)=﹣11B.﹣1.3+(﹣1.7)=﹣3C.(﹣11)﹣7=﹣4D.(﹣7)﹣(﹣8)=﹣1【分析】根据有理数的加法和减法法则计算可得.【解析】A.5+(﹣6)=﹣1,此选项错误;B.﹣1.3+(﹣1.7)=﹣3,此选项正确;C.(﹣11)﹣7=(﹣11)+(﹣7)=﹣18,此选项错误;D.(﹣7)﹣(﹣8)=(﹣7)+8=1,此选项错误;故选:B.6.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣2【分析】根据有理数加减法的运算方法,判断出把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是哪个即可.【解析】(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C .7.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣3【分析】从左向右依次计算,求出算式的值是多少即可. 【解析】(﹣1434)﹣(﹣1014)+12=﹣412+12=﹣4 故选:C .8.(2019秋•通州区期末)下列运算正确的是( ) A .﹣2+(﹣5)=﹣(5﹣2)=﹣3 B .(+3)+(﹣8)=﹣(8﹣3)=﹣5 C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+10【分析】根据有理数的加法法则一一计算即可判断.【解析】A 、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意. B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意, 故选:B .9.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( ) A .15mB .7mC .﹣18mD .﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答. 【解析】﹣15﹣10+7=﹣18(m ). 故此时潜艇的海拔高度可记为﹣18m . 故选:C .10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( ) A .﹣1+(﹣3)+(+6)﹣(﹣8) B .﹣1﹣3+6﹣8C .﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D .﹣1﹣(﹣3)﹣6﹣(﹣8)【分析】将所列的四个数写成省略加号的形式即可得.【解析】读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=﹣3.【分析】根据有理数的加减法法则计算即可.【解析】﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣34+31=﹣3.故答案为:﹣312.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2.【分析】根据有理数的运算法则即可求出答案.【解析】原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.13.(2016秋•渝中区校级期中)规定a﹡b=a+b﹣1,则(﹣4)﹡6的值为1.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解析】根据题中的新定义得:(﹣4)﹡6=﹣4+6﹣1=1.故答案为:1.14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8=﹣30.【分析】直接利用有理数的加减运算法则计算得出答案.【解析】原式=﹣35﹣22+35﹣8=(﹣35+35)﹣(22+8)=﹣30.故答案为:﹣30.15.(2019秋•沙坪坝区校级月考)x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z 的值为﹣2.【分析】根据题意确定出x,y,z的值,即可代入求出所求式子的值.【解析】∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x ﹣y +z =﹣1﹣1+0=﹣2. 故答案为:﹣2.16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = ﹣1或﹣3 . 【分析】根据|a |=1,|b |=2,|c |=4,且a >b >c ,可得出c =﹣4,b =﹣2,a =±1,由此可得出答案. 【解析】由题意得:a =±1,b =﹣2,c =﹣4, 当a =﹣1,b =﹣2,c =﹣4时a ﹣b +c =﹣3; 当a =1,b =﹣2,c =﹣4时,a ﹣b +c =﹣1; ∴a ﹣b +c =﹣1或﹣3. 故答案为:﹣1或﹣3.17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= ﹣8 .【分析】利用题中的新定义计算即可得到结果.【解析】根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= ﹣9 .【分析】首先计算括号里面的加法,然后计算括号外面的减法,求出算式的值是多少即可. 【解析】﹣[(﹣1.5)+(﹣512)]﹣16=﹣(﹣7)﹣16 =7﹣16 =﹣9故答案为:﹣9.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•城厢区校级月考)计算 (1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323.【分析】根据有理数的加减混合运算的法则计算即可. 【解析】(1)11﹣18﹣12+19=30﹣30 =0.(2)534−(−13)+(−34)+323 =534−34+13+323=5+4 =9.20.(2019秋•凉州区校级月考)计算 (1)﹣17+(﹣33)﹣10﹣(﹣16). (2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先根据绝对值的含义和求法,求出|﹣7|、|﹣4|的值各是多少;然后从左向右依次计算,求出算式的值是多少即可.【解析】(1)﹣17+(﹣33)﹣10﹣(﹣16) =﹣50﹣10+16 =﹣44(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9) =7﹣4﹣2﹣4﹣9 =﹣1221.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |. (1)用“>”“<”或“=”填空:b < 0,a +b = 0,a ﹣c > 0,b ﹣c < 0; (2)化简:|a ﹣b |+|b +c |﹣|a |.【分析】(1)根据数轴得出b <c <0<a ,|a |=|b |>|c |,求出b <0,a +b =0,a ﹣c >0,b ﹣c <0即可; (2)先去掉绝对值符号,再合并即可.【解析】(1)∵从数轴可知:b <c <0<a ,|a |=|b |>|c |,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?【分析】(1)计算这些数的和,根据和的符号、绝对值得出是否回到原来的位置,(2)计算出每一次离开球门的距离,比较得出答案,(3)计算这些数的绝对值的和即可.【解析】(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0,答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0,答:守门员离开球门的位置最远是13米;(3)6+5+9+10+13+9+4=56(米)答:守门员一共走了56米.23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【解析】(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700答:这一周该粮仓需要支付的装卸总费用为2700元.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?【分析】(1)根据表格中数据,可得答案;(2)根据有理数的加法可得答案;(3)根据利用盈利减去卖出股票应支付的交易费计算即可.【解析】(1)价格最高的是星期四;(2)该股票每股为:18+2+3﹣2.5+3﹣2=21.5(元/股);(3)卖出股票应支付的交易费为:(21.5﹣18)×2000﹣18×2000×0.2%﹣21.5×2000×0.2%=6842(元),11/ 11。
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.6有理数的加减混合运算(北师大版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是( )A .﹣5﹣4+7﹣2B .5+4﹣7﹣2C .﹣5+4﹣7﹣2D .﹣5+4+7﹣2【分析】根据有理数加减法的运算方法,判断出把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是哪个即可.【解析】(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C .2.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣3 【分析】从左向右依次计算,求出算式的值是多少即可.【解析】(﹣1434)﹣(﹣1014)+12 =﹣412+12 =﹣4故选:C .3.(2019秋•沙河市期末)为计算简便,把(﹣1.4)﹣(﹣3.7)﹣(+0.5)+(+2.4)+(﹣3.5)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .﹣1.4+2.4+3.7﹣0.5﹣3.5B .﹣1.4+2.4+3.7+0.5﹣3.5C .﹣1.4+2.4﹣3.7﹣0.5﹣3.5D .﹣1.4+2.4﹣3.7﹣0.5+3.5 【分析】根据有理数的运算法则即可求出答案.【解析】原式=﹣1.4+3.7﹣0.5+2.4﹣3.5=﹣1.4+2.4+3.7﹣0.5﹣3.5,故选:A .4.(2019秋•通州区期末)下列运算正确的是( )A .﹣2+(﹣5)=﹣(5﹣2)=﹣3B .(+3)+(﹣8)=﹣(8﹣3)=﹣5C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+10 【分析】根据有理数的加法法则一一计算即可判断.【解析】A 、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B .5.(2019秋•内乡县期末)将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是( )A .﹣2+5﹣7﹣9B .﹣2﹣5+7+9C .﹣2﹣5﹣7﹣9D .﹣2﹣5+7﹣9【分析】根据有理数的加减法法则将括号去掉.【解析】﹣2﹣(+5)﹣(﹣7)+(﹣9)=﹣2﹣5+7﹣9.故选:D .6.(2019秋•沙坪坝区校级月考)计算(−12)+(13+23)+(−14−24−34)+(15+25+35+45)+…+(155+255⋯+5455)的值( )A .54B .27C .272D .0【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【解析】原式=−12+1−32+2−52+3−72+⋯+27=27×12=272.故选:C .7.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( )A .15mB .7mC .﹣18mD .﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答.【解析】﹣15﹣10+7=﹣18(m).故此时潜艇的海拔高度可记为﹣18m.故选:C.8.(2019秋•潮阳区校级月考)为计算简便,把(﹣5)﹣(﹣4)﹣(+3)+(+2)+(﹣1)写成省略加号和括号的和的形式是()A.﹣5﹣4﹣3+2﹣1B.﹣5+4﹣3+2﹣1C.﹣5+4+3+2﹣1D.﹣5﹣4+3+2+1【分析】根据有理数加减法的关系可以将加减混合运算写出省略加号代数和的形式.【解析】原式=﹣5+4﹣3+2﹣1故选:B.9.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是() A.﹣1+(﹣3)+(+6)﹣(﹣8)B.﹣1﹣3+6﹣8C.﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D.﹣1﹣(﹣3)﹣6﹣(﹣8)【分析】将所列的四个数写成省略加号的形式即可得.【解析】读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.10.(2019秋•金堂县校级月考)计算1+(﹣2)+3+(﹣4)+5+(﹣6)+…+19+(﹣20)得() A.10B.﹣10C.20D.﹣20【分析】原式结合后相加,根据﹣1的个数即可得到结果.【解析】原式=(1﹣2)+(3﹣4)+(5﹣6)+…+(19﹣20)=(﹣1)+(﹣1)+…+(﹣1)=﹣10.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•当涂县期末)8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是8﹣11+20﹣19.【分析】在一个式子里,有加法也有减法,根据有理数加减法法则,把8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式即可.【解析】8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是:8﹣11+20﹣19.故答案为:8﹣11+20﹣19.12.(2019秋•雨花区期末)计算:﹣(﹣4)+|﹣5|﹣7=2.【分析】根据有理数加减混合运算的计算方法进行计算即可.【解析】﹣(﹣4)+|﹣5|﹣7=4+5﹣7=2,故答案为:2.13.(2019秋•昌图县期末)我市某天上午的气温为﹣2℃,中午上升了7℃,下午下降了2℃,到了夜间又下降了8°C,则夜间的气温为﹣5℃.【分析】首先用我市某天上午的气温加上中午上升的温度,求出中午的温度是多少;然后用它减去下午、夜间又下降的温度,求出夜间的气温为多少即可.【解析】﹣2+7﹣2﹣8=﹣5(℃)答:夜间的气温为﹣5℃.故答案为:﹣5℃.14.(2019秋•惠城区期末)计算:20﹣(﹣7)+|﹣2|=29.【分析】从左向右依次计算,求出算式的值是多少即可.【解析】20﹣(﹣7)+|﹣2|=27+2=29故答案为:29.15.(2019秋•黄石期末)计算:(﹣7)﹣(+5)+(+13)=1.【分析】先化简,再从左往右计算即可求解.【解析】(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13=1.故答案为:1.16.(2019秋•新都区期末)若“方框”表示运算x﹣y+z+w,则“方框”=﹣8.【分析】利用题中的新定义计算即可得到结果.【解析】根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.17.(2019秋•温州期中)把(﹣3)﹣(﹣6)﹣(+7)+(﹣8)写成省略加号的和的形式为﹣3+6﹣7﹣8.【分析】根据同号得正,异号得负的法则进行整理就可以了.【解析】把(﹣3)﹣(﹣6)﹣(+7)+(﹣8)写成省略加号的和的形式为﹣3+6﹣7﹣8.故答案为:﹣3+6﹣7﹣8.18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= ﹣9 . 【分析】首先计算括号里面的加法,然后计算括号外面的减法,求出算式的值是多少即可.【解析】﹣[(﹣1.5)+(﹣512)]﹣16 =﹣(﹣7)﹣16=7﹣16=﹣9故答案为:﹣9.三、解答题(本大题共8小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•城厢区校级月考)计算(1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323.【分析】根据有理数的加减混合运算的法则计算即可.【解析】(1)11﹣18﹣12+19=30﹣30=0.(2)534−(−13)+(−34)+323=534−34+13+323 =5+4=9.20.(2019秋•凉州区校级月考)计算(1)﹣17+(﹣33)﹣10﹣(﹣16).(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先根据绝对值的含义和求法,求出|﹣7|、|﹣4|的值各是多少;然后从左向右依次计算,求出算式的值是多少即可.【解析】(1)﹣17+(﹣33)﹣10﹣(﹣16)=﹣50﹣10+16=﹣44(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)=7﹣4﹣2﹣4﹣9=﹣1221.(2019秋•迎泽区校级月考)计算(1)36+(﹣76)+(﹣24)+64(2)12﹣(﹣18)+(﹣7)﹣20(3)425−614−(﹣114)+(﹣125) (4)﹣556−923+1734−312 【分析】(1)分别求出两个正数的和,两个负数的和,再进行加减即可;(2)分别求出两个正数的和,两个负数的和,再进行加减即可;(3)先把同分母的两个数相加减,再把所得的结果相加减;(4)先把负数相加,再计算加法即可.【解析】(1)原式=(36+64)﹣(76+24)=100﹣100=0;(2)原式=(12+18)﹣(7+20)=30﹣27=3;(3)原式=425−614+114−125 =(425−125)﹣(614−114)=3﹣5=﹣2;(4)原式=1734−(556+923+312)=1734−19=−54.22.(2019秋•思明区校级月考)尊师重教是我国的传统美德.教师节当天:出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:km):﹣3,﹣8,+10,﹣6,+7,6.(1)将最后一位教师送到目的地时,小王距出发地多少km?方位如何?(2)若汽车每1km耗油0.12升,这天小王最后回到起点共耗油多少升?【分析】(1)首先把所给的数据相加,然后根据结果的正负即可确定小王距出发地多少千米,方位如何;(2)首先把所给数据的绝对值相加,然后乘以0.12即可求解.【解析】(1)﹣3+(﹣8)+10+(﹣6)+7+6=6千米,小王在出发地的东边,(2)|﹣3|+|﹣8|+|+10|+|﹣6|+|7|+|6|=40千米40+6=46千米46×0.12=5.52升,答:(1)小王在出发地的东边,距出发地6千米;(2)这天小王最后回到起点共耗油5.52升.23.(2019秋•长汀县校级月考)某股民在上星期买进某种股票1000股,每股100元,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5﹣1﹣2.5﹣6(1)该股在本周内最高价是每股多少元?最低价是每股多少元?(2)星期三收盘时,每股是多少元?(3)已知买进股票时需付成交额的1.5‰的手续费,卖出时需付成交额的1.5‰手续费和1‰的交易费,如果在星期五收盘前将股票一次性卖出,他的收益情况如何?【分析】(1)由表可知,周二股价最高,100+4.5+4=184.5元;周五股价最低,100+4+4.5﹣1﹣2.5﹣6=99元;(2)周三股票价格:100+4+4.5﹣1=107.5元;(3)周五股票价格99元,买入时花费100×1000×(1+1.5‰)=100150元,卖出后的收入99×1000﹣99×1000×(1‰+1.5‰)=98752.5元,即可求解.【解析】(1)由表可知,周二股价最高,100+4.5+4=184.5元;周五股价最低,100+4+4.5﹣1﹣2.5﹣6=99元;(2)100+4+4.5﹣1=107.5元;(3)∵周五股票价格100+4+4.5﹣1﹣2.5﹣6=99元,买入时花费100×1000×(1+1.5‰)=100150元,卖出后的收入99×1000﹣99×1000×(1‰+1.5‰)=98752.5元,∴100150﹣98752.5=1397.5元,∴赔了1397.5元.24.(2019秋•大鹏新区期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数,下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物100吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨8元,那么下午货车共得运费多少元?【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以8即可得到最后结果.【解析】(1)由题意可得:100+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=99.4(吨),则下午运完货物后存货99.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×8=32×8=256(元),则下午货车共得运费256元.25.(2019秋•金水区校级期中)在互联网技术的影响下,幸福新村的村民小刘在网上销售苹果,原计划每天卖100千克,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:千克):星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据表中的数据可知前三天共卖出296千克;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若每千克按5元出售,每千克苹果的运费为1元,那么小刘本周一共收入多少元?【分析】(1)求出前三天卖出的斤数,相加即可;(2)找出卖出最多的与最少的斤数,相减即可;(3)把表格中的数据相加,再根据题意列出算式,计算即可求出值.【解析】(1)300+4﹣3﹣5=296(千克).故前三天共卖出296千克;(2)21﹣292=29(千克).故销售量最多的一天比销售量最少的一天多销售29千克;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(17+100×7)×(5﹣1)=717×4=2868(元).答:小刘本周一共收入2868元.故答案为:296.26.(2019秋•黄陂区期中)如图,数轴上的点A,B,C,D,E对应的数分别为a,b,c,d,e,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a﹣c<0,b﹣a>0,b﹣d<0(填“>“,“<“或“=“);(2)化简:|a﹣c|﹣2|b﹣a|﹣|b﹣d|;(3)若|a|=|e|,|b|=3,直接写出b﹣e的值.【分析】(1)根据数轴得出a<b<c<d<e,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b、e的值,再代入求出即可.【解析】(1)从数轴可知:a<b<c<d<e,∴a﹣c<0,b﹣a>0,b﹣d<0,故答案为:<,>,<;(2)原式=|a﹣c|﹣2|b﹣a|﹣|b﹣d|=﹣a+c﹣2(b﹣a)﹣(d﹣b)=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.。
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷―2―57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×+÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘; (4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20=(7+3)+(―5―20)=10―25=―15;(2)―23+6÷(―32)=―8―6×23=―8―4=―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=3+2-6=-1(3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12=-12.5(4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)―×(5)―+(―3.75);(6)―――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)7;6(5)―9;(6)―2.25;(7)7;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷―×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;―2.5÷58×―=―52×85×―=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×―8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:23+÷(2)―22×14―4÷――1.【答案】(1)3(2)-9【解析】【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)23+÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15=3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6×―×(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×―999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】【分析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6×―×(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×――999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1 =―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.7有理数的乘法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•安顺)计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.6【分析】原式利用乘法法则计算即可求出值.【解析】原式=﹣3×2=﹣6.故选:A.2.(2019秋•越秀区校级期中)下列运算结果是负数是()A.(﹣1)×2×3×(﹣4)B.5×(﹣3)×(﹣2)×(﹣6)C.﹣11×5×6×0D.5×(﹣6)×7×(﹣8)【分析】根据多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0计算即可.【解析】A、(﹣1)×2×3×(﹣4),积为正数,不符合题意;B、5×(﹣3)×(﹣2)×(﹣6),积为负数,符合题意;C、﹣11×5×6×0,积为零,不符合题意;D、5×(﹣6)×7×(﹣8),积为正数,不符合题意;故选:B.3.(2019秋•增城区期中)计算(﹣1)×5的结果是()A.﹣1B.1C.5D.﹣5【分析】直接利用有理数的乘法运算法则得出答案.【解析】(﹣1)×5=﹣5.故选:D.4.(2019秋•连云港期中)如果a+b<0,ab<0,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大【分析】根据两数和小于零,两数积小于零即可判断.【解析】∵a+b<0,ab<0,∴一正一负,且负数的绝对值大,故选:C.5.(2019秋•禹州市期中)已知|x|=3,|y|=7,且x﹣y>0,xy<0,则x+y的值为()A.﹣10B.﹣4C.﹣10或﹣4D.4【分析】根据|x|=3,|y|=7,且x﹣y>0,xy<0,可以确定x、y的值,从而可以解答本题.【解析】∵|x|=3,|y|=7,∴x=±3,y=±7,∵x﹣y>0,xy<0,∴x=3,y=﹣7,∴x+y=3+(﹣7)=﹣4.故选:B.6.(2019秋•南昌期中)在整数集合{﹣3,﹣2,﹣1,0,1,2,3,4,5,6}中选取两个整数填入“□×□=6”的□内使等式成立,则选取后填入的方法有()A.2种B.4种C.6种D.8种【分析】计算积为6的数,每个式子为两种.【解析】﹣3×(﹣2)=6,2×3=6,1×6=6,6种,故选:C.7.(2019秋•莆田期末)若四个互不相等的整数的积为6,那么这四个整数的和是()A.﹣1或5B.1或﹣5C.﹣5或5D.﹣1或1【分析】根据有理数的乘法运算法则和加法法则进行解答即可.【解析】∵1×2×(﹣3)×(﹣1)=6,1×(﹣2)×3×(﹣1)=6,∴这四个互不相等的整数是1+2+(﹣3)+(﹣1)=﹣1,1+(﹣2)+3+(﹣1)=1.。
专题1.6第1章丰富的图形世界单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•越秀区期末)将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是()A.圆柱B.圆锥C.圆台D.球【分析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是圆锥体.【解析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,所得到的立体图形是圆锥体.故选:B.2.(2020春•道里区期末)下列立体图形中,从正面看到的平面图形是圆的立体图形是()A.正方体B.圆柱C.圆锥D.球【分析】找到从正面看所得到的图形是圆即可.【解析】A.正方体的主视图是正方形,故本选项不合题意;B.圆柱的主视图是矩形,故本选项不合题意;C.圆锥的主视图是等腰三角形,故本选项不合题意;D.球的主视图是圆,故本选项符合题意;故选:D.3.(2020春•哈尔滨期末)如图,从正面看这个几何体得到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,注意所有的看到的棱都应表现在左视图中.【解析】从正面看,底层是两个正方形,上层左边是一个正方形.故选:B.4.(2020春•南岗区期末)如图,左侧几何体是由六个相同的小正方体组合而成,从正面看得到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解析】从正面看,底层是三个正方形,上层右边是一个正方形.故选:A.5.(2019秋•彭水县期末)如图所示的几何体,从上往下看得到的平面图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形判定则可.【解析】从上面可看是一层三个等长等宽的矩形.故选:C.6.(2019秋•邗江区校级期末)已知某多面体的平面展开图如图所示,其中是棱锥的有()A.1个B.2个C.3个D.4个【分析】根据三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱.并且上下两个三角形是全等三角形,可得答案.【解析】第1个图是三棱锥;第2个图是三棱柱;第3个图是四棱锥;第4个图是三棱柱.∴是棱锥的有2个.故选:B.7.(2020春•绥棱县期末)把一支新的圆柱形铅笔削出笔尖,笔尖(圆锥部分)的体积是削去部分的()A.B.C.D.2倍【分析】把一个圆柱削成一个最大的圆锥,则这个圆柱与圆锥等底等高,所以圆柱与圆锥的体积之比是3:1,则笔尖(圆锥部分)的体积是削去部分的,由此即可判断.【解析】根据题干分析可得:圆柱与圆锥的体积之比是3:1,则笔尖(圆锥部分)的体积是削去部分的.故选:C.8.(2019秋•九龙坡区校级期末)把50个同样大小的立方体木块堆砌成如图所示的形状,现在从前、后、左右和上面五个方向朝这堆木块喷漆,则有()块完全喷不到漆.A.5 B.7 C.17 D.22【分析】根据从前、后、左、右和上面五个方向朝这堆木块喷漆,得出每一层能喷到漆的立方体个数,即可得出答案.【解析】∵50个同样大小的立方体木块堆砌成如图所示的形状,现在从前、后、左、右和上面五个方向朝这堆木块喷漆,∴从下面数第1层有12个立方体木块会喷到漆,从下数第2层有12个立方体木块都喷到漆,从下面数第3层有12个立方体木块都会喷到漆,从下数第4层有7个立方体木块都会喷到漆.∴一点儿漆都喷不到的木块个数是:50﹣(12+12+12+7)=7(块).故选:B.9.(2020春•南岗区期末)下列平面图形中,经过折叠不能围成正方体的是()A.B.C.D.【分析】根据正方体展开图的常见形式作答即可.【解析】由展开图可知:A、B、D能围成正方体,故不符合题意;C、围成几何体时,有两个面重合,不能围成正方体,故符合题意.故选:C.10.(2019秋•密云区期末)一个正方体的六个面分别标有六个不同的点数,其展开图如图所示,则该正方体可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解析】A、“5”的对面是“2”,故本选项错误;B、“6”的对面是“1”,故本选项错误;C、符合,故本选项正确;D、“5”的对面是“2”,故本选项错误.故选:C.二、填空题(本大题共10小题,每小题3分,共30分)请把答案直接填写在横线上11.(2019秋•崇川区校级期末)如图是一个立体图形的平面展开图,则这个立体图形是三棱柱.【分析】根据展开图的形状,判断几何体的底面和侧面,进而得出几何体的形状.【解析】根据展开图可知,这个几何体两个底面是三角形,三个侧面是长方形的,因此这个几何体是三棱柱,故答案为:三棱柱.12.(2019秋•青岛期末)如图(1),在边长为acm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个如图(2)所示的无盖的长方体.设剪去的小正方形的边长为4cm,则这样折成的无盖长方体的容积是4a2﹣64a+256cm3.【分析】由于正方形的边长为acm,同时在正方形纸片的四个角各剪去一个同样大小的正方形,剪去的小正方形的边长为4cm,由此得到长方体的长、宽、高,最后利用长方体的容积公式即可求解;【解析】依题意得长方体的容积为:4×(a﹣2×4)2=4a2﹣64a+256(cm2),故答案为:4a2﹣64a+256.13.(2019秋•渠县期末)如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是4.【分析】在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.【解析】在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为4,故答案为:4.14.(2019秋•望花区期末)“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是从不同的方向观察同一物体时,看到的图形不一样.【分析】根据三视图的观察角度,可得答案.【解析】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.15.(2019秋•三明期末)一个几何体由若干个大小相同的小正方体组成,从正面和从上面看到的形状图如图所示,则这个几何体中小正方体的个数最多是5.【分析】根据主视图、左视图,得出俯视图的性质,再在俯视图中相应位置标出摆放小立方体的块数即可.【解析】根据主视图、左视图可知,其俯视图,如图所示,其中数字表示该位置最多能摆放的小立方体的个数,所以,这个几何体中小正方体的个数最多是5个,故答案为:5.16.(2019秋•辉县市期末)如图,由十个小正方体组成的几何体中,若每个小正方体的棱长都是2,则该几何体的主视图和左视图的面积之和是48.【分析】画出主视图、左视图,再求出面积和即可;【解析】该几何体的主视图和左视图如下:2×2×(6+6)=48,故答案为:48.17.(2019秋•李沧区期末)用平面去截球体与圆柱,如果得到的截面形状相同,那么截面的形状是圆.【分析】根据球体与圆柱用一个平面截一下,看看符合条件的图形是什么图形即可.【解析】∵用一个平面去截球体与圆柱,得到的截面形状相同,∴这个截面的形状是圆,故答案为:圆.18.(2019秋•松北区期末)将一根长4米的圆柱体木料锯成2段(2段都是圆柱体),表面积增加60平方分米,这根木料的体积是1200立方分米.【分析】将一根长4米的圆柱体木料锯成2段,增加两个底面,又知表面积增加60平方分米,由此求出这根木料的底面积,根据圆柱的体积公式即可计算.【解析】4米=40分米,60÷2=30(平方分米),30×40=1200(立方分米),所以这根木料的体积是1200立方分米.故答案为:1200.19.(2019秋•郑州期末)一个小立方块的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示,其中A、B、C、D、E、F分别代表数字﹣2、﹣1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为﹣2.【分析】依据图形可知A的邻面有B、D、E、F,故此点A和C为对面,进一步得到B和D为对面;E 和F为对面;从而可求得三个小立方块的下底面所标字母代表的数字的和.【解析】由图形可知:A与B、D、E、F是邻面,故A和C为对面;则B与A、C、E、F是邻面,故B和D为对面;故E和F为对面;则三个小立方块的下底面所标字母代表的数字的和为﹣1﹣2+1=﹣2.故答案为:﹣2.20.(2019秋•市北区期末)如图,是由小立方体组合而成的几何体从正面、左面、上面看到的图形,则至少再加22个小立方体该几何体可成为一个正方体.【分析】观察三视图,可知这个几何体的小正方体的个数,如俯视图上的数字所示,共有5个小正方体.由题意可以拼成3×3×3的几何体,共有27个小正方体,由此即可解决问题.【解析】观察三视图,可知这个几何体的小正方体的个数,如俯视图上的数字所示,共有5个小正方体.最小可以拼成3×3×3的几何体,共有27个小正方体,27﹣5=22,故答案为22.三、解答题(本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•邗江区校级期末)图1所示的三棱柱,高为8cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有9条棱,有5个面;(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可);(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开5条棱,需剪开棱的棱长的和的最大值为34cm.【分析】(1)n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数是条,相减即可求出需要剪开的棱的条数.【解析】(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:8×3+5×2=34(cm).故答案为:5,34.22.(2019秋•行唐县期末)已知下图为一几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的侧面展开图;(3)若主视图的长为8cm,俯视图中圆的半径为3cm,求这个几何体的表面积和体积?(结果保留π)【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为圆形,故可判断出该几何体是圆柱;(2)应该会出现三个长方形,两个圆形;(3)这个几何体的表面积=侧面积+底面积×2;体积=底面积×高.【解析】(1)这个几何体的名称是圆柱体;(2)如图所示:(3)π×3×2×8+π×32×2=66π(cm2),π×32×8=72π(cm3).故这个几何体的表面积是66πcm2;体积是72πcm3.23.(2019秋•大田县期末)已知下图为从正面、左面、上面看到的一个几何体的形状图.(1)写出这个几何体的名称;(2)若从正面看到的长方形的宽为3cm,从上面看到的正方形的边长为8cm,求这个几何体的表面积.【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长得出长方体的表面积即可.【解析】(1)这个几何体的名称是长方体(四棱柱);(2)S=8×8×2+8×3×4=64×2+24×4=224(cm2).故这个几何体的表面积是224cm2.24.(2019秋•唐山期末)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:mm).(1)直接写出上下两个长方体的长、宽、高分别是多少;(2)求这个立体图形的体积.【分析】(1)根据三视图得到两个长方体的长,宽,高即可;(2)根据(1)中各部分的尺寸计算体积即可.【解析】(1)根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm;(2)立体图形的体积是:4×4×2+6×8×2=128(mm3).25.(2019秋•乐清市期中)仓库里有以下四种规格数量足够多的长方形、正方形的铁片(尺寸单位:分米):从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为:40分米3;乙型盒的容积为:8分米3;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,求甲型盒中水的高度是多少分米?【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【解析】(1)∵甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的,∴甲盒的长为2分米,宽为4分米,高为5分米,∴甲型盒容积为2×4×5=40分米3;乙型盒容积最小,即长、宽、高最小,因此乙盒为长、宽、高均为2分米的正方体,体积为2×2×2=8分米3,故答案为40,8.(2)甲盒的底面积为:2×4=8平方分米,两个乙盒的水的体积为8×2=16立方分米,甲盒内水的高度为:16÷8=2分米,答:甲型盒中水的高度是2 分米.26.(2019秋•城固县期中)一个几何体由大小相同的小立方体搭成,从三个方向看到的几何体的形状图如图所示.(1)求A,B,C,D这4个方格位置上的小立方体的个数;(2)这个几何体是由多少块小立方体组成的?【分析】(1)根据三视图解答即可;(2)根据三视图得出正方体的个数即可.【解析】(1)由三视图可得:从正面看有3列,每列小正方数形数目分别为1,2,2,从左面看有2列,每列小正方形数目分别为2,2.从上面看有3列,每列小正方形数目分别为1,2,2.所以A小立方体的个数是2,B小立方体的个数是1,C小立方体的个数是3,D小立方体的个数是2,(2)这个几何体是由1+2+2=5块小立方体组成的。
2020-2021学年七年级数学上册尖子生同步培优题典【浙教版】专题2.2有理数的减法(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•金水区校级月考)今年我市四月份一天的最低气温为﹣5℃,最高气温为8℃,则该天温差为()A.3℃B.13℃C.﹣3℃D.﹣13℃2.(2019秋•桥西区校级月考)计算﹣1﹣1﹣1的结果是()A.﹣3B.3C.1D.﹣13.(2019秋•裕华区校级月考)若()﹣(﹣2)=3,则括号内的数是()A.﹣5B.﹣1C.1D.54.(2019秋•高邮市月考)下列各式错误的是()A.1﹣(+5)=﹣4B.0﹣(+3)=﹣3C.(+6)﹣(﹣6)=0D.(﹣15)﹣(﹣5)=﹣105.(2019秋•碑林区校级月考)若a<0,b<0,则下列各式一定成立的是()A.a﹣b<0B.a﹣b>0C.a﹣b=0D.﹣a﹣b>06.(2020•仪征市模拟)某城市在冬季某一天的气温为﹣3℃~3℃.则这一天的温差是()A.3℃B.﹣3℃C.6℃D.﹣6℃7.(2020•江汉区校级一模)计算﹣3﹣1的结果是()A.2B.﹣2C.4D.﹣48.(2019秋•南通期中)已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A.8B.﹣8C.4D.﹣49.(2019秋•翠屏区期中)写成省略加号和的形式后为﹣6﹣7﹣2+9的式子是()A.(﹣6)﹣(+7)﹣(﹣2)+(+9)B.﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)C.(﹣6)+(﹣7)+(+2)﹣(﹣9)D.﹣6﹣(+7)+(﹣2)﹣(﹣9)10.(2020春•淮阴区期中)如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()m﹣3 4 31nA .7B .5C .﹣1D .﹣2 二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•崇川区校级期中)若x 是3的相反数,|y |=4,则x ﹣y 的值是 .12.(2019秋•秦淮区期中)把式子﹣2﹣3写成﹣2+(﹣3)的依据是 .13.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13= .14.(2019秋•南京月考)若|x |=9,|y |=5,且x +y >0,那么x ﹣y = .15.(2019秋•市中区校级月考)(13−12)的相反数是 .16.(2019秋•开福区校级月考)比﹣5小7的数是 .17.(2019秋•蚌山区校级月考)世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844.43米,而吐鲁番盆地的海拔高度大约是﹣155米,两处高度大约相差 米.18.(2019秋•宣州区校级月考)比0小4的数是 ,比3小4的数是 ,比﹣5小﹣2的数是 .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•九龙坡区校级期中)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)(2)(−23)+(516)+(−416)−91320.(2019秋•兴化市校级月考)计算:(1)7﹣(﹣4)+(﹣5)(2)6−(−15)−2−|−1.5|(3)﹣7.2﹣0.8﹣5.6+11.6(4)123−125+43−0.6−(−335)21.(2019秋•泰兴市校级月考)计算题(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)﹣20+(﹣14)﹣(﹣18)﹣13(3)16−12−34+56。
第三讲 有理数的运算知识导引本讲主要是有理数的运算,包括有理数的加、减、乘、除、乘方等多种运算.进行有理数的混合运算时要注意以下运算顺序:(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按从小括号、中括号到大括号依次进行.进行运算时一般按此顺序进行,能用简便方法的尽量用简便方法.若恰当的运用交换律、结合律、分配律有时可以简化计算.通过有理数的混合运算来解决实际问题,要注意分析题意,列出正确的算式.用有效数字表示近似数的精确度比较复杂也较难理解,其关键是理解有效数字的概念.要注意用科学记数法表示的数字或者是带有单位的数字的精确度. 典例分析例1:计算:(1))4134(12)2(32-⨯--⨯. (2)59.141.059.041.4⨯+⨯-.例1—1:计算:32)53()4.1()431()51(75.05.2⨯-⨯-÷-⨯-⨯÷-.例2:计算:(1)9011216121+⋯+++. (2)1-2+3-4+…+2007-2008.例2—1:计算:200019981531421311⨯+⋯+⨯+⨯+⨯.例3:(1)如果ab <0,a -b >0,试确定a 、b 的正负. (2)如果ab <0,a -b <0,试确定a 、b 的正负. (3)如果ab <0,a +b >0,b a >试确定a 、b 的正负.例3—1:若ab <0,求abab b b a a ++的值.例3—2:已知:1-=++cc bb aa ,求abcabc的值.例4:已知322=+-n m n m ,求32322)2(2-+--+-nnm n m n m 的值.例5:某日长春等五个城市的最好气温与最低气温记录如表.哪个城市的温差最大,哪个城市的温差最小?例5—1:下表是某报纸公布的我国“九五”期间国内生产总值(GDP )的统计表,那么这几年我国的国内生产总值平均每年比上一年增长( )A 、0.46万亿元B 、0.575万亿元C 、7.78万亿元D 、9.725万亿元例5—2:甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,那么顾客在( )超市买这种商品会更合算.A 、甲B 、乙C 、丙D 、一样例6:(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是 ;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = . (2)如果要求203233331+⋯++++的值,可令 S =203233331+⋯++++ ①将①式两边同乘以3,得②由②式减去①式,得S = .(3)用由特殊到一般得方法知:若数列1a ,2a ,3a ,…,n a ,从第二项开始每一项与前一项之比的常数为q ,则n a = (用含1a ,q ,n 的代数式表示).如果这个常数q ≠1,那么1a +2a +3a +…+n a = (用含1a ,q ,n 的代数式表示). 探究活动例:在一次团体操排练活动中,某班45名学生面向老师站成一列横队.老师每次让其中任意6名学生向后转(不论原来方向如何).问:能否经过若干次后全体学生都背向老师站立?如果能,请设计一种方案;如不能,请说明理由.学力训练A 组 务实基础1、负实数a 的倒数是( ) A 、-a B 、a 1 C 、-a1D 、a2、使01=+aa成立的条件是( ) A 、a >0 B 、a <0 C 、a =1 D 、a =±1 3、如果m 表示有理数,那么m m +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各式中,计算正确的是( ) A 、-8-2×6=(-8-2)×6 B 、)4334(243342⨯÷=⨯÷ C 、1)1()1(20072006-=-+- D 、9)3(9-=--5、如图简单的数值运算程序,当输入x 的值为-1时,则输出的数值为 .6、若x -y =3,则2x -2y = .7、图形表示运算a -b +c ,图形表示预算x +n -y -m ,则×= (直接写出答案).8、“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌.例如,任意写出一个三位数,它的各个数位上的数字都不想等,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数,对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,,就得到一个固定的数 ,我们称它为三位数的黑洞数.用同样的方法,你可以得到四位数的黑洞数为 . 9、计算:)154()2(528252-⨯-÷+-.10、杭州市出租车的收费标准如下:3千米以内(含3千米)收费10元,超过3千米的部分每千米收费2元.超过起步里程10千米以上的部分加收50%,即每千米3元(不足1千米以1千米计算).(1)小明有一次乘坐出租车行驶了4.1千米,他应付车费多少元? (2)若小明乘坐出租车行驶了14.9千米,他应付车费多少元?(3)小明家距离学校13.1千米,他带了31元钱,则他从学校坐出租车到家,钱够吗?如果够,还剩多少钱?如果不够,他至少要先走多少千米路?B 组 瞄准中考1、(荆门中考)下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③23)49(32-=-⨯;④(-36)÷(-9)=-4.其中正确的个数是( )A 、1个B 、2个C 、3个D 、4个 2、(青岛中考)生物学指出:在生态系统中,每输入一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在654321H H H H H H →→→→→这条生物链中(n H 表示第n 个营养级,n =1,2,…,6),要使6H 获得10千焦的能量,需要1H 提供的能量约为( )A 、610千焦 B 、510千焦 C 、410千焦 D 、310千焦 3、(日照中考)观察图中正方形四个顶点所标的数字的规律,可知数2011应标在( )A 、第502个正方形的左下角B 、第502个正方形的右下角C 、第503个正方形的左上角D 、第503个正方形的右下角 4、(盐城中考)根据如图所示的程序计算,若输入的x 的值为1,则输出y 的值为 . 5、(绍兴中考)小明测得其一周的体温并记录如下表:其中星期四的体温的数据被墨迹污染.根据表中数据,可得星期四的体温为 .6、(常德中考)如图,一个数表有7行7列,设ij a 表示第i 行第j 列上的数(其中i =1,2,3,…,7;j =1,2,3,…,7).例如:第5行第3列上的数53a =7.(1)(2223a a -)+(5352a a -)= .(2)此数表中的四个数np a ,nk a ,mp a ,mk a 满足(np a -nk a )+(mk a -mp a )= . 7、计算:(1))]654()8.4(612[545---+-.(2))2()2()107()325(54-⨯---⨯-⨯.8、(河南中考)要测量M ,N 两处的高度差,直接不好测.现另有五个点:A ,B ,C ,D ,E ,先测量每相邻两点间的高度差.如果测得点A 比点M 高0.32m ,就在A —M 列内填上0.32;如果点B 比点A 低0.46m ,就在B —A 列内填上-0.46,以此类推.现实际测得结果9、如图所示,在数轴上有三个点A 、B 、C .(1)将点B 向左移动四个单位,此时该点表示的数是多少?(2)将点C 向左移动6个单位的到数1x ,再向右移动2个单位得到数2x ,那么1x ,2x 分别是多少?请用“>”把移动后的点B ,1x ,2x 表示的数连起来.(3)怎样移动A 、B 、C 中的两点,才能使三个点表示的数相同?10、(怀化中考)有一列数,第一个数1x =1,第二个数2x =4,第三个数记为3x ,以后依次记为4x ,5x ,…,n x ,从第二个数开始,每个数是它相邻两个数的和的一半(如2312x x x +=). (1)求第三、四、五个数,并写出计算过程.(2)探索这一列数的规律,猜想第k 个数k x 等于多少(k 是大于2的整数),请由此算出2005x 等于多少.C 组 冲击金牌1、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则!!98100的值为( ) A 、4950B 、99!C 、9900D 、2! 2、如果1332211=++t t t t t t ,则321321t t t t t t 的值为( ) A 、-1 B 、1 C 、±1 D 、不确定3、已知999999=P ,909911=Q ,则P ,Q 的大小关系为P Q .4、吉尔最近搬进了新居,房号是一个三位数.这个数与三个数位上的数字之和是429.则房号三个数位上的数字的乘积是 .5、黑板上写有1,2,3,…,1997,1998,这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添加上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添加上0.如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.第三讲 有理数的运算参考答案典例精析1、(1)-1;(2)-1.95 1—1、31-2、(1)109;(2)-1004 2—1、799600059930013、(1)a >0,b <0;(2)a <0,b >0;(3)a >0,b <0 3—1、-1 3—2、14、0或-65、哈尔滨温差最大,为14℃;大连的温差最小,为8℃ 5—1、C 5—2、B6、(1)2 182 n 2;(2)21432333333+⋯++++=S)13(2121- (3)11-n qa 1)1(1--q q a n探究活动假设面向老师站立记为“+1”,则背向老师站立为“-1” .原来45个“+1”,乘积为“+1”,每次改变其中6个数,不改变这45个数的乘积的符号,而最后要达到的目标是45个“-1”,乘积为“-1”,故这是不可能的. A 组1、B2、B3、B4、D5、16、67、08、495 61749、-3 10、(1)14元;(2)39元;(3)不够,至少要先走1.1千米路. B 组1、B2、A3、C4、45、36.76、(1)0 ;(2)07、(1)533; (2)328、M 处比N 处高0.34m 9、(1)因为点B 所表示的数是-1,则-1-4=-5,此时该点表示的数是-5;(2)点C 表示的数是4,将点C 向左移动6个单位得到数1x ,因4-6=-2,故1x 表示的数是-2,再向右移2个单位得到数2x ,因-2+2=0,故2x 表示的数是0,故-5<-2<0;(3)把点A 向右移动2个单位,点C 向左移动5个单位(答案不唯一) 10、(1)因为2312x x x +=,所以71422123=-⨯=-=x x x ,同理,104=x ,135=x ;(2)猜想得:23-=k x k ,所以60132200532005=-⨯=x C 组1、C2、A3、=4、285、另一个数是6。
2020-2021学年七年级数学上册尖子生同步培优题典【浙教版】
专题2.6有理数的混合运算
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020•碑林区校级模拟)下列算式中,计算结果是负数的是( )
A .3×(﹣2)
B .|﹣1|
C .(﹣2)+7
D .(﹣1)2
2.(2020•余杭区一模)计算下列各式,结果为负数的是( )
A .(﹣7)÷(﹣8)
B .(﹣7)×(﹣8)
C .(﹣7)﹣(﹣8)
D .(﹣7)+(﹣8)
3.(2020•鼓楼区二模)计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是( )
A .2
B .3
C .7
D .4
3 4.(2020•金华模拟)下列计算正确的是( )
A .23×22=26
B .(−12)3=−16
C .−12+13=−56
D .﹣32=﹣9 5.(2019秋•双清区期末)定义一种新运算a ⊙b =(a +b )×2,计算(﹣5)⊙3的值为( )
A .﹣7
B .﹣1
C .1
D .﹣4
6.(2019秋•宿州期末)计算(﹣1)2019+(﹣1)2020的结果是( )
A .2
B .﹣1
C .0
D .1
7.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a +2019|一定是
正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个
8.(2019秋•淮阴区期中)按图中计算程序计算,若开始输入的值为﹣2,则最后输出的结果是()A.8B.10C.12D.13
9.(2020•浙江自主招生)定义运算a⨂b={a+1,当a−b≥1时,
b−1,当a−b<1时,
,则(﹣2)⨂4=()
A.﹣1B.﹣3C.5D.3
10.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;
④(0.25−58)÷(−178);⑤−48×(12−58+13−1316);⑥3
2
+1.52−3×22−[2−(−0.2)×(−
5
3
)];计
算结果是正数的有()
A.2个B.3个C.4个D.5个
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2019秋•崇川区校级期末)|﹣2|+(﹣3)2=.
12.(2019秋•淮安区期末)暂规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3,则(﹣2)※3的值为.
13.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为.14.(2019秋•镇江期末)用4个数2,﹣3,4,﹣6列一个算式,使得这个算式的运算结果是24(答案不唯一,写出一个算式即可).
15.(2019秋•钟楼区期中)用“★”定义新运算:对于任意有理数a、b,都有a★b=|b|﹣a.则:(1)9★(﹣1)=;
(2)若3★n=1,则n的值是.
16.(2019秋•江阴市期中)若a,b互为相反数,c,d互为倒数,则(a+b﹣1)(cd+1)的值为.
17.(2019秋•邳州市期中)已知a、b互为相反数,c、d互为倒数,则1
2019(a+b)−
7
2cd=.
18.(2019秋•东海县期末)定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为
偶数时,结果为n
2k (其中k是使
n
2k
为奇数的正整数).“C运算”不停地重复进行,例如,n=66时,其
“C运算”如下:。