分离工程1.1+绪论(+1.4+设计变量)2012-2-21
- 格式:ppt
- 大小:1.50 MB
- 文档页数:4
化工分离工程第一章绪论1.1概述1.1.1 分离过程的发展与分类随着世界工业的技术革命与发展,特别是化学工业的发展,人们发现尽管化工产品种类繁多,但生产过程的设备往往都可以认为是由反应器、分离设备和通用的机、泵、换热器等构成。
其中离不开两类关键操作:一是反应器,产生新物质的化学反应过程,其为化工生产的核心;-其中离不开两类关键操作:一是反应器,产生新物质的化学反应过程,其为化工生产的核心;-于是研究化学工业中具有共同性的过程和设备的规律,并将之运用于生产的“化学工程”这一学科应运而生。
分离过程可分为机械分离和传质分离两大类。
机械分离过程的对象都是两相或两相以上的非均相混合物,只要用简单的机械方法就可将两相分离,而两相间并无物质传递现象发生传质分离过程的特点是相间传质,可以在均相中进行,也可以在非均相中进行。
传统的单元操作中,蒸发、蒸馏、吸收、吸附、萃取、浸取、干燥、结晶等单元操作大多在两相中进行。
依据处于热力学平衡的两相组成不相等的原理,以每一级都处于平衡态为手段,把其他影响参数均归纳于效率之中,使其更符合实际。
它的另一种工程处理方法则是把现状和达到平衡之间的浓度梯度或压力梯度作为过程的推动力,而把其他影响参数都归纳于阻力之中,传递速率就成为推动力与阻力的商了。
上述两种工程处理方法所描述的过程,都称作平衡级分离过程。
分离行为在单级中进行时,往往着眼于气相或液相中粒子、离子、分子以及分子微团等在场的作用下迁移速度不同所造成的分离。
热扩散、反渗透、超过滤、电渗析及电泳等分离过程都属此类,称速率控制分离过程,都是很有发展潜力的新分离方法。
综上所述,分离过程得以进行的基础是在“场”的存在下,利用分离组分间物理或化学性质的差异,并采用工程手段使之达到分离。
显然,构思新颖、结构简单、运行可靠、高效节能的分离设备将是分离过程得以实施乃至完成的保证。
1.1.2 分离过程的地位广泛的应用、科技的发展、环境的需要都说明分离过程在国计民生中所占的地位和作用,并展示了分离过程的广阔前景:现代社会离不开分离技术,分离技术发展于现社会。
分离工程(Separation Engineering)课程代码:13410101学分:2学时:32 (其中:课堂教学学时:32 实验学时:0 上机学时:0 课程实践学时:0 )先修课程:数学、物理化学、化工原理、化工热力学、传质过程原理、计算机技术适用专业:化学工程与工艺教材:《化工分离过程》,陈洪钫、刘家祺,化学工业出版社,2014年第二版。
一、课程性质和课程目标(一)课程性质本课程是高等学校本科化学工程与工艺专业的一门必修课,是学生在具备了物理化学、化工原理、化工热力学等技术基础知识后的一门专业主干课。
化工分离工程是研究过程工业中物质分离和纯化的工程技术学科。
本课程讲授传质与分离工程的原理和应用,以及化工分离过程中一些主要分离单元操作和分离工程领域的研究进展。
它利用前期课程中介绍的有关相平衡、热力学等知识,以及三种传递的理论来研究化工生产实际中复杂物系的分离和提纯技术。
(二)课程目标通过本课程的理论教学与训练,使学生具备下列能力:课程目标1:掌握各种常用分离过程的基本理论,操作特点并能够识别和判断复杂化学工程问题的关键环节;课程目标2:掌握各种常用分离过程的简捷和严格的计算方法和强化改进操作的途径,并能够将其应用于解决具体的化学工程问题;课程目标3:能运用单级和多级平衡分离过程中的基本理论去证实解决复杂化工工程问题方案的合理性。
(三)、课程目标与专业毕业要求指标点的对应关系本课程支撑专业培养计划中毕业要求指标点2-1、2-3、2-4。
1.毕业要求2-1:能运用所学的科学原理,识别和判断复杂化学工程问题的关键环节。
2.毕业要求2-3:能认识到解决工程问题有多种可选择方案,并能研究文献寻找可替代的解决方案。
3.毕业要求2-4:能运用基本原理,证实解决复杂工程问题方案的合理性并得到有效结论。
课程目标课程目标1 课程目标2 课程目标3 毕业要求指标点毕业要求2-1 ✓毕业要求2-3 ✓毕业要求2-4 ✓二、课程内容与教学要求第一章绪论(一)课程内容1. 分离操作在化工生产中的重要性;2. 传质分离过程的分类和特征A. 平衡分离过程包括精馏、吸收、萃取、干燥等;B. 速率分离过程包括超滤、反渗透、渗析等。
《分离工程》知识点笔记第一章:分离工程概论1.1 分离过程的重要性在化学工业中,分离技术扮演着至关重要的角色。
从原油提炼到制药生产,从食品加工到废水处理,几乎所有的化工过程中都离不开有效的分离操作。
通过这些操作,可以将原料中的有用成分与不需要的杂质分开,或是根据产品的不同规格要求进行提纯。
因此,掌握先进的分离技术对于提高产品质量、降低能耗以及减少环境污染具有重要意义。
1.2 常见的分离技术简介分离方法依据其物理或化学性质的不同而异,主要包括但不限于以下几种:•蒸馏:利用组分沸点差异实现液体混合物的分离。
•吸收:一种或多种气体被溶解于液体溶剂中以达到净化目的。
•萃取:借助另一种液体(萃取剂)选择性地提取原溶液中的某一成分。
•吸附:固体表面吸引并保持流体分子的能力,广泛应用于空气净化及水处理领域。
•结晶:通过控制温度等条件使溶液中的溶质形成晶体沉淀出来。
•膜分离:依靠半透膜的选择透过性对物料进行浓缩和净化。
•干燥:去除物料中水分或其他挥发性物质的过程。
•沉降与过滤:基于颗粒大小差异来分离悬浮体系的方法。
1.3 分离过程的选择标准选择合适的分离方法时需考虑多个因素,包括但不限于:•经济成本:设备投资费用、运行维护开支及能源消耗水平。
•环境影响:是否会产生有害废弃物?如何妥善处置?•效率高低:目标产物回收率、纯度指标能否满足需求?•安全性考量:操作过程中是否存在安全隐患?应急措施是否到位?此外,还需结合具体应用场景综合分析,比如对于热敏性材料,则应避免采用高温加热方式;当面对易燃易爆物质时,则要特别注意防火防爆设计。
第二章:相平衡基础2.1 相律及其应用相律是描述系统处于平衡状态时各相之间关系的基本法则之一,由吉布斯提出。
其数学表达式为:F = C - P + 2,其中F表示自由度数,C代表独立组分数目,P指相数。
该定律揭示了给定条件下能够独立改变变量的数量上限,有助于指导实验设计与数据分析工作。
例如,在一个二元液液系统里,若已知总压强恒定不变,则只需调整温度即可观察两相间组成变化情况。