OC门及三态门
- 格式:ppt
- 大小:1.57 MB
- 文档页数:20
实验3.4 三态门和OC门的应用一、实验目的1.掌握TTL三态门的逻辑应用;2.掌握TTL OC门的逻辑应用;3.熟悉TTL三态门、OC门电路应用的测试方法。
二、知识点三态门和OC门输出端可并接。
三态门有低电平、高电平和高阻三种状态;OC门可实现“线与”功能。
三、实验原理在实际应用中,常需要把几个逻辑门的输出端并联使用,实现逻辑与,称为“线与”。
但普通TTL门电路不允许将输出端直接并联在一起,因为这种门电路输出高电平还是低电平,其输出电阻都很小,只有几欧姆或几十欧姆。
若把两个TTL门输出端连在一起,当其中一个输出高电平,另一个输出低电平时,它们中的导通管就会在Vcc和地之间形成一个低阻串联通路,通过这两个门的输出级产生很大的电流,损坏电路。
图3-3-1示出了两个TTL门输出短接的情况,为简单起见,图中只画出了两个与非门的推拉式输出级。
设门A处于截止状态,若不短接,输出应为高电平;设门B处于导通状态,若不短接,输出应为低电平。
在把门A和门B的输出端作如图3-3-1所示连接后,从电源Vcc经门A中导通的T4、D3和门B中导通的 T5到地,形成了一个低阻通路,其不良后果为:(1)输出电平既不是高电平也不是低电平,而是两者之间的某一值,导致逻辑功能混乱;(2)上述通路导致输出级电流远大于正常值,导致功耗剧增,发热增大,可能烧坏器件。
图3-4-1普通TTL门输出短接1.三态门(TS门)三态门,简称TSL(Three-state Logic)门,是在普通门电路的基础上,附加使能控制端和控制电路构成的。
三态门除了通常的高电平和低电平两种输出状态外,还有第三种输出状态——高阻态。
处于高阻态时,电路与负载之间相当于开路。
(a )使能端高电平有效 (b )使能端低电平有效 图3-4-2三态门的结构和逻辑符号图3-4-2所示为三态门的结构和逻辑符号,图(a)是使能端高电平有效的三态与非门,当使能端EN = 1时,电路为正常的工作状态,与普通的与非门一样,实现Y = ;当EN = 0时,为禁止工作状态,Y 输出呈高阻状态。
OC门和三态门集电极开路门电路(OC门)在TTL与非门电路中将T4解掉换成电阻R c(如下图):其逻辑功能并没有改变,仍有A=B=1, T5导通,输出端为低电平Y=0。
A、B中只要有一个0, T5截止,输出端为高电平5V(TTL与非门输出高电平Yv OH=3.6V),Y=1。
由R4取代T4,显然逻辑功能未变,但速度大为降低。
把R4不做在集成电路的内部(T5的集电极处于开路状态),使用OC门集成块时,用户必须选定合适的阻值,将R c接到门的输出端与电源之间,该OC门才能具有稳定的逻辑功能(如不把R c接进去,任其集电极开路,该电路不具备正常的逻辑功能)。
这种电路称为集电极开路门电路——简称OC门。
用如下符号表示:OC门的最大特点是具有线与功能。
几个OC门共用一个R c(输出端并接在一起),其输出为单个OC门输出之积(与)。
可以等于也可以大于v cc。
三态输出门电路(TS(Three-state output Gate)门)上图为三态门输出门电路的原理图。
在图中,如果将虚线方框内的两个反相器和一个二极管剪掉,剩下的部分就是典型的TTL与非门电路。
所谓三态是指输出端而言。
普通的TTL与非门其输出极的两个晶体管T4、T5始终保持一个导通,另一个截止的推拉状态。
T4导通,T5截止,输出高电平Y=1;T4截止,T5导通,输出低电平,Y=0。
三态门除了上述两种状态外,又出现了T4、T5同时截止的第三种状态。
因为晶体管截止时c、e之间是无穷大阻抗,输出端Y对地、对电源(v cc)阻抗无穷大。
因此这第三种状态也称高阻状态。
现对三种状态进行分析:控制信号可在E N处加入,也可在处加入:E N=0,=1,则C=0,v B1=0.9V,v c2=0.9Vv B4=v c2=0.9V,T4截止(T4导通的电位v B4>1.4V)v B1=0.9V,T5截止,输出端Y为高阻状态。
E N=1,=0,C=1,对与非门另两个A、B输入端无影响,为正常的与非门电路。
OC门和三态门集电极开路门电路(OC门)在TTL与非门电路中将T4解掉换成电阻R c(如下图):其逻辑功能并没有改变,仍有A=B=1, T5导通,输出端为低电平Y=0。
A、B中只要有一个0, T5截止,输出端为高电平5V(TTL与非门输出高电平Yv OH=3.6V),Y=1。
由R4取代T4,显然逻辑功能未变,但速度大为降低。
把R4不做在集成电路的内部(T5的集电极处于开路状态),使用OC门集成块时,用户必须选定合适的阻值,将R c接到门的输出端与电源之间,该OC门才能具有稳定的逻辑功能(如不把R c接进去,任其集电极开路,该电路不具备正常的逻辑功能)。
这种电路称为集电极开路门电路——简称OC门。
用如下符号表示:OC门的最大特点是具有线与功能。
几个OC门共用一个R c(输出端并接在一起),其输出为单个OC门输出之积(与)。
可以等于也可以大于v cc。
三态输出门电路(TS(Three-state output Gate)门)上图为三态门输出门电路的原理图。
在图中,如果将虚线方框内的两个反相器和一个二极管剪掉,剩下的部分就是典型的TTL与非门电路。
所谓三态是指输出端而言。
普通的TTL与非门其输出极的两个晶体管T4、T5始终保持一个导通,另一个截止的推拉状态。
T4导通,T5截止,输出高电平Y=1;T4截止,T5导通,输出低电平,Y=0。
三态门除了上述两种状态外,又出现了T4、T5同时截止的第三种状态。
因为晶体管截止时c、e之间是无穷大阻抗,输出端Y对地、对电源(v cc)阻抗无穷大。
因此这第三种状态也称高阻状态。
现对三种状态进行分析:控制信号可在E N处加入,也可在处加入:E N=0,=1,则C=0,v B1=0.9V,v c2=0.9Vv B4=v c2=0.9V,T4截止(T4导通的电位v B4>1.4V)v B1=0.9V,T5截止,输出端Y为高阻状态。
E N=1,=0,C=1,对与非门另两个A、B输入端无影响,为正常的与非门电路。
门电路-OC门和三态门一、OC门实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态)用同一条导线输送出去。
因此,需要一种新的与非门电路来实现线与逻辑,这种门电路就是集电极开路与非门电路,简称OC门(open collector)。
OC门电路及逻辑符号见图Z1201,该电路的特点是输出管T5的集电极悬空,使用时需外接一个负载电阻RP和电源E c。
OC门的主要用途有以下3个方面:(1)实现与或非逻辑用n个OC门实现与或非逻辑的电路如图Z1202所示.因为任何一个门输入全为1时,其输出为零,而n个门的输出端又并接在一起(线与),故输出Y=0,即Y=A1B1+A2B2+……+A n B n,是与或非的逻辑功能。
(2)用做电平转换在数字系统的接口部分常需要进行所示电平转换,这可用OC门来实现.如图Z1203所示电路是用OC门把输出高电平变换为10V的电路。
(3)用做驱动器可以用OC门驱动指示灯,继电器等,其驱动指示灯的电路如图Z1204所示。
二、三态输出门1. 三态门的特点三态输出门又称三态电路。
它与一般门电路不同,它的输出端除了出现高电平、低电平外,还可以出现第三个状态,即高阻态,亦称禁止态,但并不是3个逻辑值电路。
2. 三态逻辑与非门三态逻辑与非门如图Z1205所示。
这个电路实际上是由两个与非门加上一个二极管D2组成。
虚线右半部分是一个带有源泄放电路的与非门,称为数据传输部分,T5管的u I1、u I2称为数据输入端。
而虚线左半部分是状态控制部分,它是个非门,它的输入端C称为控制端,或称许可输入端、使能端。
当C端接低电平时,T4输出一个高电平给T5,使虚线右半部分处于工作状态,这样,电路将按与非关系把u I1,u I2接受到的信号传送到输出端,使u0或为高电平,或为低电平。
当C端接高电平时,T4输出低电平给T5,使T6、T7、T10截止。
另一方面,通过D2把T8的基极电位钳在1v左右,使T9截止。