燃料及燃烧2 燃烧计算及燃烧理论
- 格式:ppt
- 大小:676.00 KB
- 文档页数:12
第三章 燃料及燃烧过程3-2 燃料燃烧计算一、燃料燃烧计算的内容及目的(一)计算内容:①空气需要量 ②烟气生成量 ③烟气成分 ④燃烧温度 (二)目的:通过对以上内容的计算,以便正确地进行窑炉的设计和对运行中的窑炉进行正确的调节。
二、燃烧计算的基本概念 (一)完全燃烧与不完全燃烧。
1、完全燃烧:燃料中可燃成分与完全化合,生成不可再燃烧的产物。
2、不完全燃烧:化学不完全燃烧:产物存在气态可燃物。
物理不完全燃烧:产物中存在固态可燃物。
(二)过剩空气系数 1、过剩空气系数的概念а=V a /V 0a2、影响过剩空气系数的因素:1)燃料种类:气、液、固体燃料,а值不同; 2)燃料加工状态:煤的细度、燃油的雾化粘度。
3)燃烧设备的构造及操作方法。
3、火焰的气氛:①氧化焰:а>1,燃烧产物中有过剩氧气。
②中性焰:а=1③还原焰:а<1,燃烧产物中含还原性气体(CO 、H 2)三、空气需要量、烟气生成量及烟气成分、密度的计算(一)固体、液体燃料:基准:计算时,一般以1kg 或100kg 燃料为基准,求其燃烧时空气需要量、烟气生成量。
方法:按燃烧反映方程式,算得氧气需要量及燃烧产量,然后相加,即可得空气需要量与烟气生成量。
1、理论空气量计算: 1)理论需氧量: V 0O2=12ar C +4ar H +32ar S -32ar O(Nm 3/kgr)2)理论空气量:V 0a =1004.22(12ar C +4ar H +32ar S -32ar O )21100=0.089C ar +0.267H ar +0.033(S ar -O ar ) (Nm 3/kgr)2、实际空气量计算: V a =а×V o a3、理论烟气生成量的计算:V 0L =V CO2+V H2O +V SO2+V N2=1004.22 (12ar C +2ar H +18ar M +32ar S +28arN )×V o a +0.79V o a =0.01865C ar +0.112H ar +0.01243M ar +0.0068S ar +0.008N ar +0.79V o a4、实际烟气生成量的计算: 1)а>1时,V L = V 0L +(а-1)×V o a2)а<1时,在工程上进上近似认为其燃烧产物中只含有CO 一种可燃气体。
第二部分:热工计算(4-6章)第一次课课题: 4. 燃料及燃烧计算§4.1燃料的通性一、本课的基本要求:1.掌握燃料的化学组成及各种成分之间的相互转换。
2.燃料发热量的计算。
3.标准燃料的概念。
二、本课的重点、难点:1. 重点:燃料的化学组成。
2. 难点::燃料成分之间的相互转换。
三、作业:第4章燃料及燃烧计算1.燃料的定义:凡是在燃烧时(剧烈地氧化)能够放出大量的热,并且此热量能有效地被利用在工业或其他方面的物质称为燃料。
. 所谓有效地利用是指利用这些热源在技术上是可能的在经济上是合理的。
2.对燃料的要求:(1)在当今技术条件下,单位质量(体积)燃料燃烧时所放出的热可以有效地利用。
(2)燃烧生成物是气体状态,燃烧后的热量绝大部分含欲其气体生成物之中,而且可以在放热地点以外利用生成物中所含的热量。
(3)燃烧产物的性质时熔炼(加热)设备不起破坏作用,无毒、无腐蚀作用。
(4)燃烧过程易于控制。
(5)有足够多的蕴藏量,便于开采。
§4.1 燃料的通性一、燃料的化学组成1.固(液)体燃料的化学组成(1)固(液)体燃料的基本组成固液体燃料的基本组成有C、H、O、N、S、W(水分)及A(灰分),其中C、H、S 能燃烧放热构成可燃成分,但S燃烧后生成的而氧化硫为有毒气体。
所以视硫为有害成分;氧和氮的存在相对降低了可燃成分的含量,属于有害物质;水分(W)的存在不仅相对降低了可燃成分含量,而且水分在蒸发时要吸收大量的热,所以视水为有害物质;灰分的存在不仅降低了可燃成分的含量,而且影响燃烧过程的进行,在燃烧过程中易溶结成块,阻碍通讯,造成燃料浪费和增加排灰的困难。
(2)固(液)体燃料的成分分析固(液)体燃料的成分分析方法有元素分析法和工业分析法两种。
元素分析法是确定燃料中C、H、O、N、S的重量百分含量,它不能说明燃料由那些化合物组成及这些化合物的形式。
只能进行燃料的近似评价,但元素分析法的结果是燃料计算的重要原始数据。
燃烧机理分析林树军浙江温岭燃烧过程高速摄影1燃料和空气混合气缸混合气残余废气过程湍流火焰燃气混合物燃料空气点火TDC@1430r/min&部分负荷Lamberda=1.30喷油角度为30CRA BTC出现火焰达到离火花塞最远的气缸壁理论温度最高点燃烧阶段划分火焰高速传播期火焰传播火焰扩散期早期火焰传播火焰终止火花点燃2燃烧机理解释内燃机的燃烧过程是湍流燃烧,而湍流燃烧是一种极其复杂的带化学反应的流动现象,湍流与燃烧的相互作用涉及许多因素,流动参数与化学动力学参数之间的耦合的机理极其复杂,用数值模拟方法分析和预测湍流燃烧现象的关键问题是正确模拟平均化学反应率,即燃料的湍流燃烧速率。
3燃烧湍流模型Eddy Break up(涡团破碎模型)Spalding的涡团破碎模型,其基本思想是:对预燃火焰、湍流燃烧区中的已燃气体和未燃气体都是以大小不等并作随机运动的涡团形式存在。
化学反应在这两种涡团的交界面上发生。
化学反应的速率取决于未燃气体涡团在湍动能作用下破碎成更小的涡团的速率,而此破碎速率正比于湍流脉动动能k的耗散率,其基本表达方式如下:该模型是AVL公司fire软件里面计算燃烧的基础计算模型。
4缸内传热模型5内燃机的传热既是与燃烧现象密切耦合的一个子过程,又是整个燃烧循环模拟的一个重要环节。
然而,内燃机的传热问题又被认为热问题中最复杂的一个,这是因为由于内燃机工作过程强烈非定温度变化的高度瞬变性,以致在毫秒量级的时间内,燃烧室表面的热流量从零变化到10MW/m2,同时温度和热流的空变化也非常剧烈。
在1cm 的位置上,热流峰值相差可达5MW/m2。
一般而言,发动机的传热计算包括3个方面:(1)工质与燃烧室热量的交换(包括对流和辐射两种方式);(2)燃烧室壁内部的热传导;(3)燃烧室外壁与冷却对流和沸腾传热。
对于内燃机燃烧过程来说,主要考虑的第一项,因而对于内燃机传热模型方面主要考虑两个方面:1、工质与壁面之间的对流换热模型,2、是辐射换热模型。
《燃料与燃烧》习题解(仅供参考)第一篇 燃料概论1. 某种煤的工业分析为:M ar =3.84, A d =10.35, V daf =41.02, 试计算它的收到基、干燥基、干燥无灰基的工业分析组成。
解:干燥无灰基的计算:02.41=daf V98.58100=-=daf daf V Fc ;收到基的计算 ar ar ar ar V M A FC ---=10036.35100100=--⨯=arar daf ar A M V VA ar = 9.95 FC ar = 50.85干燥基的计算: 35.10=d AV d = 36.77;88.52100=--=d d d A V FC2. 某种烟煤成分为:C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 A d =8.68 M ar =4.0;试计算各基准下的化学组成。
解:干燥无灰基:80.3100=----=daf daf daf daf daf N O H C S 收到基: 33.8100100=-⨯=ard ar M A A95.72100100=--⨯=ar ar dafar M A C CH ar =5.15 O ar =4.58 N ar =1.67 S ar =3.33 M ar =4.0 干燥基: 68.8=d A 99.75100100=-⨯=ddaf d A C C 36.5913.0=⨯=daf d H H 77.4913.0=⨯=daf d O ON d = N daf ×0.913 =1.7447.3913.0=⨯=daf d S S干燥无灰基:C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 S daf =3.803. 人工煤气收到基组成如下:计算干煤气的组成、密度、高热值和低热值;解:干煤气中: H 2,d = 48.0×[100/(100-2.4)]=49.18 CO ,d = 19.3×1.025=19.77 CH 4,d = 13.31 O 2,d = 0.82 N 2,d = 12.30 CO 2,d = 4.61ρ=M 干/22.4=(2×49.18%+28×19.77%+16×13.31%+32×0.82%+28×12.30%+44×4.61%)/22.4= 0.643 kg/m 3Q 高 =4.187×(3020×0.1977+3050×0.4918+9500×0.1331)=14.07×103 kJ/m 3= 14.07 MJ/ m 3Q 低 =4.187×(3020×0.1977+2570×0.4918+8530×0.1331)=12.55×103 kJ/m 3= 12.55 MJ/ m 3第二篇 燃烧反应计算第四章 空气需要量和燃烧产物生成量5. 已知某烟煤成分为(%):C daf —83.21,H daf —5.87, O daf —5.22, N daf —1.90,S daf —3.8, A d —8.68, W ar —4.0,试求:(1) 理论空气需要量L 0(m 3/kg ); (2) 理论燃烧产物生成量V 0(m 3/kg );(3) 如某加热炉用该煤加热,热负荷为17×103kW ,要求空气消耗系数n=1.35,求每小时供风量,烟气生成量及烟气成分。