纳米氢氧化镁的应用
- 格式:docx
- 大小:15.55 KB
- 文档页数:1
氢氧化镁和纳米氢氧化镁1. 氢氧化镁是一种无机化合物,由镁离子(Mg2+)和氢氧根离子(OH-)组成。
它的化学式是Mg(OH)2。
氢氧化镁常见的形式是白色固体粉末,在水中不溶解,但可以与酸反应生成镁盐和水。
因为其碱性,氢氧化镁常被用作中和酸的试剂或抗酸药物。
2. 纳米氢氧化镁是氢氧化镁的一种纳米级别的形式。
纳米氢氧化镁具有更小的颗粒大小,通常在1到100纳米之间。
相比普通氢氧化镁,纳米氢氧化镁具有更大的比表面积和更高的活性。
由于其颗粒尺寸较小,纳米氢氧化镁在化学反应、催化剂、生物医学等领域具有广泛的应用前景。
3. 纳米氢氧化镁的制备方法有多种。
常见的方法包括溶胶-凝胶法、水热法、溶剂热法、共沉淀法等。
这些方法可以通过控制反应条件和添加剂来调节纳米氢氧化镁的形貌、尺寸和结构。
4. 纳米氢氧化镁在医药领域有着广泛的应用。
由于其良好的生物相容性和抗菌性能,纳米氢氧化镁被用作抗菌药物的载体,可以用于治疗感染性疾病。
此外,纳米氢氧化镁还具有较高的药物加载能力,可以用于药物传递系统的制备。
5. 在环境领域,纳米氢氧化镁也被广泛研究和应用。
纳米氢氧化镁可以作为吸附剂去除水中的有机物和重金属离子,用于水处理和废水处理。
此外,由于纳米氢氧化镁具有催化性能,它还可以用于催化剂的制备,用于有机合成反应的催化。
总结起来,氢氧化镁是一种无机化合物,常用于中和酸的试剂和抗酸药物。
纳米氢氧化镁是氢氧化镁的一种纳米级别的形式,具有更大的比表面积和更高的活性。
它在医药和环境领域有着广泛的应用,包括治疗感染性疾病、药物传递系统的制备、水处理和催化剂的制备等。
第22 卷第4 期盐湖研究Vol. 22 No. 4 2 0 1 4 年 1 2 月JOURNAL OF SALT LAKE RESEARCH Dec. 2014氢氧化镁作为吸附剂的应用研究进展霍闪1,2,卿彬菊1,邓小川1,朱朝梁1,温现明1,史一飞1,邵斐1 ( 1.中国科学院青海盐湖研究所,青海西宁810008;2.中国科学院大学,北京100049)摘要: 由于氢氧化镁具有较强的吸附特性,且具有活性强、缓冲性好、无腐蚀性等特点,作为一种安全、无毒的吸附剂,在环保领域有较广泛的应用。
全面综述了氢氧化镁作为吸附剂在各种水质废水( 包括酸性废水、印染废水、含重金属工业废水、含磷和铵城市废水) 处理,以及在海( 卤) 水除硼和烟气脱硫等方面的应用研究。
关键词: 氢氧化镁; 吸附剂; 废水处理; 废气处理中图分类号: O647. 3 文献标识码: A 文章编号: 1008 - 858X( 2014) 04 - 0057 - 041 前言纯氢氧化镁( Mg( OH)2) 为六方晶系或无定形晶体,具有晶粒尺寸小、比表面积大、颗粒之间凝聚性强的特点。
目前,氢氧化镁产品主要有料浆状、滤饼状和粉末状3 种类型[1]。
料浆状产品通常指含氢氧化镁30% ~40% 的乳液,不发生沉降和凝聚,流动性较好,易于储存,不腐蚀设备,而且便于使用和调节,应用最为广泛,被称为“绿色安全的中和剂”,同时也被广泛应用于吸附领域。
滤饼状产品中氢氧化镁含量在50% 以上,高于料浆状产品,但游离水含量少。
粉末状产品中氢氧化镁含量在95% 以上,基本不含水分,比表面积大,因此具有很好的吸附性。
氢氧化镁由于缓冲性能良好( pH 值最高不超过9 )、活性大、吸附能力强、不具备腐蚀性、安全、无毒、无害,近年来广泛应用于酸性废水处理、印染废水脱色、重金属离子去除、废水脱磷脱铵、海( 卤) 水脱硼和烟气脱硫等领域,效果良好。
2 氢氧化镁作为吸附剂的应用2.1酸性废水处理酸性废水一般是指工业企业在生产过程中排出的已被利用过的pH 值小于6 的生产用水,亦称之为含酸废水。
氢氧化镁分类
氢氧化镁是一种无机化合物,由镁离子和氢氧根离子组成。
根据其物
理性质、化学性质和用途等方面的不同,可以将其分类如下:
1. 普通氢氧化镁:普通氢氧化镁是最常见的一种形式,也被称为轻质
氢氧化镁。
它具有白色粉末状或结晶状,可溶于水,并能与酸反应产
生盐和水。
普通氢氧化镁主要用于制造反应剂、防火材料和医药制品等。
2. 重质氢氧化镁:重质氢氧化镁也被称为活性氢氧化镁,它比普通的
轻质氢氧化镁更重,颜色较深,并且不易溶解于水。
重质氢氧化镁具
有较强的碱性,在酸性环境中可作为中和剂使用。
此外,它还可以作
为催化剂、净水剂以及钾肥生产原料等。
3. 水合物:水合物是指在分子中含有一定数量的结晶水分子的物质。
在这种情况下,氢氧化镁的分子中会存在一定数量的水分子。
根据不
同的结晶形态和水含量,可以将其分为正水合物、半水合物和无水物
等不同类型。
4. 纳米氢氧化镁:纳米氢氧化镁是指颗粒大小在纳米级别的氢氧化镁。
由于其颗粒尺寸小,表面积大,因此具有较强的吸附性能和催化性能
等。
纳米氢氧化镁可用于制备高性能材料、催化剂、生物医药等领域。
总之,根据不同方面的分类标准,我们可以将氢氧化镁分为普通氢氧
化镁、重质氢氧化镁、水合物和纳米氢氧化镁等不同类型。
这些分类
标准有助于我们更好地理解和应用这种重要的无机化合物。
混凝土中的氢氧化镁应用及研究一、前言混凝土是一种常用的建筑材料,在建筑、桥梁、隧道等工程中得到广泛应用。
然而,混凝土在使用过程中存在一些问题,如开裂、渗漏、酸蚀等。
针对这些问题,研究人员不断探索改进混凝土的性能。
近年来,氢氧化镁作为一种新型的混凝土添加剂,受到了广泛关注。
本文将从氢氧化镁的基本性质、应用方式和研究进展三个方面,全面介绍混凝土中的氢氧化镁应用及研究。
二、氢氧化镁的基本性质氢氧化镁(Mg(OH)2)是一种白色粉末,是一种碱性物质。
其分子量为58.32,密度为2.36 g/cm³。
氢氧化镁的热稳定性较好,在高温下也不易分解。
此外,氢氧化镁还具有一定的吸湿性,能够吸收周围环境中的水分。
三、氢氧化镁在混凝土中的应用方式1. 氢氧化镁作为混凝土防水剂混凝土在使用过程中,容易受到水分的侵蚀,导致渗漏、裂缝等问题。
氢氧化镁可以作为一种混凝土防水剂,有效地解决这些问题。
氢氧化镁能够吸收周围环境中的水分,并形成一层保护膜,防止水分渗透。
此外,氢氧化镁还能够填充混凝土中的微孔和裂缝,增加混凝土的密实性和耐水性。
2. 氢氧化镁作为混凝土防火剂混凝土在遭受火灾时,容易失去强度和稳定性,导致建筑物的倒塌。
氢氧化镁可以作为一种混凝土防火剂,有效地提高混凝土的耐火性能。
氢氧化镁在遇到高温时会分解,释放出水分和二氧化碳,形成一层保护膜,防止火灾对混凝土的破坏。
此外,氢氧化镁还能够填充混凝土中的微孔和裂缝,增加混凝土的密实性和耐火性。
3. 氢氧化镁作为混凝土碱性材料混凝土中的水泥会产生碱性反应,导致混凝土开裂和腐蚀钢筋。
氢氧化镁可以作为一种混凝土碱性材料,中和混凝土中的碱性物质,减轻混凝土的碱性反应。
此外,氢氧化镁还能够填充混凝土中的微孔和裂缝,增加混凝土的密实性和耐久性。
四、氢氧化镁在混凝土中的研究进展1. 氢氧化镁与其他混凝土添加剂的复合应用氢氧化镁与其他混凝土添加剂的复合应用是当前的研究热点之一。
研究表明,氢氧化镁与微硅粉、硅灰石、磷酸盐等添加剂的复合应用,可以显著提高混凝土的力学性能、耐久性和防火性能。
纳米阻燃氢氧化镁/聚氧化乙烯复合聚合物电解质李亚娟1,*詹晖2刘素琴1黄可龙1周运鸿2(1中南大学化学化工学院,长沙410083;2武汉大学化学与分子科学学院,武汉430072)摘要:合成了纳米氢氧化镁作为聚氧化乙烯(PEO)基聚合物电解质的增塑剂和阻燃剂,并对其进行X 射线衍射(XRD)、透射电子显微镜(TEM)和热重(TG)分析研究.制得的氢氧化镁为片状六方晶体,尺寸在50-80nm 之间,纳米氢氧化镁在340℃时开始热分解.对纳米氢氧化镁/PEO 复合聚合物电解质的电化学研究结果显示:纳米氢氧化镁/PEO 复合聚合物电解质的离子电导率随着添加纳米氢氧化镁的质量分数的增加先增大后减小,其在5%-10%之间时,复合聚合物电解质的离子电导率达到最大值.纳米氢氧化镁的添加使复合聚合物电解质的阳极氧化电位有一定程度的提高,纳米氢氧化镁具有改善PEO 阳极抗氧化能力的作用.关键词:锂离子电池;纳米氢氧化镁;阻燃;聚氧乙烯;聚合物电解质中图分类号:O646Nanosized Flame Retarded Hydroxide Magnesium/Poly(ethylene -oxide)Composite Polymer ElectrolyteLI Ya -Juan 1,*ZHAN Hui 2LIU Su -Qin 1HUANG Ke -Long 1ZHOU Yun -Hong 2(1College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,P.R.China ;2College of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072,P.R.China )Abstract :We prepared nanosized hydroxide magnesium (Mg(OH)2)as a plasticizer and a flame -retarding additive for a poly(ethylene -oxide)(PEO)based polymer electrolyte.We characterized the prepared compound using transition electron microscopy (TEM),X -ray diffraction (XRD),and thermogravimetry (TG).The prepared hydroxide magnesium particles are hexagonal crystals with sizes of 50-80nm.The decomposition of the prepared nanosized hydroxide magnesium started at 340℃.Electrochemical measurements shows that the ionic conductivity of the Mg(OH)2/PEO composite polymer electrolytes (CPEs)increases initially and then decreases with an increase in hydroxide magnesium content.It reaches a maximum when the hydroxide magnesium mass fraction is between 5%and 10%.The anodic decomposition potential of the CPEs increases to a certain extent as the hydroxide magnesium content increases.Hydroxide magnesium has a positive influence on the electrochemical stability of PEO.Key Words :Lithium ion battery;Nanosized hydroxide magnesium;Flame -retarding;Poly(ethylene -oxide);Polymer electrolyte[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .,2010,26(9):2387-2391目前,已经商品化的锂离子电池基本上采用有机液态电解液.而有机液态电解液沸点低,易燃烧,这就限制了锂离子电池的发展.采用不挥发的聚合物固体电解质是解决这一问题的有效途径之一.聚氧化乙烯(PEO)具有独特的分子结构和空间结构,它既能提供足够高的给电子基团密度,又具有柔性聚醚链段,因此,能够以笼囚效应有效地溶解阳离子[1],是目前研究得最广泛深入的锂离子聚合物固体电解September Received:January 15,2010;Revised:May 13,2010;Published on Web:June 23,2010.*Corresponding author.Email:yajuanlee@;Tel/Fax:+86-731-88879850.The project was supported by the National Science Foundation for Post -doctoral Scientists of China (20080440989)and Specialized Research Fund for the Doctoral Program of Higher Education of China (20090162120011).中国博士后基金(20080440989)和高等学校博士学科点专项科研基金(20090162120011)资助项目鬁Editorial office of Acta Physico -Chimica Sinica2387Acta Phys.-Chim.Sin.,2010Vol.26质体系.锂离子在PEO基聚合物电解质中的迁移过程可以认为是锂离子与氧官能团的配位与解离过程.在电场作用下,随着高弹态中分子链段的热运动,迁移离子与氧基团不断发生配位-解离.通过局部松弛和PEO的链段运动进行快速迁移.该运动主要发生在无定形相中,电导率比在晶相中高2-3个数量级[1].对于PEO聚合物电解质而言,由于锂离子的迁移主要是在聚合物的非晶区进行,而PEO易结晶,因此其室温或低于室温时的电导率比较低,大都小于10-6S·cm-1,限制了纯PEO聚合物电解质的应用.为抑制PEO结晶以提高聚合物电解质的离子电导率,目前采用的方法主要有:(1)通过与其他聚合物[2-5]或无机物[6-17]共混,以破坏PEO分子链排列的规整性,获得非晶结构,提高离子电导率;(2)通过形成无规共聚物[18]、嵌段共聚物[19]、梳形共聚物[20-22]、超枝化和星形聚合物[23-25]以及交联[26],以破坏PEO的结晶,提高离子电导率.PEO与无机颗粒特别是纳米级粉末进行复合是改善PEO基聚合物电解质性能最有效、最简单的方法.许多高比表面的颗粒如SiO2[10]、TiO2[11]、MgO[12]、Al2O3[13]、铁电材料BaTiO3和SrTiO3[14]、LiAlO2[15]、导电的碳黑[16]和AlBr3[17]等被作为填料加入聚合物基体中,制得的复合聚合物电解质(CPE)的机械性能和电化学性能方面都有明显提高.对于此类复合材料机械性能的提高,可用无机粉状材料填充高分子材料增强理论来解释.无机粉末粒子和聚合物分子链通过范德华力相互作用,形成一种三维网络结构,当聚合物分子链受到应力作用时,可以通过网络交联点将应力分散到其他分子链上,这样即使其中一根分子链断裂,其它链可以照样起作用,而不至于危及整体.加入无机填料后,CPE的电导率升高是因为:一方面填料与聚合物相互作用,尤其是纳米级的微粒能分散于聚合物分子之间,影响聚合物电解质在室温下的相组成,增大了体系的无定形相含量,提高了分子链段的蠕动能力[27];另一方面,填料作为Lewis 酸与锂盐负离子X-及PEO中的O等Lewis碱发生反应,减少Li+-X-离子对,增大了自由载流子的数目,而且也减弱了O-Li+相互作用,使锂离子更容易传输,从而增大了离子电导率.另外不论是物理改性还是化学改性PEO基聚合物电解质的主要成分还是聚醚链锻,通过理论计算PEO的氧指数(LOI)在17.5%左右.一般认为LOI≥27%的物质为阻燃性物质.据此可知PEO属于易燃物,所以提高其阻燃性也是至关重要的.因此填充的无机纳米颗粒如果具有阻燃性能,复合聚合物电解质的电化学性能和安全性能都会有很大的提高.氢氧化镁(Mg(OH)2)属于添加型无机阻燃剂,它的热分解温度高,初始分解温度为340℃,到490℃时分解完全[28].受热分解产生水,同时吸收大量热.吸热总量为44.8kJ·mol-1.它还能促进聚合物的成炭作用,形成保护层.与同类无机阻燃剂相比,在使高分子材料获得优良的阻燃效果之外,还能够抑制烟雾和卤化氢等毒性气体的生成.氢氧化镁在生产、使用和废弃物产生的过程中均无有害物质排放,是一种环境友好的绿色阻燃剂.本文制取了纳米级氢氧化镁,将纳米级氢氧化镁与PEO复合制取聚合物电解质.1实验部分1.1纳米氢氧化镁的制备采用沉淀法制备氢氧化镁.分别称取适量的Mg(NO3)2·6H2O(分析纯,上海试剂厂)和十二烷基磺酸钠(Aldrich)置于烧杯中,加入二次水,将烧杯于90℃水浴中搅拌使其溶解.另称取适量LiOH·H2O(分析纯,上海试剂厂)溶于水中,将LiOH溶液缓慢加入到上面的Mg(NO3)2溶液中,加入的同时迅速搅拌.保持混合物在90℃水浴中继续搅拌1h.将产物抽滤后置于真空干燥箱内80℃烘干.1.2复合聚合物电解质膜的制备采用溶液浇注法制备复合聚合物电解质膜.称取所需量的LiN(CF3SO2)2(LiTFSI)(Aldrich)和纳米Mg(OH)2,加入一定量的甲醇(分析纯,上海试剂厂)中,磁力搅拌4h分散均匀.按PEO中乙氧基与锂盐的物质的量之比为20∶1来称取PEO(MW=4×106, Aldrich),并加入到上述混合液中,继续磁力搅拌24 h.待物料混合均匀后,将其倒入聚四氟乙烯平底圆盘中.常温下,于通风橱中缓慢挥发溶剂,溶剂挥发完毕便得到复合聚合物电解质薄膜,然后将电解质薄膜转移到真空干燥箱中,在70℃真空干燥48h.将干燥好的膜放入充满氩气的手套箱内保存备用. 1.3离子电导率的测定电导率的测定使用的仪器是荷兰ECO CHEMIE公司生产的AUTOLAB PGSTAT12型电化学工作站.在充满氩气的手套箱中,将一定厚度的2388No.9李亚娟等:纳米阻燃氢氧化镁/聚氧化乙烯复合聚合物电解质聚合物电解质膜夹入两个面积为0.8cm 2的不锈钢阻塞电极之间,并密封.测量其交流阻抗谱.通过阻抗谱图拟合求出电解质膜的本体电阻R .根据公式σ=L /(R ·S )计算电解质膜电导率.式中σ为聚合物电解质膜的电导率;L 为电解质膜厚度;R 为聚合物电解质膜的本体电阻;S 为电解质膜面积.测试不同温度下电解质膜的电导率时,将待测体系在指定温度下恒温3h 以达到充分的热平衡.频率范围1-105Hz,电压振幅为5mV.1.4电化学稳定窗口的测定电解质的电化学稳定窗口是表征电解质的重要参数之一,由于锂离子电池使用具有高氧化电位的正极材料(一般大于4V),因此电解质必须具有宽的电化学稳定窗口.电化学稳定窗口测定采用的是上海辰华仪器公司生产的CHI600型电化学工作站.采用线性扫描法测量电化学稳定窗口,铂电极为工作电极,锂片为对电极和参比电极,电流突然增大的点所对应的电位即认为是聚合物电解质的电化学稳定窗口电位.扫描速率为1mV ·s -1.1.5性质表征X 射线衍射(XRD)测试采用的是日本岛津公司生产的XRD6000型X 射线粉末衍射仪,采用Cu 靶K α,加速电压为30kV,电流为30mA,扫描速率为4(°)·min -1,扫描范围10°-80°;采用JEM -2010型透射电子显微镜(TEM)(日本)对制得的氢氧化镁形貌进行观察.热重(TG)分析采用北京光学仪器厂生产的WCT -1A 型微机差热天平.温度范围是:室温-800℃,升温速率10℃·min -1.2结果与讨论2.1改性氢氧化镁的制备与表征图1是直接沉淀法合成的氢氧化镁的透射电镜照片,由图1可看出,制得的氢氧化镁具有片状六方形结构,并且尺寸在50-80nm 之间.图中氢氧化镁周围有尺寸只有几个纳米的小颗粒,可能是少量残留在样品中的十二烷基磺酸锂.图2是氢氧化镁XRD 图谱,其主峰完全符合六方Mg(OH)2晶体结构.谱图中2θ角为18.6°、32.8°、38.0°、50.8°、58.6°、62.1°、68.2°、68.8°和72.0°时分别出现的是(001)、(100)、(101)、(102)、(110)、(111)、(103)、(200)和(201)衍射峰.但(103)和(200)基本重合,说明部分氢氧化镁片状六方形结构不够完整,这从图1中也可以观察到部分氢氧化镁晶体不是规则的六方形.图3是氢氧化镁的热重曲线,在100℃以内约5%的失重主要来源于产物中物理吸附的水份的蒸发.340-390℃温度区间的失重是氢氧化镁的热分解失水过程.从热重曲线还可以看出,在200-250℃温度区间有个微弱的失重,主要来源于产物中残留的少量的十二烷基磺酸锂的分解.图3氢氧化镁的热重曲线Fig.3Thermogravimetric curve of Mg(OH)2图1氢氧化镁的透射电镜照片Fig.1TEM image of Mg(OH)2图2氢氧化镁的XRD 图谱Fig.2XRD pattern of Mg(OH)22389Acta Phys.-Chim.Sin.,2010Vol.262.2氢氧化镁/PEO 复合聚合物电解质的电化学性能图4是复合聚合物电解质PEO 20LiTFSI+氢氧化镁的电导率随氢氧化镁添加量的变化曲线,由图可知不论是在25℃还是60℃,复合聚合物电解质的离子电导率随氢氧化镁添加量的增加先增大后减小,在5%-10%之间达到最大值,这是因为改性氢氧化镁的加入抑制PEO 的结晶,使聚合物向易于离子传输的非晶态结构转变.纳米氢氧化镁添加量为15%时复合聚合物电解质的离子电导率虽然开始降低,但仍然高于没添加纳米氢氧化镁的纯PEO 聚合物电解质的离子电导率.而纳米氢氧化镁添加量达到30%时,复合聚合物电解质的离子电导率低于纯PEO 聚合物电解质的离子电导率.这说明纳米氢氧化镁的添加量过多反而会阻碍PEO 分子的链段运动,从而导致离子电导率降低.从图4还可看出,随着温度的升高相同组成的复合聚合物电解质的离子电导率先快速升高,60℃之后离子电导率升高趋缓.这主要是PEO 分子在60℃开始熔融,低于60℃时,随着温度提高,无定型相增加,故离子电导率增加.而高于60℃时,温度增加,无定型相的含量增加不明显,故离子电导率增加趋缓.图5和图6分别是复合聚合物电解质在25和80℃时的阳极氧化曲线.由图5和图6可以很清楚地看出,不论在25℃还是在80℃,纯PEO 聚合物电解质的阳极抗氧化电位约在4.5V,而添加了纳米氢氧化镁的复合聚合物电解质的阳极抗氧化电位有一定提高.这说明纳米氢氧化镁对提高PEO 聚合物电解质的电化学稳定性有很好的作用.研究者普遍认为无机粉末的加入,吸收了聚合物电解质中的杂质、氧气和残余水份,使这些活性小分子不能参与电极反应,从而使得聚合物电解质的阳极抗氧化能力得到提高[14].3结论纳米氢氧化镁/PEO 复合聚合物电解质中,随着纳米氢氧化镁添加量的增加,复合聚合物固体电解质的离子电导率先增加后减小,添加量在5%-10%之间,复合聚合物电解质的离子电导率达到最大值,添加量大于15%后,复合聚合物电解质的离子电导率低于未添加纳米氢氧化镁的纯PEO 聚合物电解质的离子电导率.同时,纳米氢氧化镁可提高PEO 聚合物电解质的阳极抗氧化能力,对提高聚合物电解质的电化学稳定性有很好的作用.这些研究结果图6复合聚合物电解质在80℃时的阳极氧化曲线Fig.6Anodic decomposition curves of the CPEsat 80℃图4不同温度下复合聚合物电解质离子电导率随氢氧化镁质量分数(w )的变化曲线Fig.4Ionic conductivity of composite polymer electrolyte as a function of hydroxide magnesium mass fraction (w )at different temperatures图5复合聚合物电解质在25℃时的阳极氧化曲线Fig.5Anodic decomposition curves of the CPEsat 25℃2390No.9李亚娟等:纳米阻燃氢氧化镁/聚氧化乙烯复合聚合物电解质表明,纳米氢氧化镁/PEO复合聚合物电解质相比纯PEO聚合物电解质的综合性能有很大提高.存在的主要问题是氢氧化镁在PEO中的分散性有待改善.合成更小颗粒的氢氧化镁,并通过在氢氧化镁颗粒表面接上一定的有机基团,是改善氢氧化镁颗粒在PEO中的分散性的重要方法,这也是我们以后关于纳米氢氧化镁/PEO复合聚合物电解质研究工作的重要内容.References1Armand,M.Solid State Ionics,1994,69:3092Glasse,M.D.;Idris,R.;Latham,R.J.;Linford,R.G.;Schlindwein, W.S.Solid State Ionics,2002,147:2893Park,Y.W.;Lee,D.S.J.Non-Cryst.Solids,2005,351:1444Itoh,T.;Hirata,N.;Wen,Z.Y.;Kubo,M.;Yamamoto,O.J.Power Sources,2001,97-98:6375Yu,X.Y.;Xiao,M.;Wang,S.J.;Zhao,Q.Q.;Meng,Y.Z.J.Appl.Polymer Sci.,2010,115:27186Li,X.L.;Guo,J.;Wu,Q.;Cheng,Y.;Long,Y.C.;Jiang,Z.Y.Acta Phys.-Chim.Sin.,2005,21:397[李雪莉,郭娟,吴强,程岩,龙英才,江志裕.物理化学学报,2005,21:397]7Sumathipala,H.H.;Hassoun,J.;Panero,S.;Scrosati,B.Ionics, 2007,13:2818Wang,L.S.;Yang,W.S.;Li,X.W.;Evans,D.G.Electrochem.Solid-State Lett.,2010,13:A79Rossi,N.A.A.;West,R.Polym.Int.,2009,58:26710Walls,H.J.;Zhou,J.;Yerian,J.A.;Fedkiw,P.S.;Khan,S.A.;Stowe,M.K.;Baker,G.L.J.Power Sources,2000,89:15611Scrosati,B.;Croce,F.;Persi,L.J.Electrochem.Soc.,2000,147(5):171812Kumar,B.;Scanlon,L.;Marsh,R.;Mason,R.;Higgins,R.;Baldwin,R.Electrochim.Acta,2001,46:151513Croce,F.;Curini,R.;Martinelli,A.;Persi,L.;Ronci,F.;Scrosati,B.;Caminiti,R.J.Phys.Chem.B,1999,103:1063214Sun,H.Y.;Takeda,Y.;Imanishi,N.;Yamamoto,O.;Sohn,H.J.J.Electrochem.Soc.,2000,147(7):246215Appetecchi,G.B.;Dautzenberg,G.;Scrosati,B.J.Electrochem.Soc.,1996,143(1):616Appetecchi,G.B.;Passerini,S.Electrochim.Acta,2000,45:2139 17Borkowska,R.;Reda,A.;Zalewska,A.;Wieczorek,W.Electrochim.Acta,2001,46:173718Aihara,Y.;Kuratomi,J.;Bando,T.;Iguchi,T.;Yoshida,H.;Ono, T.;Kuwana,K.J.Power Sources,2003,114:9619Yoshizawa,M.;Mukai,T.;Ohtake,T.;Kanie,K.;Kato,T.;Ohno,H.Solid State Ionics,2002,154-155:77920Zhang,Z.C.;Sherlock,D.;West,R.;West,R.;Amine,K.;Lyons, L.J.Macromolecules,2003,36:917621Kang,Y.K.;Lee,J.;Suh,D.H.;Lee,C.J.Power Sources,2005, 146:39122Liang,Y.H.;Wang,C.C.;Chen,C.Y.Eur.Polym.J.,2008,44: 237623Hong,L.;Cui,Y.J.;Wang,X.L.;Tang,X.Z.J.Polym.Sci.Pol.Phys.,2003,41:12024Yang,X.H.;Sun,X.Y.;Shao,J.J.;Liu,Y.H.;Wang,X.L.J.Polym.Sci.Pol.Phys.,2004,42:419525Bai,Y.;Pan,C.H.;Wu,F.;Wu,C.;Ye,L.;Feng,Z.G.Chem.J.Chin.Univ.,2007,28:1796[白莹,潘春花,吴锋,吴川,叶霖,冯增国.高等学校化学学报,2007,28:1796]26Saito,M.;Ikuta,H.;Uchimoto,Y.;Wakihara,M.;Yokoyama,S.;Yabe,T.;Yamamoto,M.J.Phys.Chem.B,2003,107:1160827Croce,F.;Appetecchi,G.B.;Persi,L.;Scrosati,B.Nature,1998, 394:456.28Jia,X.W.Flame retarding nano-materials.Beijing:Chemical Industry Press,2005[贾修伟.纳米阻燃材料.北京:化学工业出版社,2005]2391。
氢氧化镁的用途有哪些氢氧化镁有什么用途
氢氧化美的用途以及作用其实是很广泛的,接下来小编就来给大家详细介绍一下!
防火涂料是特种涂料的其中一个品种,是防火建筑材料中的重要组成部分。
防火涂料一般用于钢结构基材表面,能降低钢材表面的可燃性、阻滞火灾的迅速蔓延,用以提高钢材耐火极限。
将性能优良的防火涂料涂覆于基材表面,不仅可以起到装饰作用,还能防腐、防锈、耐酸碱、防烟雾等,更重要的是,当遇火灾发生时防火涂料能阻止火焰的传播,控制火势的发展,对内部结构起到有效的保护作用。
阻燃体系材料是防火涂料的核心,其性能对防火涂料的性能影响极大。
阻燃剂有无机与有机两种,无机阻燃剂主要为添加型,包括锑系阻燃剂、氢氧化铝、氢氧化镁阻燃剂,含磷无机阻燃剂,含硼以及含钼阻燃剂与抑烟剂,它们具有热稳定性,且毒性低、不产生腐蚀气,阻燃效果持久等特点,但由于它们在高聚物中的填充量较大,加上其固有特性的影响,会降低高聚物的加工成型性、力学性能、电气性能等。
氢氧化镁作为目前最受欢迎的环保型阻燃剂,加入到防火涂料中有着很好的阻燃效果,具有
耐火极限、粘结性高、耐水性好、不产生有毒气体等特点。
目前氢氧化镁阻燃剂用量在以每年20%的速度增长,具有广阔的市场前景。
另一方面,由于纳米材料具有小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等特性,以及填加量低、阻燃效率高等优点。
根据以上特性要求,可以将氢氧化镁表面进行改性,改性为纳米氢氧化镁,以纳米氢氧化镁作为防火涂料的阻燃剂效果将更好。
京煌科技有限公司主营纳米氧化镁、纳米氢氧化镁等产品,产品种类多样,价格便宜。
想了解更多关于氢氧化镁等新型材料的内容吗?尽在京煌科技。
欢迎大家点击咨询。
纳米氢氧化镁在重金属水处理方面的应用作者:苏明阳唐静来源:《当代化工》2015年第07期摘要:纳米氢氧化镁是一种新型无机材料。
由于其无毒、无害、腐蚀小、吸附能力强等特点,在重金属水处理方面得到了广泛应用。
在论述近年来纳米氢氧化镁吸附应用进展的基础上,阐述目前存在的问题和以后的发展方向。
关键词:纳米氢氧化镁;吸附剂;水处理中图分类号:TQ 050.4+21 文献标识码: A 文章编号: 1671-0460(2015)07-1592-03Application of Magnesium Hydroxide Nanoparticles in Water TreatmentSU Ming-yang , TANG Jing(Henan Polytechnic Institute , Henan Nanyang 473000, China)Abstract: As a new type of inorganic material, magnesium hydroxide nanoparticles can be used as absorbent based on the advantages of non-toxicity, harmless, low corrosion, strong adsorption ability. In this paper, research progress of magnesium hydroxide nanoparticles was reviewed. Meanwhile, disadvantages and development trend of the research on application were also presented.Key words: Magnesium hydroxide nanoparticle; Absorbent; Water treatment.1 水体重金属污染现状近些年来,水体重金属污染正逐渐成为全球性难题[1]。
纳米氢氧化镁的详细介绍
纳米级氢氧化镁具有纯度高、流动性好、粒度超微细化、热稳定性好等优点,不挥发、不产生有毒气体、不腐蚀加工设备、价格便宜;纳米级氢氧化镁,溶于强酸溶液及铵盐溶液,不溶于水,添加到体系中有很好的分散性和纳米活性;在几乎不影响使用强度的情况下,能够显著提高材料的阻燃、消烟、防滴、填充等性能,我司还可根据客户使用材料的体系要求,做适当的表面改性处理,使分散性能更加优越。
应用范围
1. PA、PP、ABS、PVC等橡胶、塑料复合材料
2. 不饱和树脂、聚酯、油漆和涂料
3. 电缆护套料、绝缘料、改性PP、热收缩塑料
4. 选择性紫外阻隔材料,光稳定剂
5. 建筑材料
6. 保温材料
7. 电池材料添加剂
8. 催化载体,用于酯化反应、烷基化反应
等
片状结晶,具有典型的纳米片层状结构,在350℃分解而生成氧化镁。
不溶于水,溶于酸和铵盐溶液。
该产品具有纯度高,粒径小,可进行原位包覆改性等优异性能,能更均匀地分散于PA、PP、ABS、PVC等橡胶、塑料产品中,广泛应用于橡塑弹性体,高档电缆料,家用电器等高端产品中。
在几乎不影响使用强度的情况下显著提高材料的阻燃、抑烟、防滴等性能,泽辉可根据客户需要,在纳米氢氧化镁生成同时采用适当的原位改性方法,为客户提供专用阻燃氢氧化镁。