地铁站深基坑内支撑体系换撑优化施工-QC
- 格式:pdf
- 大小:6.11 MB
- 文档页数:55
地铁车站基坑内支护体系施工方案(一)钢支撑架设及拆除施工1、钢支撑施工(1)支撑材料准备根据基坑围护结构图纸尺寸,按照计划用量备足各种长度的A609、t=16钢支撑管、活络头、不同规格的槽钢制作钢系杆;钢垫块、钢楔块、紧固螺栓、铁板等支撑材料,分类堆放在料场。
各种材料必须经质量检验合格方可按施工进度分批进场,确保进场支撑材料均达到设计要求和施工进度要求。
同时计算好的每道支撑的施加预应力值。
(2)测量准备根据设计图纸和实地测定的定位桩号在两侧圈梁上用钢尺测量每道支撑的安装平面中心位置及圈梁顶面标高,经复合无误后用红漆作出标记。
施工时,土面标高及支撑中心标高采用重锤及钢尺由圈梁顶面进行垂向丈量。
在连续墙凿毛后,拉直腰梁预埋筋,按设计要求安装钢围檩,然后架设钢支撑。
(3)钢支撑架设工艺开挖时随挖随架支撑,在支撑位置挖出来之后,迅速安装支撑并及时按设计值施加预应力。
安装支撑前,预先标出支撑位置,在标出的支撑位置处,按设计位置打设螺栓设置钢支架,支架要牢固,严防支撑因围护结构变形或施工撞击而脱落。
开挖时随挖随架支撑,在支撑位置挖出来之后,迅速安装支撑并及时按设计值施加预应力。
每根钢支撑的配置按总长度(应根据实际丈量的基坑宽度确定)的不同配用一端固定端一端活动端,中间段采用标准管节进行配置,在地面按长度进行预拼装。
采用两点吊装,吊点一般在离端部0.2L左右为宜。
支撑加力之前,迅速设定围护结构收敛量测点及支撑轴力监测点,取得初始读数后加力,加力后测试实际预加力,以此控制预加力施加准确。
分级施加支撑轴力,依据设计要求进行第一次轴力施加,然后按20%设计值逐级增加支撑轴力。
最终施加轴力值根据基坑围护结构变形、轴力监测等监测资料确定。
施加预应力的设备应专人负责,且应定期维护,如有异常应及时校验。
施加预应力后,应再次检查并加固,其端板处空隙应用微膨胀高标号水泥砂浆或细石混凝土填实。
在施加预应力时要密切注意支撑全长的弯曲和电焊异常情况,所加预应力值应满足设计要求,并及时压紧固定斜口钢锲。
深基坑可周转装配式内支撑构件换撑体系施工工法深基坑可周转装配式内支撑构件换撑体系施工工法一、前言深基坑工程是大型建筑施工中极具挑战性的一项工程。
为了确保基坑施工的安全稳定和高效进行,在施工中采用合适的支撑体系至关重要。
深基坑可周转装配式内支撑构件换撑体系施工工法,是一种根据现场施工实际条件,采用具备可重复使用性的装配式内支撑构件,以换撑方式来实现深基坑开挖和支撑的施工工法。
二、工法特点1.可重复使用:该工法采用可周转装配式内支撑构件,具有良好的可重复使用性,可多次应用于不同的基坑工程,提高了施工效率和经济性。
2.灵活多变:根据不同的基坑设计要求和现场施工条件,可对内支撑构件进行组合和调整,灵活适应各种复杂的地质环境和变化的工程要求。
3.施工周期短:由于采用了装配式内支撑构件,施工过程更加标准化和工序化,减少了施工时间和工艺复杂性,有效缩短了施工周期。
4.施工质量高:内支撑构件采用优质材料制造,具有良好的承载能力和稳定性,能够提供高质量的基坑支撑效果,保证施工的安全和稳定性。
5.安全可靠:工法设计充分考虑了施工过程中的安全风险,并对施工安全措施进行了详细规划,能够有效保障施工人员的人身安全和基坑施工的安全稳定。
三、适应范围该工法适用于各类深基坑的施工,包括地下停车场、地铁站、超高层建筑等各类土木工程。
特别是在复杂地质条件和有限工作空间的情况下,该工法可以发挥其优势,提供可靠的基坑支撑解决方案。
四、工艺原理该工法的工艺原理基于可周转装配式内支撑构件的设计和使用。
在施工开始前,根据基坑设计要求,选择适当的内支撑构件进行组合,并通过换撑方式实现基坑的支撑。
通过计算和模拟分析,确定每个施工阶段的支撑需求和内支撑构件的分布,实现对基坑的稳定控制。
五、施工工艺1.施工准备:从施工准备开始,立足于安全,制定详细的施工方案和施工组织设计,包括地质勘探、基坑平面布置、安全防护等方面的准备工作。
2.内支撑构件的安装:根据设计要求,选择合适的内支撑构件,并在基坑周边进行安装。
深基坑钢筋混凝土支撑换撑方法创新鸿厦建设有限公司瓯海中心区行政绿轴建设工程项目部QC小组一、课题背景钢筋混凝土支撑作为基坑支护常采用的一种类型,对于各种水文、工程地质条件具有较好的适应性。
在大型深基坑的支护中,由于钢筋混凝土支撑的造价低廉、施工方便和性能稳定等方面的优点而得到广泛的应用.但在基础工程施工完毕后,钢筋混凝土支撑快速换撑却是一大难题。
本课题依托的工程项目为瓯海中心区行政绿轴建设工程,工程位于瓯海城市中心区南单元(0577-WZ-SX-01)B-39、B-40、B-41地块,新建地上计入容积率建筑面积669.49m2,为整体钢框架结构,高8.35m。
地下不计容建筑面积50488.89m2(其中计容面积2167.98m2),地下二层。
图1. 本工程所处地理位置一般工程采用整体式底板进行施工,不设置后浇带,施工完成后结构变形能力差,影响结构安全稳定。
个别工程中设置多道型钢后浇带,但在换撑完成后不能适应基坑自由变形,在钢筋混凝土支撑换撑施工中,由于施工条件原因产生换撑施工效率低下等问题。
由于施工条件限制,致使施工效率低。
在现有工期条件下,创新一种钢筋混凝土支撑换撑施工综合效率高的施工工艺尤为重要。
二、小组概况表1. QC小组成员表图2. 小组开会照片制图人:周必林,制图日期:20XX.5.1三、选择课题(一)问题的提出一般工程采用整体式底板进行施工,不设置后浇带,施工完成后结构变形能力差,影响结构安全稳定。
个别工程中设置多道型钢后浇带,但在换撑完成后不能适应基坑自由变形,在钢筋混凝土支撑换撑施工中,由于施工条件原因产生换撑施工效率低下等问题。
本工程钢筋混凝土支撑换撑施工过程中,采用常规换撑的施工方法,产生了如下问题:混凝土支撑换撑施工难度大,施工效率低。
(二)确定课题针对上述问题,本小组确定如下课题:深基坑钢筋混凝土支撑换撑方法创新并按照QC活动流程(图3)制定了相应的研发进度计划表(表2)。
狭窄场地内深基坑拆换撑方案的优化与施工在闹市区深基坑施工中,由于场地狭小和周边复杂环境的影响,往往采取排桩+内支撑梁的基坑支护形式。
在地下室结构施工阶段,采用先换撑后拆撑的方式对钢筋混凝土内支撑进行拆除。
内支撑拆除时需综合考虑安全、经济、工期、环境等因素。
若按部就班地进行土方回填、换撑、拆撑等施工工序,往往需要很长的工期,严重影响施工进度。
通过调整施工顺序,采取有效的方式以替代常规的土方回填方案,并结合合理有效的拆撑方式,能够在确保基坑安全的同时,更好地缩短工期、避免人、材、机的浪费,从而节约时间成本并带来经济效益。
本文结合深圳宏电大厦项目内支撑拆除施工,对深基坑内支撑拆除方案的优化与施工做简要论述,为类似工程施工提供参考。
标签:深基坑支护;内支撑换撑与拆除;技术管理;分析优化1、工程概况1.1 基坑内支撑设计概况宏电大厦项目位于广东省深圳市龙岗区,地下3 层,地上24 层。
其中,地下3 层层高3.85 m,地下2 层层高3.7 m,地下1 层层高5.2m。
基坑面积5500 ㎡,周长305m,深度13.8m。
采用直径1.2m 排桩+内支撑的支护形式,支护桩间设置三重管旋喷桩与支护桩形成封闭的止水帷幕。
设一道内支撑梁,内支撑梁采用1200×1000mm,支撑连梁采用800×1000mm,支撑梁中心标高为-4.8m,支撑梁底距离地下1层楼面标高50 公分。
1.2 施工总平面概况本工程施工现场西、南侧为在建的招商银行金融创新大厦项目(开挖深度约23m,采用1.2m 咬合桩支护+三道内支撑支护,基坑回填未全部完成);北侧为规划园区四号路;东侧为中环大道。
除北侧以外,其他支撑梁部位(东、西、北),基坑边距离围墙宽度仅为1.5~2.5m;同时地下室外墙距离基坑支护桩1~2m。
2、内支撑拆除重、难点分析1)主楼进度紧迫,支撑梁横跨塔楼,必须先拆除支撑梁,主楼方可往上施工。
2)东、西、南侧的基坑回填石粉渣约4500 m3,在地下室施工完成前无法采用挖机、推土机等常规机械施工。
松山湖地铁车站深基坑扩挖换撑新技术摘要: 东莞至惠州城际轨道交通松山湖地下车站深基坑因设计方案调整需对原基坑进行加宽加长。
在基坑加宽过程中,需对原基坑钢支撑进行拆除,然后架设加宽后基坑的钢支撑。
在这个钢支撑“拆”、“换”的过程中( 即基坑的扩挖换撑过程) ,基坑的受力体系将发生较大的变化,为保证深基坑在扩挖换撑过程中的施工安全,运用理正软件对深基坑的扩挖换撑受力体系进行了数值分析,同时制订了深基坑扩挖换撑施工技术方案,通过理论分析、现场关键施工技术控制、基坑监控量测等工作,保证了深基坑扩挖换撑施工安全。
关键词: 轨道交通; 地下车站; 深基坑; 扩挖换撑; 数值分析; 监控量测0 引言在城市深基坑的开挖与支护工程中,由于道路、地下管线、建筑物等紧邻基坑,为确保附近管线、构筑物及周边道路行车安全,需对基坑开挖和支护过程采取切实可行的技术方案。
对此,文献[1]结合施工现场实际工况对支撑体系进行了优化,取消了首层腰梁的施工与破除工序; 文献[2 -4]从基坑的稳定性和变形方面进行了研究; 文献[5 -7]对基坑的监测布点进行分析。
以上研究主要针对已有基坑的开挖与支护方案而言,但是在已有深基坑基础上进行加宽、加长,从而对基坑的内支撑体系进行相应调整的工程却并不多见。
松山湖车站是广东省东莞至惠州城际轨道交通项目的明挖地下车站,因车站设计方案变更调整,整个车站基坑需在原基础上进行加宽、加长后,才能满足新标准的相关技术指标要求。
为保证深基坑扩挖换撑施工安全,制订了深基坑扩挖换撑施工技术新方案,并对扩建基坑和内支撑拆换施工过程进行了监测。
1 工程概况松山湖车站位于松山湖大道和新城路十字路口西侧,沿松山湖大道偏新城路口设置。
车站的工程地质主要为素填土、淤泥质粉质黏土、粉质黏土、全风化混合片麻岩、强风化混合片麻岩和弱风化混合片麻岩。
车站为地下2 层,岛式站台,车站原设计中心里程为DK32 +927.303,轨面高程为1.632,基坑长237.1 m,宽21.5 ~27.0 m,基坑深18.88 ~20.93 m,围护结构采用Φ1 200@1 300 钻孔桩+Φ600 旋喷桩桩间止水。
基坑内支撑装配式换撑施工工法一、前言随着城市化进程的加快和建筑业的蓬勃发展,高层建筑、地下车库、地铁站等工程的建设呈现出高度复杂的特点,这要求我们采取更为先进和高效的施工工艺。
换撑是地下建筑基坑支撑施工中的一种常规处理方式,而基坑内支撑装配式换撑施工工法则是在原有基础上技术含量更高、施工效率更高的一种工法。
本文将就该工法进行详细的介绍。
二、工法特点基坑内支撑装配式换撑施工工法采用的是装配式的内支撑,由许多螺旋钢桩和水平连接件组成,将支撑体系进行稳定。
该工法具有以下几个主要特点:1. 施工效率高:通过组装式连接方式,实现了快速拆装的效果,大幅度提高了施工效率。
2. 节约人力:该工法在施工过程中,由机器操作人员控制装配机等专业机械设备完成螺旋钢桩的安装,无需人工,降低了工期风险,避免了工人繁重劳动。
3. 易于控制施工质量:螺旋钢桩可以根据不同地层的特点进行设计,使用过程中可以根据需要进行调整,采取的配合件打造可拆装的基坑支撑体系。
4. 减少废弃物的数量和撤离时间:减少基坑内的废弃物数量,降低对环境的影响,同时减少撤离时间和运输费用,提高施工效率。
5. 安全性高:采用高强度的螺旋钢桩和连接件,大大提高了支撑体系的抗震性、稳定性和承载能力,保障了施工过程和建筑物的安全。
三、适应范围基坑内支撑装配式换撑施工工法适用于以下工程类型:1. 地铁站、隧道、地下车库等地下工程。
2. 高层建筑项目。
3. 水利水电、道路隧道等各类基础工程。
4. 静态负载相对较小、相对稳定的土壤、基岩支撑。
四、工艺原理基坑内支撑装配式换撑施工工法是一种采用支护桩加水平支撑体系的基坑支撑模式。
支护桩是由各种规格的螺旋钢管或螺旋焊接管制成的地基钢管桩,在螺旋管体的上端焊接嵌板、四边角板、S型嵌板等支护互联件,可组成成坑内支护结构体系,可进行多次施工拆卸和安装。
换撑是指在原先基础上换用更强的支撑材料或者更可靠的支撑杆件以更好的方式保障支撑的稳定性。
临地铁深基坑混凝土内支撑爆破拆除及换撑施工工法临地铁深基坑混凝土内支撑爆破拆除及换撑施工工法一、前言临地铁深基坑施工是目前城市建设中常见的工程形式之一,然而深基坑的施工过程中会遇到混凝土内支撑爆破拆除及换撑的问题。
本文将介绍临地铁深基坑混凝土内支撑爆破拆除及换撑施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及一个工程实例,以供读者参考。
二、工法特点临地铁深基坑混凝土内支撑爆破拆除及换撑施工工法具有以下特点:1.施工效率高:通过采用爆破拆除技术,可以快速拆除混凝土内支撑物,提高施工效率。
2.灵活性强:可以根据实际工程需求,在拆除后及时进行换撑施工,因此适用范围广。
3.质量可控:通过科学合理的施工工艺和严格的质量控制措施,保证施工质量达到设计要求。
三、适应范围该工法适用于临地铁深基坑施工中的混凝土内支撑物拆除及换撑工作。
四、工艺原理该工法的实际应用需要与施工工法和实际工程之间建立起联系,采取相应的技术措施。
其基本原理是对混凝土内支撑物进行爆破拆除,然后及时进行换撑施工。
通过爆破拆除的方式,在保证施工效率的同时,对施工质量进行控制。
五、施工工艺1.准备工作:确定施工方案、做好施工人员培训、准备相关机具设备等。
2.拆除混凝土内支撑物:采用爆破技术进行拆除工作,同时采取相应的安全措施。
3.换撑施工:在拆除完成后,及时进行换撑施工,确保基坑的稳固。
4.质量验收和整理:对换撑施工进行质量验收,整理相关工作。
六、劳动组织根据具体工程规模和施工需求,确定施工人员的组织结构和数量,确保施工工作的顺利进行。
七、机具设备根据具体施工工艺和要求,确定所需机具设备,包括爆破设备、作业车辆等,并对其进行安全使用的培训。
八、质量控制通过采取严格的质量控制措施,包括施工前的检查、施工过程中的监测和整理以及施工后的验收等,确保施工过程中的质量达到设计要求。
九、安全措施在施工过程中需要注意相关安全事项,特别是对爆破拆除工作的安全要求,确保施工过程中的安全。
论地铁车站深基坑支撑体系优化问题摘要:主要阐述了刘家窑地铁车站明挖基坑内支撑体系中的优化问题 ,通过对监测数据的分析 ,综合考虑基坑施工因素,合理选择内支撑形式,从而降低工程造价。
关键词:地铁车站;深基坑;支撑体系优化北京地铁五号线刘家窑车站在施工明挖结构基坑时,围护结构采用护坡桩结合钢支撑体系,采用钢支撑体系可普遍缩短护坡桩嵌入土层深度,减少整体护坡桩长度,同时采用可重复使用的钢制内支撑配合钻孔护坡桩,封闭内支撑体系与护坡桩挡土结构共同组成稳定空间结构体系,两者共同承受土体约束及荷载作用,使基坑围护结构保持稳定。
通过对地铁五号线已经施工完毕的刘家窑车站明挖基坑内支撑体系几个问题的分析,力图寻找合理布设内支撑体系的方式。
1 工程概况刘家窑车站位于现况南三环路刘家窑立交桥,车站主体结构全长201m,本站南北两端主体结构为地下二层,双柱三跨岛式结构,采用明挖法施工,其中南端长76.3m,北端长49.7m,车站南端设盾构端头井。
车站中部75m为单层双柱三跨曲墙拱顶复合衬砌结构,采用暗挖法(CRD 工法)施工。
原设计采用沿基坑竖向设三道钢围檩及θ609×14mm的钢支撑(局部深处为四道钢支撑),在端部和角部采用斜撑,支撑较长处中部设θ600钢支撑立柱。
2 支撑体系优化支撑体系应该方便基坑结构施工,不但达到确保整个施工过程中基坑稳定的目的,还应该便于基坑开挖及后续结构施工作业。
内支撑位置的选择对于结构施工影响加大。
如果同一层支撑间距、上下层之间高差较小,或者设置竖向支撑,将直接造成现场无法展开大规模机械施工。
现场采用机械施工,不可避免要发生与内支撑架设工序冲突的现象,内支撑架设不及时对于基坑安全影响势必较大。
内支撑形式合理与否,直接结果是基坑施工周期延长,工程组织难度加大,基坑风险程度提高。
目前地铁五号线在施的明挖基坑支撑体系大体可以分为两类。
一类为:护坡桩结合内支撑体系,如刘家窑车站、灯市口车站、张自忠车站、和平北街车站等;另一类为护坡桩结合锚杆支撑体系,如宋家庄车站、雍和宫车站、土城北路车站。