LTE核心网简介
- 格式:ppt
- 大小:4.25 MB
- 文档页数:1
LTE介绍与网络架构LTE(Long-Term Evolution),即长期演进技术,是第四代移动通信标准。
它是3GPP(Third Generation Partnership Project)组织制定的全球统一标准,旨在提供更高的数据传输速率、更低的延迟和更高的系统容量,以满足不断增长的移动通信需求。
LTE网络架构主要由以下几个部分组成:用户终端(UE)、基站子系统(eNB)、核心网络(Core Network)和运营商网络。
首先是用户终端,即智能手机、平板电脑或其他支持LTE技术的设备。
用户终端与LTE网络进行通信,发送和接收数据。
其次是基站子系统(eNB),它由一台或多台基站控制器和一组基站天线组成。
基站子系统用于与用户终端进行通信,传输数据和控制信号。
核心网络是网络的核心部分,它提供网络管理和控制功能。
核心网络包括多个网络元素,如移动交换中心(MSC)和数据网关(SGW)。
移动交换中心负责处理语音通信,数据网关则负责处理数据传输。
运营商网络是LTE网络的运营者,它由多个基站子系统和核心网络组成。
运营商网络提供网络覆盖和服务,并负责管理用户终端的接入和连接。
LTE网络架构中的一个重要概念是分组交换。
与之前的电路交换网络不同,LTE网络采用了分组交换技术,将数据分成小的数据包进行传输。
这种架构有助于提高数据传输速率和系统容量,并降低网络延迟。
在LTE网络中,数据传输的基本单位是无线帧(Radio Frame)。
每个无线帧由多个子帧(Subframe)组成,每个子帧由多个时隙(TimeSlot)组成。
时隙是最小的单位,用于传输数据和控制信号。
在每个时隙中,数据和控制信号可以同时传输,从而实现高效的通信。
此外,LTE网络采用了多天线技术,即MIMO(Multiple-Input-Multiple-Output)。
MIMO技术使用多个天线进行数据传输和接收,可以提高系统容量和数据传输速率,并改善网络覆盖范围。
网络结构:
LTE网络实体:
整个TD-LTE系统由3部分组成:
•核心网(EPC, Evolved Packet Core )
•接入网(eNodeB)
•用户设备(UE)EPC分为三部分:
•MME (Mobility Management Entity, 负责信令处理部分)
•S-GW (Serving Gateway , 负责本地网络用户数据处理部分)
•P-GW (PDN Gateway,负责用户数据包与其他网络的处理) 接入网(也称E-UTRAN)由eNodeB 构成网络接口
•S1接口:eNodeB与EPC
•X2接口:eNodeB之间
•Uu接口:eNodeB与UE
EPC与E-UTRAN功能划分
EPC与E-UTRAN功能简述
eNB功能:
•无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动性管理、上/下行动态资源分配/调度等;
•IP头压缩与用户数据流加密;
•UE附着时的MME选择;
•提供到S-GW的用户面数据的路由;
•寻呼消息的调度与传输;
•系统广播信息的调度与传输;
•测量与测量报告的配置。
MME功能:
•寻呼消息分发,MME负责将寻呼消息按照一定的原则分发到相关的eNB;
•安全控制;
•空闲状态的移动性管理;
•EPC承载控制;
•非接入层信令的加密与完整性保护。
服务网关功能:
•终止由于寻呼原因产生的用户平面数据包;
•支持由于UE移动性产生的用户平面切换。
PDN网关功能:
•逐用户数据包的过滤和检查。
LTE的技术原理LTE(Long Term Evolution)作为第四代移动通信技术,其技术原理主要包括无线接入技术、核心网技术和网络优化技术等方面。
本文将详细介绍LTE的技术原理。
一、无线接入技术1.OFDM技术LTE使用了OFDM(Orthogonal Frequency Division Multiplexing)技术作为其物理层技术,采用了SC-FDMA(Single Carrier Frequency Division Multiple Access)技术作为上行链路的多址技术。
OFDM技术具有频谱利用率高、抗多径干扰能力强、符号时间间隔长、对调制方式的选择灵活等特点,能够有效提高数据传输速率和系统整体性能。
2.MIMO技术LTE还采用了MIMO(Multiple Input Multiple Output)技术,该技术通过在发送端和接收端分别增加多个天线,利用空间复用技术实现多个数据流同时传输,从而提高系统的频谱效率和系统容量。
MIMO技术在LTE 系统中广泛应用于数据传输和信号处理过程中。
3.自动重传请求技术LTE系统还引入了自动重传请求技术,通过在物理层上实现自动重传请求ARQ(Automatic Repeat reQuest)功能,可以有效保障数据传输的可靠性和稳定性。
当接收端检测到数据包丢失或错误时,会向发送端发送自动重传请求,发送端重新发送丢失的数据包,从而保证数据的完整性和准确性。
二、核心网技术1. Evolved Packet Core(EPC)LTE核心网采用了Evolved Packet Core(EPC)结构,EPC由三个主要部分组成:核心网节点(PGW、SGW、MME)、用户面协议GTP(GPRS Tunneling Protocol)和控制面协议S1AP(S1 Application Protocol)。
EPC实现了LTE系统的核心网络功能,包括连接管理、移动性管理、安全性保障、QoS(Quality of Service)管理等。
LTE网络架构和协议栈随着移动通信技术的不断发展,LTE(Long Term Evolution)成为4G移动通信的主流技术。
LTE网络架构和协议栈是构建LTE系统的核心组成部分,下面将对LTE网络架构和协议栈进行详细介绍。
一、LTE网络架构LTE网络架构由两部分组成:E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)和EPC(Evolved Packet Core)。
1. E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)E-UTRAN是LTE系统的无线接入网络,包括基站和与之相连的核心网。
基站被称为eNodeB,负责无线信号的传输和接收。
eNodeB通过X2接口相连,用于基站之间的信号传输和协同。
与核心网的连接通过S1接口实现,包括控制面和用户面的传输。
2. EPC(Evolved Packet Core)EPC是LTE系统的核心网络,负责用户数据的传输和控制信息的处理。
EPC由三个主要组成部分构成:MME(Mobility Management Entity)、SGW(Serving Gateway)和PGW(Packet Data Network Gateway)。
MME负责移动性管理和控制平面的处理;SGW负责用户数据的传输;PGW连接到外部数据网络,负责数据分组的处理和路由。
二、LTE协议栈LTE协议栈由各种协议组成,实现系统中不同层次之间的通信和控制。
LTE协议栈按照OSI(Open Systems Interconnection)参考模型分为七层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1. 物理层物理层负责数据的传输和调制解调。
LTE使用OFDM(Orthogonal Frequency Division Multiplexing)技术进行信号的调制和解调,以提高传输效率和抗干扰性能。
LTE系统核心网网络架构阅读报告摘要:随着LTE技术标准的完善和成熟,各运营商在LTE技术上投入的不断加大,对LTE系统核心网网络架构各部分网元功能的分析变得至关重要,最终通过分析各网元的功能,实现核心网的功能。
关键词:LTE;EPC;核心网;网络架构;1LTE技术概述LTE(Long Term Evolution,长期演进)就是3GPP的长期演进,是3G与4G 技术之间的一个过渡,是3.9G的全球标准,它增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准,为降低用户面延迟,取消了无线网络控制器(RNC),采用扁平网络结构。
在20MHz频谱带宽下能提供下行100Mbit/s与上行50Mbit/s的峰值速率。
改善了小区边缘用户的性能,提高小区容量和降低系统延迟。
2LTE网络的分析2.1 LTE网络架构的背景当前,全球无线通信正呈现出移动化、宽带化和IP化的趋势,移动通信行业的竞争极为激烈。
在现有技术还没有大规模商用之前,一些无线宽带接入技术也开始提供部分的移动功能,通过宽带移动化,试图进入移动通信市场。
为了维持在移动通信行业中的竞争力和主导地位,3GPP组织在2004年11月启动了长期演进过程LTE(Long Term Evolution)以实现3G技术向4G的平滑过渡。
3GPP计划的目标是:更高的数据速率、更低的延时、改进的系统容量和覆盖范围以及较低的成本。
LTE对空口和接入网的技术指标包括:(1)峰值数据速率,下行达到100Mbit/s,上行50Mbit/s。
(2)提高频谱效率(达到Release6的2~4倍)。
(3)接入网时延(用户平面UE-RNC-UE)时延不超过10ms。
(4)减小控制平面时延,UE从待机状态到开始传输数据时延不超过100ms (不包括下行寻呼时延)。
为了实现这一目标,除了要考虑空中接口技术的严禁之外,还需要考虑网络体系结构的改进。
对无线接入网网络架构的研究就是要找出最优的网络结构并考虑介入网内以及接入网与核心网之间的功能划分,以期望实现更高的数据速率、更低的时延。
数据网—LTE 核心网(EPC)目录第1章EPS网络概述 (3)1.1 EPS网络概述 (3)1.1.1 EPS网络关键概念 (3)1.1.2 EPS网络关键技术 (3)1.2 当前主流技术向LTE的演进 (3)第2章EPC网络架构 (5)2.1 LTE-EPC目标网络架构 (5)2.2 EPC重要网元 (5)2.2.1 GW (5)2.2.2 MME (6)2.2.3 HSS (6)2.2.4 PCRF (7)2.3 EPC重要接口 (7)第3章EPC基本流程 (9)3.1 Attach (9)3.2 TAU (9)3.3 Service Request (10)3.4 S1- Release (11)3.5 Detach (12)3.6 承载创建/修改/删除 (13)3.7 切换 (14)3.8 PDN连接或者去连接 (17)第1章EPS网络概述1.1EPS网络概述1.1.1EPS网络关键概念LTE:Long Term Evolution长期演进,是3GPP制定的高数据率、低延时、面向分组域优化的新一代宽带移动通信标准项目。
3GPP:The 3rd Generation Partnership Project,第三代合作伙伴计划3GPP的目标是实现由2G网络到3G网络的平滑过渡,保证未来技术的后向兼容性,支持轻松建网及系统间的漫游和兼容性。
其职能:3GPP主要是制订以GSM核心网为基础,UTRA(FDD为W-CDMA技术,TDD为TD-CDMA技术)为无线接口的第三代技术规范。
E-UTRA:LTE空中接口E-UTRAN:LTE接入网=UE+eNBEPC:Evolved Packet Core 4G核心网,3GPP的演进分组核心网,由MME+SGW+PGW组成EPS:Evolved Packet System ,3GPP的演进分组系统,由E-UTRAN+EPC组成SAE:系统架构演进项目1.1.2EPS网络关键技术EPS网络关键技术:➢EPS提供永远在线的用户体验,降低了用户接入业务的延时➢EPS的核心网允许多种无线技术的接入,目前支持的接入技术包括3GPP已经定义的UTRAN/GERAN,LTE,3GPP2定义的,以及IWLAN接入➢EPS在核心网将用户面和控制面进行分离,实现了网络的进一步扁平化➢EPS引入了TAI list和ISR等概念,降低了空口信令负荷,节约了网络资源➢EPS引入了PCC,对QoS控制、策略和计费控制集中处理1.2当前主流技术向LTE的演进关于2G/3G/4G 的争论已经结束, 所有移动技术都朝着满足未来业务需求的方向发展,并且逐渐趋于一致。
1.EPC架构图2.主要接口及协议3.EPC与无线网络的两种组网方案方式1采用CE进行层三组网,原有PTN设备只需支持层二功能;方式2采用PTN进行侧层三组网,PTN设备需要支持层三路由功能。
4.EPC内部网元互联方案➢同一局址网元间经局域网互联➢不同城市之间经IP专用承载网互联➢MME与HSS之间通过静态数据配置,经IP专网互通5.EPC与外部数据网间互联P-GW与外部数据网通过SGi接口连接,承载在CMNet上。
知识扩展:S-PW与P-GW功能S-GW主要功能:➢支持UE的移动性切换用户面数据的功能➢E-UTRAN空闲模式下行分组数据缓存和寻呼支持➢数据包路由和转发➢上下行传输层数据包标记P-GW主要功能:➢基于用户的包过滤➢合法监听➢IP地址分配➢上下行传输层数据包标记➢DHCPv4和DHCPv6(client、relay、server)➢业务锚定点6.EPC站点组织➢EPC连接无线接入网的CE由传输专业负责,或者直接接入PTN核心设备➢EPC设备接入IP专用承载网,以实现EPC内部互通➢EPC设备接入CMNet,以实现与分组域SGSN以及外部数据网的互通7.与现有GSM/TD SGSN互联方案SGSN与MME间SGSN与P-GW间、SGSN与EPC DNS间采用Gn接口互通,通过设置的BG互通。
8.与现有七号信令网间互通方案为实现与现网GSM/TD 分组域间互操作,HSS/HLR须臾STP之间设置准直连信令9.LTE网络整体架构10.路由原则➢LTE网内归属地使用数据业务:MS→归属地S-GW→归属地P-GW→外部数据网➢LTE网内拜访地使用数据业务(通用APN):MS→拜访地S-GW→拜访地P-GW→外部数据网➢LTE网内拜访地使用数据业务(区域APN)MS→拜访地S-GW→归属地P-GW→外部数据网➢归属地GSM/TD使用数据业务MS→归属地SGSN→BG→归属地P-GW→外部数据网➢拜访地GSM/TD使用数据业务(通用APN)MS→拜访地SGSN→BG→拜访地P-GW→外部数据网➢拜访地GSM/TD使用数据业务(区域APN)MS→拜访地SGSN→BG→归属地P-GW→外部数据网图示(1)(图示2)(图示3)(图示4)(图示5)11.编号计划➢全球唯一MME标识(GUMMEI):MCC + MNC + MMEI➢全球唯一临时标识符(GUTI):GUMMEI + M-TMSI➢MME标识符(MMEI):MME群组ID (MMEGI)+ MME代码(MMEC)➢接入点APN:APN-NI + APN-OI,其中APN-NI是必选部分,APN-OI是可选部分。
网络拓扑知识:LTE无线网络拓扑结构LTE是一种先进的4G无线移动通信技术,它在高速移动和高密度用户环境中表现出色。
它采用的拓扑结构玄妙而复杂,对于理解其原理和运行机制有着重要的意义。
本文从LTE无线网络拓扑结构的组成、各个组成部分的职能、拓扑结构的优缺点以及未来的发展趋势等方面进行探讨。
一、LTE无线网络拓扑结构的组成LTE无线网络的拓扑结构主要由以下几个组成部分构成:1.核心网——处理移动终端与Internet之间的数据传输,包括用户鉴别、计费、QoS管理和上下文维护等功能。
2.无线接入网——通过基站向用户提供无线接入服务,包括高速数据传输、呼叫等功能。
3.控制面——主要由MME、SGSN等控制节点组成,用来管理无线接入网,分配资源,以及处理安全和移动性管理等任务。
4.用户面——主要由另外一些节点组成,主要是在不同的使用环境中处理流量的传输,如GGSN、PDN网关等。
以上四个部分构成了LTE无线网络的核心结构。
下面我们将详细介绍其中的各个部分。
二、各个组成部分的职能1.核心网:LTE无线网络的核心部分,主要负责处理用户数据的传输,例如用户鉴别、计费、QoS管理和上下文维护等任务。
2.无线接入网:通过基站向用户提供无线接入服务,包括高速数据传输、呼叫等功能。
在LTE网络中,无线接入网主要由eNB和EPC 两部分组成。
3.控制面:主要由MME和SGSN等控制节点组成,用来管理无线接入网,分配资源,以及处理安全和移动性管理等任务。
它的主要职能包括:(1)分配IP地址和MSISDN。
(2)维护移动终端位置信息,包括位置更新和位置追踪等功能。
(3)管理移动终端路由。
(4)负责安全管理与认证等任务。
4.用户面:主要由GGSN和PDN网关等节点组成,主要是在不同的使用环境中处理流量的传输。
例如,如果用户使用LTE网络浏览网站,则其请求将传输到GGSN和PDN网关,然后返回到用户终端。
三、拓扑结构的优劣势LTE网络的拓扑结构具有以下优点和缺点。
L TE介绍与网络架构1、什么是L TE?LTE(Long Term Evolution,长期演进)是由3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)组织制定的UMTS(Universal Mobile Telecommunications System ,通用移动通信系统)技术标准的长期演进。
LTE不是一种技术标准,而是一个协议组织,现在一般常说的LTE是TD-LTE和FDD-LTE 网络制式的统称。
现在的LTE在严格意义上其还未达到4G的标准也称为3.9G。
只有升级版的LTE Advaced才满足国际电信联盟对4G的要求。
2、基本词汇MME:Mobile Managenment Etity——移动管理实体S-GW:Serving GateWay,服务网关P-GW:PDN GateWay,PDN网关E-UTRAN:Evolved Universal Terrestrial Radio Access NetworkEPC:Evlved Packet Core,演进分组核心网RRC:Radio Resource Control 是指无线资源控制PDCP:Packet Data Convergence Protocol,分组数据汇聚协议RLC:Radio Link Control,无限链路控制层协议PHY: Physical Layer Protocol 物理层协议OFDM:Orthogonal Frequency Division Multiple,正交频分多址MIMO:Multiple-Input Multiple Output,多路输入多路输出3、L TE架构相比原有的23G网络结构,主要体现在扁平化和IP化两方面。
➢扁平化:主要体现在没有BSC/RNC节点,原有BSC/RNC的节点功能由ENODEB承担;➢IP化:各网元之前的链接为全IP链路,组网更加灵活。
LTE网络结构协议栈及物理层LTE(Long Term Evolution)是第四代移动通信技术,为了满足日益增长的数据需求和提供更高的速率、更低的时延,LTE采用了全新的网络结构和协议栈。
本文将介绍LTE网络的结构、协议栈及物理层。
一、LTE网络结构LTE网络结构包括用户终端设备(UE)、基站(eNodeB)、核心网(EPC)和公共网(Internet)四个部分。
UE是移动设备,eNodeB是用于无线接入的基站,EPC则是支持核心网络功能的节点。
UE与eNodeB之间通过无线接口建立连接,提供无线接入服务。
eNodeB负责对无线资源进行管理和调度,以及用户数据的传输。
而EPC则是核心网络,包括MME(Mobility Management Entity)、SGW (Serving Gateway)和PGW(Packet Data Network Gateway)等网络节点,负责用户移动性管理、用户数据传输和连接到公共网。
二、LTE协议栈LTE协议栈分为两个层次:控制面协议栈(CP)和用户面协议栈(UP)。
CP负责控制信令的传输和处理,UP处理用户数据的传输。
协议栈分为PHY(物理层)、MAC(介质访问控制层)、RLC(无线链路控制层)、PDCP(包隧道协议层)和RRC(无线资源控制层)五个层次。
- 物理层(PHY):是协议栈的最底层,负责将用户数据以比特流的形式传输到空中介质中,并接收从空中介质中接收到的数据。
物理层对数据进行编码、调制和解调,实现无线传输。
- 介质访问控制层(MAC):负责管理无线资源,包括分配资源、管理调度和处理数据的传输。
MAC层通过无线帧的分配来实现用户数据的传输控制。
- 无线链路控制层(RLC):负责对用户数据进行分段、确认和相关的传输协议。
RLC层提供不同的服务质量,如可靠传输和非可靠传输。
- 包隧道协议层(PDCP):负责对用户数据进行压缩和解压缩,以减小无线传输时的带宽占用。
lte网络架构LTE网络是一种新型的无线通信协议,全称为“长期演进技术”,它基于OFDM技术,可以提供更高的数据传输速率和更低的延时,被广泛应用于移动通信领域。
在LTE网络中,核心网和无线接入网是两个重要的架构,本文将对它们进行详细介绍。
一、核心网架构核心网是LTE网络的高级别架构,在整个LTE网络中起着关键的作用。
它负责管理和控制用户数据和信令的传输,同时还提供一系列的业务支持功能。
核心网主要由以下几个部分组成:1. 网络接入子系统(NAS)网络接入子系统是LTE网络中最基本的子系统之一,它负责移动设备的接入和认证工作。
当移动设备接入LTE网络时,它首先要通过网络接入子系统完成相关的认证和鉴权工作,确保设备的合法性。
2. 会话管理器(SMF)会话管理器是核心网中一个非常重要的组件,它主要负责会话的建立和管理工作。
当移动设备接入LTE网络后,会话管理器将被用来创建和管理会话对象,以保证数据传输的可靠性和安全性。
3. 用户面网络(UPF)用户面网络是核心网中最重要的部分之一,它负责用户数据传输处理,包括数据包的接收、处理和转发等工作。
用户面网络的重要性在于它直接关系到数据传输的质量和实际速率,因此需要严格控制。
4. 业务支持系统(OSS)业务支持系统是核心网中一个重要的支撑系统,它主要负责处理业务请求,包括计费、统计、信息查询等功能。
业务支持系统可以为LTE网络的商业化运营提供良好的支撑。
二、无线接入网架构无线接入网是LTE网络中另一个重要的架构,它负责接收来自移动设备的无线信号,并将其转换为数字信号进行处理和传输。
无线接入网主要由以下几个部分组成:1. 基站控制器(BSC)基站控制器是无线接入网中一个非常重要的部分,它主要负责控制和管理移动设备的接入和传输工作。
当移动设备接入LTE网络时,BSC将被用来管理和维护移动设备的连接状态,以保证通信的顺利进行。
2. 基站辅助系统(BTS)基站辅助系统是无线接入网中负责无线信号传输的部分,它主要负责将无线信号转换为数字信号,并进行处理和传输。
1.什么是LTE?LTE的全称是Long Term Evolution(长期演进)2.EPC的全称是什么:Evolved Packet Core (演进的分组核心网)3.目前中国电信LTE的主要规范《关于印发LTE(混合组网)网络技术体制(试行)及系列技术规范(试行)的通知》(中国电信〔2013〕448号)《关于印发中国电信LTE相关规范和指导意见的通知》(中国电信网发〔2013〕31号)4.LTE EPC系统的网络架构EPC中的核心网络设备包括移动性管理设备(MME)、服务网关(S-GW)、PDN网关(P-GW)以及用于存储用户签约信息的HSS和用于计费和策略控制的单元(PCRF)等组成,同时EPC网络还要支持CDMA eHRPD的接入。
5.MME(Mobility Management Entity,移动性管理实体)主要功能是什么?主要功能是处理NAS信令及接入安全验证,跟踪区域(Tracking Area)列表的管理,移动性管理,会话管理(对EPS承载的激活、修改和释放,以及接入网侧承载的释放和建立),PGW和Serving GW的选择,跨MME切换时对于MME的选择,鉴权,漫游控制及IP地址分配,以及UE在ECM-IDLE状态下可达性管理(包括寻呼重发的控制和执行)。
6.S-GW(Serving Gateway,服务网关)主要功能是什么?是面向eNodeB终结SI-U接口的网关。
S-GW对基于GTP的S5/S8接口可以提供的主要功能有当eNodeB间切换时作为本地锚定点并协助完成eNodeB的重排序功能,合法监听以及数据包的路由和前传,根据每个UE ,PDN和QCI的上行链路和下行链路的相关计费等。
7.P-GW(PDN Gateway,PDN网关)主要功能是什么?是面向PDN终结于Sgi接口的网关。
如果UE访问多个PDN,UE将对应一个或者多个PDN GW。
PDN-GW对基于GTP的S5/S8提供的主要功能有基于用户的包过滤,合法监听,UE的IP地址分配,在上行链路中进行数据包传送级标记,上下行服务等级计费以及服务水平门限的控制,和基于业务的上下行速率的控制。
LTE基本概念及信令流程分析分解LTE(Long Term Evolution)是一种移动通信技术,用于实现高速数据传输和广域无线覆盖。
LTE的基本概念涉及多个方面,包括LTE网络架构、LTE信令流程和LTE调制解调技术等。
下面将对每个方面进行详细分析。
一、LTE网络架构:LTE网络由两个核心部分组成:Evolved UMTS Terrestrial Radio Access Network(E-UTRAN)和Evolved Packet Core(EPC)。
1. E-UTRAN:E-UTRAN是LTE的无线接入网,由若干个基站组成。
每个基站包括一个eNodeB(eNB)和一个或多个小区(Cell)。
eNodeB负责LTE无线资源管理、调度和协调用户设备之间的无线通信。
2. EPC:EPC是LTE的核心网,包括多个网络节点和功能单元,如MME(Mobility Management Entity)、S-GW(Serving Gateway)、P-GW (Packet Data Network Gateway)等。
EPC负责LTE用户设备的接入和切换、用户认证和安全、移动性管理等核心网络功能。
二、LTE信令流程:LTE信令流程包括以下几个关键步骤:小区选择、小区重选、附着过程、呼叫建立和数据传输等。
1. 小区选择:当LTE用户设备上电或从Idle状态唤醒时,它会扫描周围的LTE小区,并选择信号强度和质量最好的小区进行连接。
2.小区重选:在连接状态下,如果当前的小区信号变弱或质量变差,用户设备会进行小区重选,选择一个新的更好的小区进行连接。
小区重选可以进一步提高用户设备的通信质量和速率。
3. 附着过程:在连接到一个小区后,用户设备需要进行附着过程来获取一个LTE网络分配的IP地址和用户身份验证等服务。
附着过程包括接入认证、位置更新和QoS(Quality of Service)请求等步骤。
4.呼叫建立:在完成附着过程后,用户设备可以发起呼叫请求,请求与目标设备进行通信。