湖北省武汉为明实验学校全国各地中考数学压轴题汇编一(含详细答案)
- 格式:doc
- 大小:537.50 KB
- 文档页数:22
复习过关题旋转作图1、(2010•莆田)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为___ ;(3)四边形AOA1B1的面积为_____ .2、(2010•盘锦)如图,在正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(﹣7,0)、B(﹣4,4)、C(﹣1,0).(1)做出点B关于x轴的对称点D;(2)将以点A、B、C、D为顶点的四边形绕点C顺时针旋转90°作出旋转后的图A1B1C1D1,并直接写出点B、D的对应点B1,D1的坐标.3、(2010•昆明)在如图所示的直角坐标系中,解答下列问题:(1)分别写出A、B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(3)求出线段B1A所在直线l的函数解析式,并写出在直线l上从B1到A的自变量x的取值范围.4、(2010•锦州)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)若将△ABC绕点(﹣1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.5、(2010•鸡西)△ABC在如图所示的平面直角坐标系中.(1)画出△ABC关于原点对称的△A1B1C1(2)画出△A1B1C1关于y轴对称的△A2B2C2(3)请直接写出△AB2A1的形状.6、(2010•海南)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1、△A2B2C2、△A3B3C3中,△与△成轴对称;△______与△_____ 成中心对称.7、(2010•贵港)如图所示,把△ABC置于平面直角坐标系中,请你按下列要求分别画图:(1)画出△ABC向下平移5个单位长度得到的△A1B1C1;(2)画出△ABC绕着原点O逆时针旋转90°得到的△A2B2C2;(3)画出△ABC关于原点O对称的△A3B3C3.8、(2010•福州)(1)如图,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D.求证:△ABC≌△DEF.(2)如图,在矩形OABC中,点B的坐标为(﹣2,3).画出矩形OABC绕点O顺时针旋转90°后的矩形OA1B1C1,并直接写出的坐标A1、B1、C1的坐标.9、(2010•楚雄州)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)作出将△ABC绕点O顺时针方向旋转180°后的△A2B2C2.10、(2010•郴州)△ABC在平面直角坐标系中的位置如图所示,将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.11、(2010•长沙)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.12、(2010•鞍山)如图,方格纸中的每个小方格都是边长为1的正方形.在建立直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(﹣1,1).(1)写出点B的坐标;(2)画出△ABC关于x轴对称的图形△A′B′C′,并写出点B′的坐标;(3)画出△ABC绕点O旋转180°后得到的图形△A″B″C″,并写出点B″的坐标?13、(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.14、(2009•营口)如图,在所给网格中完成下列各题:(1)画出图1关于直线MN对称的图2;(2)从平移的角度看,图2是由图1向_________ 平移_________ 个单位得到的;(3)画出图1绕点P逆时针方向旋转90°后的图3.15、(2009•张家界)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC绕点P旋转180°得△A′B′C′.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.16、(2009•娄底)如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.(1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是_________ ;(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C 旋转到点C2经过的路径的长度.17、(2009•海南)如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于坐标原点成中心对称的△A1B1C1;(3)作出点C关于是x轴的对称点P.若点P向右平移x个单位长度后落在△A1B1C1的内部,请直接写出x的取值范围.18、(2009•哈尔滨)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;(2)在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.19、(2009•郴州)如图,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2,请依次作出△A1B1C1和△A1B2C2.20、(2008•永春县)在边长为1的方格纸中建立直角坐标系xoy,O、A、B三点均为格点.(1)直接写出线段OB的长;(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的路径的长度.21、(2008•清远)如图,△AOB中,顶点A,B,O均在格点上,画出△AOB绕点O旋转180°后的三角形.(不要求写做法,证明,但要注明结果)22、(2008•南京)如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E,F,G,H;②点G,F,E,H;③点E,H,G,F;④点G,H,E,F.如果图1经过一次平移后得到图2,那么点A,B,C,D对应点分别是_________ ;如果图1经过一次轴对称后得到图2,那么点A,B,C,D对应点分别是_____ ;如果图1经过一次旋转后得到图2,那么点A,B,C,D对应点分别是_________ ;(2)①图1,图2关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条性质:_________ .23、(2008•眉山)如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转180°,得到△A1B2C2.(1)在方格纸中画出△A1B1C1和△A1B2C2;(2)设B点坐标为(﹣3,﹣2),B2点坐标为(4,2),△ABC与△A1B2C2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.24、(2008•辽宁)如图所示,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.(1)直接写出D1点的坐标;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)25、(2008•来宾)如图,已知△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.(不要求写出画法)26、(2008•昆明)在如图所示出方格纸中,每个小正方形的边长都为1.(1)画出将铅笔图形ABCDE向上平移9格得到的铅笔图形A1B1C1D1E1;(2)将铅笔图形A1B1C1D1E1,绕点A1,逆时针旋转90°,画出转后的铅笔图形A1B2C2D2E2.27、(2008•海南)如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)28、(2008•哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1;并写出点C1的坐标;(2)将△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.29、(2008•常州)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按下列要求画图:①在网格中建立平面直角坐标系(坐标原点为O ),使四边形ABCD 各个顶点的坐标分别为A (﹣5,0)、B (﹣4,0)、C (﹣1,3)、D (﹣5,1);②将四边形ABCD 沿坐标横轴翻折180°,得到四边形A′B′C′D′,再把四边形A′B′C′D′绕原点O 旋转180°,得到四边形A″B″C″D″;(2)写出点C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD 成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.30、如图,网格中每个小正方形的边长都是1个单位.折线段ABC 的位置如图所示.(1)现把折线段ABC 向右平移4个单位,画出相应的图形A B C ''';(2)把折线段A B C '''绕线段AA '的中点D 顺时针旋转90°,画出相应的图形A B C '''''';(3)在上述两次变换中,点C C C '''→→的路径的长度比点A A A '''→→的路径的长度大 个单位.CBA31、已知△ABC 在平面直角坐标系中的位置如图所示.(1)分别写出图中点A 和点C 的坐标;(2)画出△ABC 绕点C 按顺时针方向旋转90°后的△A'B'C';(3)求点A 旋转到点A'所经过的路线长。
湖北省,2020~2021年中考数学压轴题精选解析湖北省中考数学压轴题精选~~第1题~~(2020潜江.中考模拟) 如图1,已知抛物线C:与x轴的正半轴交于点A,点B为抛物线的顶点,直线l:是一条动直线.(1)求点A、点B的坐标;(2)当直线l经过点A时,求出直线l的解析式,并直接写出此时当时,自变量x的取值范围;(3)如图2,将抛物线C在x轴上方的部分沿x轴翻折,与C在x轴下方的图形组合成一个新的图形C,当直线l与组合图形C有且只有两个交点时,直接写出k的取值范围.~~第2题~~(2020湖北.中考模拟)如图,已知抛物线y=ax+bx+c(a≠0)的对称轴是,且经过A(﹣4,0),C(0,2)两点,直线l:y=kx+t(k≠0)经过A,C.(1)求抛物线和直线l的解析式;(2)点P是直线AC上方的抛物线上一个动点,过点P作PD⊥x轴于点D,交AC于点E,过点P作PF⊥AC,垂足为F,当△PEF≌△AED时,求出点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,直接写出所有满足条件的Q点的坐标;若不存在,请说明理由.~~第3题~~(2020天门.中考真卷) 小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段表示小华和商店的距离(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:1112 22(1)填空:妈妈骑车的速度是________米/分钟,妈妈在家装载货物所用时间是________分钟,点M的坐标是____ ____;(2)直接写出妈妈和商店的距离(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.~~第4题~~(2020湖北.中考真卷) 如图,抛物线经过点,顶点为B,对称轴与x轴相交于点A,D为线段的中点.(1)求抛物线的解析式;(2) P为线段上任意一点,M为x轴上一动点,连接,以点M为中心,将逆时针旋转,记点P的对应点为E,点C的对应点为F.当直线与抛物线只有一个交点时,求点M的坐标.~~第5题~~(2019天门.中考模拟) 某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)【操作发现】在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG= AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.(2)【数学思考】在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;(3)【类比探索】在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M 是BC的中点,连接MD和ME,试判断△MED的形状.答:~~第6题~~(2019湖北.中考真卷)如图,抛物线的图象经过点C(0,-2),顶点D 的坐标为(1,),与 轴交于A 、B 两点.(1) 求抛物线的解析式.(2) 连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和的值.(3) 点F (0,)是轴上一动点,当为何值时,的值最小.并求出这个最小值.(4) 点C 关于轴的对称点为H ,当 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.~~第7题~~(2019潜江.中考真卷) 在平面直角坐标系中,已知抛物线C :y =ax +2x -1(a ≠0)和直线l :y =kx +b , 点A (-3,-3),B (1,-1)均在直线l 上.(1) 若抛物线C 与直线l 有交点,求a 的取值范围;(2) 当a =-1,二次函数y =ax +2x -1的自变量x 满足m ≤x ≤m +2时,函数y 的最大值为-4, 求m 的值;(3) 若抛物线C 与线段AB 有两个不同的交点,请直接写出a 的取值范围.~~第8题~~(2018湖北.中考模拟) 已知,抛物线y=ax +ax+b (a≠0)与直线y=2x+m 有一个公共点M (1,0),且a <b .(1) 求b 与a 的关系式和抛物线的顶点D 坐标(用a 的代数式表示);(2) 直线与抛物线的另外一个交点记为N ,求△DMN 的面积与a 的关系式;(3) a=﹣1时,直线y=﹣2x 与抛物线在第二象限交于点G ,点G 、H 关于原点对称,现将线段GH 沿y 轴向上平移t个单位(t >0),若线段GH 与抛物线有两个不同的公共点,试求t 的取值范围.~~第9题~~(2018潜江.中考模拟) 建立模型:(1) 如图 1,已知△ABC ,AC=BC ,∠C=90°,顶点C 在直线 l 上.操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于222点E ,求证△CAD ≌△BCE .模型应用:(2) 如图2,在直角坐标系中,直线l :y= x+8与y 轴交于点A ,与x 轴交于点B ,将直线l 绕着点A 顺时针旋转45°得到l . 求l 的函数表达式.(3) 如图3,在直角坐标系中,点B (10,8),作BA ⊥y 轴于点 A ,作BC ⊥x 轴于点C ,P 是线段BC 上的一个动点,点Q (a ,2a ﹣6)位于第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请说明理由.~~第10题~~(2018潜江.中考模拟) 解不等式组,并将它的解集在数轴上表示出来.湖北省中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:1122解析:~~第3题~~答案:解析:~~第4题~~答案:解析:答案:解析:答案:解析:答案:解析:~~第8题~~答案:解析:答案:解析:答案:解析:。
武汉市光谷为明实验学校数学几何模型压轴题单元测试卷(解析版)一、初三数学 旋转易错题压轴题(难)1.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D是对角线的交点,求出点D的坐标即可;②取OJ=JN=CJ,构造直角三角形OCN,作∠CJN的角平分线,与直线OP相交与点D,然后由所学的性质,求出点D的坐标即可.【详解】解:(1)如图,过点P作PC⊥OA,垂足为C,连接OP,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点P的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3 );(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:∵CJ=JN ,∠CJD=∠NJD ,JP=JP ,∴△CJD ≌△NJD (SAS ),∴∠JCD=∠JND=90°,则由角平分线的性质定理,得CD=ND ;过点D 作DI ∥x 轴,连接DJ ,∵∠DJN=∠COJ=60°,∴OI ∥JD ,∴四边形OJDI 是平行四边形,∴ID=OJ=JN=OC=6,在Rt △JDN 中,∠JDN=30°,∴JD=2JN=12;∴点D 的斜坐标为(6,12);综合上述,点D 的斜坐标为:(32,3)或(6,12). 【点睛】本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D 的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=最小值322=. 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF 922= 当点F 在AC 延长线上时,CE 有最小值,图形如下:同理,CE=EF -CF 322=【点睛】 本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.3.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________;②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M , OM m ∴=,143GM m =-+, AB BC =,BG AC ⊥,AG CG ∴=, 90AOB GMH CDH ︒∠=∠=∠=,OA GMCD ∴, 1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q , 4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==, 同理可得25AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H , ∴1403x -+=, 解得,x =12,∴(12,0)H ,∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.4.如图1,在正方形ABCD 中,点E 、F 分别在边BC ,CD 上,且BE=DF ,点P 是AF 的中点,点Q 是直线AC 与EF 的交点,连接PQ ,PD .(1)求证:AC 垂直平分EF ;(2)试判断△PDQ 的形状,并加以证明;(3)如图2,若将△CEF 绕着点C 旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF ,BC=CD ,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF ,∠FCQ=∠ECQ ,∴CQ ⊥EF ,∠AQF=90°,∴PQ=AF=AP=PF ,∴PD=PQ=AP=PF ,∴点A 、F 、Q 、P 四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ 是等腰直角三角形.考点:四边形综合题.5.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,31DG -∴=31BD BF DF ∴=-=;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H是AE中点,∴AD∥HF,∵HF⊥ED,∴AD BE.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.7.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;(2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB ,在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB ,∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴2,∴22,∴P(22).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.8.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF ;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC ,又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC ,∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是:AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,二、初三数学 圆易错题压轴题(难)9.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=13CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.(1)直接用含t 的代数式表示BQ 、DF ;(2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3.【解析】 试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.10.如图①、②、③是两个半径都等于2的⊙O 1和⊙O 2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O 1和⊙O 2相交于A 、B 两点,分别连结O 1A 、O 1B 、O 2A 、O 2B 和AB .(1)如图②,当∠AO 1B =120°时,求两圆重叠部分图形的周长l ;(2)设∠AO 1B 的度数为x ,两圆重叠部分图形的周长为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O 2A 所在的直线与⊙O 1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x 的取值范围.【答案】(1)83π(2)(0≤x ≤180) (3)O 2A 与⊙O 1相切;当0≤x ≤90和0≤x ≤180时,线段O 2A 所在的直线与⊙O 1相交【解析】试题分析:(1)解法一、依对称性得,∠AO 2B =∠AO 1B =120°,∴解法二、∵O 1A=O 1B=O 2A=O 2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大11.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,D长为半径作作⊙D.⑴求证:AC是⊙D的切线.⑵设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD= 时,四边形BDEF为菱形;②当AB= 时,△CDE为等腰三角形.【答案】(1)见解析;(2)①30°2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60°∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF为菱形;②∵△CDE为等腰三角形.∴DE=CE=BD=1,∴2设AB=x,则AE=x∴在Rt△ABC中,AB=x,AC=1+x,2∴()222+=+,解得2+1 x x(12)1∴当2+1时,△CDE为等腰三角形.【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.12.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(﹣3,﹣12)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣3,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t的取值范围为﹣1≤t≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.13.如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)连结BC,求证:△BCD≌△DFB;(2)求证:PC是⊙O的切线;(3)若tan F=23,AG﹣BG533,求ED的值.【答案】(1)详见解析;(2)详见解析;(3)DE=1339.【解析】【分析】(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.(3)由于∠BCD=∠F,于是tan∠BCD=tanF=23=BGCG,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG•AG,可得出AG的表达式(用x表示),再根据AG-BG=53求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,所以∠COB=∠PEC,因为PE =PC ,所以∠PEC =∠PCE ,所以∠PCE =∠COB ,因为AB ⊥CD 于G ,所以∠COB+∠OCG =90°, 所以∠OCG+∠PEC =90°, 即∠OCP =90°,所以OC ⊥PC ,所以PC 是圆O 的切线.(3)因为直径AB ⊥弦CD 于G , 所以BC =BD ,CG =DG , 所以∠BCD =∠BDC ,因为∠F =∠BCD ,tanF =23, 所以∠tan ∠BCD =23=BG CG , 设BG =2x ,则CG =3x . 连接AC ,则∠ACB =90°,由射影定理可知:CG 2=AG•BG ,所以AG =229922x C x G x G B ==,因为AG ﹣BG ,所以2392x x -=,解得x =3,所以BG =2x CG =3x =所以BC =,所以BD =BC =3, 因为∠EBD =∠EDB =∠BCD , 所以△DEB ∽△DBC , 所以BDB DC DE D =,因为CD =2CG =所以DE=21339DBCD.【点睛】本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG、CG、BC、BD、CD的值,最后利用“共边子母型相似”(即△DEB∽△DBC)列比例方程求解ED.14.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=2或226【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=5cos∠ABC 5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
武汉市光谷为明实验学校八年级上册压轴题数学模拟试卷及答案一、压轴题1.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.2.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.(1)求点C 的坐标;(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;(3)在(2)的条件下,当点P 到AC 的距离PD 为33时,连接AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.3.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.4.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.5.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.6.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).∆中,线段AM为BC边上的中线.动点D在直线AM上时,以7.如图,在等边ABC∆,连结BE.CD为一边在CD的下方作等边CDE∠的度数;(1)求CAM∆≅∆;(2)若点D在线段AM上时,求证:ADC BEC∠是否(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB为定值?并说明理由.8.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.9.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.11.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式. 12.如图1,我们定义:在四边形ABCD 中,若AD=BC ,且∠ADB+∠BCA=180°,则把四边形ABCD 叫做互补等对边四边形.(1)如图2,在等腰ABE △中,AE=BE ,四边形ABCD 是互补等对边四边形,求证:∠ABD=∠BAC=12∠AEB . (2)如图3,在非等腰ABE △中,若四边形ABCD 仍是互补等对边四边形,试问∠ABD=∠BAC=12∠AEB 是否仍然成立?若成立,请加以证明;若不成立,请说明理由.13.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).14.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.15.已知:MN ∥PQ ,点A ,B 分别在MN ,PQ 上,点C 为MN ,PQ 之间的一点,连接CA ,CB .(1)如图1,求证:∠C=∠MAC+∠PBC ;(2)如图2,AD ,BD ,AE ,BE 分别为∠MAC ,∠PBC ,∠CAN ,∠CBQ 的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D 作DA 的垂线交PQ 于点G ,点F 在PQ 上,∠FDA=2∠FDB ,FD 的延长线交EA 的延长线于点H ,若3∠C=4∠E ,猜想∠H 与∠GDB 的倍数关系并证明.16.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
湖北省武汉为明校2024学年中考联考数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知实数a 、b 满足a b >,则( )A .a 2b >B .2a b >C .a 2b 2->-D .2a 1b -<-2.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关3.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .44.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b5.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )A .3.82×107B .3.82×108C .3.82×109D .0.382×10106.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( )A .8B .9C .10D .117.如图,在△ABC 中,AC=BC ,点D 在BC 的延长线上,AE ∥BD ,点ED 在AC 同侧,若∠CAE=118°,则∠B 的大小为()A.31°B.32°C.59°D.62°8.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.119.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0D.m>﹣2且m≠010.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h11.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.25°12.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D 为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x 2﹣5x+2=0的一个根是a ,则6a 2﹣10a+2=_____.14.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003米,点A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)15.2的平方根是_________.16.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).17.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)1812+3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.20.(6分)如图,在四边形ABCD 中,AB ∥CD ,∠ABC=∠ADC ,DE 垂直于对角线AC ,垂足是E ,连接BE . (1)求证:四边形ABCD 是平行四边形;(2)若AB=BE=2,sin ∠3,求四边形ABCD 的面积.21.(6分)解方程:3221xx x=+-.22.(8分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.23.(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?24.(10分)解方程组:113311 x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩25.(10分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.26.(12分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.27.(12分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】根据不等式的性质进行判断.【题目详解】解:A 、a b >,但a 2b >不一定成立,例如:112>,1122=⨯故本选项错误; B 、a b >,但2a b >不一定成立,例如:12->-,122-⨯=-,故本选项错误;C 、a b >时,a 2b 2->-成立,故本选项正确;D 、a b >时,a b -<-成立,则2a 1b -<-不一定成立,故本选项错误;故选C .【题目点拨】考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.2、C【解题分析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变,故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线3、B【解题分析】先由平均数是3可得x 的值,再结合方差公式计算.【题目详解】∵数据1、2、3、x 、5的平均数是3,∴12355x ++++=3, 解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故选B.【题目点拨】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.4、A【解题分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【题目详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【题目点拨】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.5、B【解题分析】根据题目中的数据可以用科学记数法表示出来,本题得以解决.【题目详解】解:3.82亿=3.82×108,故选B.【题目点拨】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.6、C【解题分析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.7、A【解题分析】根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.【题目详解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B +∠CAB +∠CAE =180°,即2∠B =180°−118°,解得:∠B =31°,故选A .【题目点拨】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B =∠CAB .8、A【解题分析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 9、C【解题分析】根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【题目详解】解:∵抛物线288y mx x =--和x 轴有交点, 20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩, 解得:m 2≥﹣且m 0≠.故选C .【题目点拨】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键.10、B【解题分析】由图可知,甲用4小时走完全程40km ,可得速度为10km/h ;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h .故选B11、A【解题分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【题目详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【题目点拨】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12、B【解题分析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB33,根据题意得:AD=BC=x,AE=3,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=1xAMAE==;故选B.【题目点拨】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1【解题分析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【题目详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【题目点拨】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14、100(【解题分析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=CD AD,∴,在Rt△BCD中,∴().答:A、B两点间的距离为100(故答案为100(.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.15、【解题分析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【题目详解】解:2的平方根是故答案为【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16、4n+1【解题分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【题目详解】解:第一个图案正三角形个数为6=1+4;第二个图案正三角形个数为1+4+4=1+1×4;第三个图案正三角形个数为1+1×4+4=1+3×4;…;第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.故答案为4n+1.考点:规律型:图形的变化类.17、①②③【解题分析】①根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出△ADF≌△FEC(SSS),结论①正确;②根据三角形中位线定理可得出EF∥AB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F 分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论②正确;③根据三角形中位线定理可得出DF ∥BC 、DF=12BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出14ADF ABCS S=,结论③正确.此题得解. 【题目详解】解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点, ∴DE 、DF 、EF 为△ABC 的中位线, ∴AD=12AB=FE ,AF=12AC=FC ,DF=12BC=EC . 在△ADF 和△FEC 中,AD FE AF FC DF EC ⎧⎪⎨⎪⎩===, ∴△ADF ≌△FEC (SSS ),结论①正确; ②∵E 、F 分别为BC 、AC 的中点, ∴EF 为△ABC 的中位线, ∴EF ∥AB ,EF=12AB=AD , ∴四边形ADEF 为平行四边形.∵AB=AC ,D 、F 分别为AB 、AC 的中点, ∴AD=AF ,∴四边形ADEF 为菱形,结论②正确; ③∵D 、F 分别为AB 、AC 的中点, ∴DF 为△ABC 的中位线, ∴DF ∥BC ,DF=12BC , ∴△ADF ∽△ABC ,∴214ADF ABCS DF SBC ==(),结论③正确. 故答案为①②③. 【题目点拨】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键. 18、【解题分析】化成. 【题目详解】原式故答案为【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)12(2)16【解题分析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.考点:概率统计20、(1)证明见解析;(2)S 平行四边形ABCD . 【解题分析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD ∥BC ,根据平行四边形的判定推出即可;(2)证明△ABE 是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE 和DE ,得出AC 的长,即可求出四边形ABCD 的面积.试题解析:(1)∵AB ∥CD ,∴∠ABC+∠DCB=180°, ∵∠ABC=∠ADC ,∴∠ADC+∠BCD=180°,∴AD ∥BC , ∵AB ∥CD ,∴四边形ABCD 是平行四边形;(2)∵sin ∠ACD=60°, ∵四边形ABCD 是平行四边形,∴AB ∥CD ,CD=AB=2,∴∠BAC=∠ACD=60°, ∵AB=BE=2,∴△ABE 是等边三角形,∴AE=AB=2,∵DE ⊥AC ,∴∠CDE=90°﹣60°=30°,∴CE=12CD=1,∴AC=AE+CE=3,∴S 平行四边形ABCD =2S △ACD 21、x=12,x=﹣2 【解题分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【题目详解】3221xx x=+-,则2x (x+1)=3(1﹣x ), 2x 2+5x ﹣3=0, (2x ﹣1)(x+3)=0,解得:x 1=12,x 2=﹣3, 检验:当x=12,x=﹣2时,2(x+1)(1﹣x )均不等于0,故x=12,x=﹣2都是原方程的解.【题目点拨】本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.22、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解题分析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【题目详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×30100=960(人).【题目点拨】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.23、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解题分析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.【题目详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%.(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,∵单人间的数量在20至30之间(包括20和30),∴121620{121630yy-≥-≤,解得:15 16≤y≤1656.根据题意得:w=2y+20y+121﹣6y=16y+121,∴当y=16时,16y+121取得最大值为1.答:该校的寝室建成后最多可供1名师生住宿.【题目点拨】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.24、10.5 xy=⎧⎨=-⎩【解题分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【题目详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a =1代入①得:1+b =3, 解得:b =2,即1112x x y ⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5x y =⎧⎨=-⎩,经检验10.5x y =⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5x y =⎧⎨=-⎩.【题目点拨】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.25、(1)y=﹣x 2+2x+1.(2)2≤E y <2.(1)当m=1.5时,S △BCE 有最大值,S △BCE 的最大值=278. 【解题分析】分析:(1) 1)把A 、B 两点代入抛物线解析式即可;(2)设()()2,23,0,3D m m m C CE CD -++=,利用求线段中点的公式列出关于m 的方程组,再利用0<m <1即可求解;(1) 连结BD ,过点D 作x 轴的垂线交BC 于点H,由BCE BCD S S ∆∆=,设出点D 的坐标,进而求出点H 的坐标,利用三角形的面积公式求出BCE S ∆,再利用公式求二次函数的最值即可. 详解:(1)∵抛物线 2y x bx c =-++ 过点A (-1,0)和B (1,0)10930b c b c ---=⎧∴⎨-++=⎩ 22233b y x xc =⎧∴∴=-++⎨=⎩ (2)∵()()2,23,0,3D m m m C CE CD -++=∴点C 为线段DE 中点设点E (a,b )()20236a m b m m +=⎧⎪∴⎨+-++=⎪⎩()2,23E m m m ∴--+∵0<m <1, ()222312m m m -+=-+ ∴当m=1时,纵坐标最小值为2 当m=1时,最大值为2∴点E 纵坐标的范围为26E y ≤<(1)连结BD ,过点D 作x 轴的垂线交BC 于点H ∵CE=CD ()2,23,:3BCE BCD S S D m m m BC y x ∆∆∴=-++=-+∴H (m ,-m+1) ∴()211=233322BCD S DH OB m m m ∆=⨯-+++-⨯ 23922m m =-+ 当m=1.5时,max 278EBC S ∆=.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题. 26、(1)证明见解析;(2);3.【解题分析】试题分析:(1)连接OD 、OE 、ED .先证明△AOE 是等边三角形,得到AE=AO=0D ,则四边形AODE 是平行四边形,然后由OA=OD 证明四边形AODE 是菱形;(2)连接OD 、DF .先由△OBD ∽△ABC ,求出⊙O 的半径,然后证明△ADC ∽△AFD ,得出AD 2=AC•AF ,进而求出AD .试题解析:(1)证明:如图1,连接OD 、OE 、ED . ∵BC 与⊙O 相切于一点D , ∴OD ⊥BC ,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.27、证明见解析【解题分析】试题分析:证明三角形△ABC≅△DEF,可得AB=DE.试题解析:证明:∵BF=CE,∴BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,AC=DF,∴△ABC≅△DEF,∴AB=DE.。
2021年湖北省武汉市中考数学压轴题总复习解析版1.已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.【解答】解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=45,∴sinα=35,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=45,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或98(舍去a=2),AD=HF=10﹣2﹣4a=7 2;(2)过点C作CH⊥AD交AD的延长线于点H,CD 2=CH 2+DH 2=(AC sin α)2+(AC cos α﹣x )2,即:CD 2=36+(8﹣x )2,由(1)得:AC •CE =CD 2,即:y =110x 2−85x +10(0<x <16且x ≠10)…①,(3)①当DF =DC 时,∵∠ECF =∠FDC =α,∠DFC =∠DFC ,∴△DFC ∽△CFE ,∵DF =DC ,∴FC =EC =y ,∴x +y =10,即:10=110x 2−85x +10+x ,解得:x =6;②当FC =DC ,则∠DFC =∠FDC =α,则:EF =EC =y ,DE =AE =10﹣y ,在等腰△ADE 中,cos ∠DAE =cos α=12AD AE =12x 10−y =45, 即:5x +8y =80,将上式代入①式并解得:x =394;③当FC =FD ,则∠FCD =∠FDC =α,而∠ECF =α≠∠FCD ,不成立,故:该情况不存在;故:AD 的长为6和394.2.已知:正方形ABCD ,等腰直角三角板的直角顶点落在正方形的顶点D 处,使三角板绕点D 旋转.(1)当三角板旋转到图1的位置时,猜想CE 与AF 的数量关系,并加以证明;(2)在(1)的条件下,若DE =1,AE =√7,CE =3,求∠AED 的度数;。
2013年中考数学基础题训练一一、选择题(共8小题,每小题3分,共24分)1.有理数3,-4,0,-2,5中最小的一个数是A .-2B .-4C .0D .32.下列函数中,自变量x 的取值范围是x≥2的函数是A .y=2-xB .y=x -2C .y=12-xD .y=1-2x3数轴上表示的是某不等式组的解集,则这个不等式组可能是A .x 10x 2≥⎧⎨≥⎩+﹣ B .x 10x 20⎧⎨≤⎩+<﹣ C .x 10x 20⎧⎨⎩+>﹣> D .x 10x 20⎧⎨≤⎩+>﹣ 4.有两个事件,事件A :掷一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中;则下列结论正确的是A.只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件5.若x 1、x 2是一元二次方程x 2-5x +6=0的两个根,则x 1+x 2的值是A .-5B .5C .6 D.﹣66.《武汉晚报》5月30日报道:湖北省今年高考报名人数为484000人. 484000用科学记数法表示应为A.4.84×105B. 4.84×106C. 0.484×106D. 48.4×104 7.如图,梯形ABCD 中,AD∥BC,AD=AB ,BC=BD ,∠A=100°,则∠C 度数是A .80°B .70°C .75°D .60°8.如图是某体育馆内的颁奖台,其主视图是二、填空题(共3小题,每小题3分,共9分)11. tan60°的值为 .12.某班上的一个数学兴趣小组6名学生在本次四月调考中数学成绩如下:92,103,98,102,98,107,这组数据的平均数是 .13. 如图,用“●”和“☆”可以围成精美的图案,第一个图中有8个“●”和1个“☆”,第二个图中有16个“●”和4个“☆”,第三个图中有24个“●”和9个“☆”,……,按照这个规律可知,第 个图形中“●”的个数和“☆”的个数相等.……三、解答题(共5小题,共32分)A .B .C .D .17.(本题6分)解方程:xx -+=-11211.18.(本题6分)如图,已知直线b kx y +=经过A (1,3)、B (-1,-1)两点,求不等式0>+b kx 的解集.19.(本题6分)已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧,AB ∥ED ,AB=CE ,BC=ED. 求证:AC=CD.20.(本题7分)从甲学校到乙学校有A 1、A 2、A 3三条线路,从乙学校到丙学校有B 1、B 2二条线路.⑴利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果; ⑵小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B 1线路的概率是多少?21.(本题7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(0,1)、B(﹣1,1)、C(﹣1,3) .⑴画出△ABC 关于x 轴对称的△A 1B 1C 1,并直接写出点C 1⑵画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并直接写出点C 2的坐标;⑶在(2)的条件下,线段AB 扫过的面积为 .。
武汉市历年中考数学真题精选汇编:压轴题(含答案解析)一.选择题(共8小题)1.(2019•武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a 2.(2018•武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.3.(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7 4.(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8 5.(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1 6.(2014•武汉)如图,P A,PB切⊙O于A、B两点,CD切⊙O于点E,交P A,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.7.(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E 是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.8.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+二.填空题(共8小题)9.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.10.(2018•武汉)如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.11.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.12.(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.14.(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.15.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.16.(2012•武汉)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.三.解答题(共16小题)17.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)18.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.19.(2018•武汉)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.20.(2018•武汉)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.21.(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)22.(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.23.(2016•武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线P A,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.25.(2015•武汉)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3.(1)求证:EF+PQ=BC;(2)若S1+S3=S2,求的值;(3)若S3﹣S1=S2,直接写出的值.26.(2015•武汉)已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.27.(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B 出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB 边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.28.(2014•武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.29.(2013•武汉)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图2,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.30.(2013•武汉)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当P A=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得P A=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P 的坐标.31.(2012•武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).32.(2012•武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y 轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴负半轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ 时,求m的值.武汉市历年中考数学真题精选汇编:压轴题(含答案解析)参考答案与试题解析一.选择题(共8小题)1.(2019•武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.2.(2018•武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.3.(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.【解答】解:如图:故选:D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.4.(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.【点评】本题考查了等腰三角形的判定,也考查了通过坐标确定图形的性质以及分类讨论思想的运用.5.(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.6.(2014•武汉)如图,P A,PB切⊙O于A、B两点,CD切⊙O于点E,交P A,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.【分析】(1)连接OA、OB、OP,延长BO交P A的延长线于点F.利用切线求得CA=CE,DB=DE,P A=PB再得出P A=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.【解答】解:连接OA、OB、OP,延长BO交P A的延长线于点F.∵P A,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,P A=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=P A+PB=3r,∴P A=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(P A+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.【点评】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.7.(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E 是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.【分析】点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y°;然后在四边形BDPE 中,求出∠B;最后利用弧长公式计算出结果.【解答】解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y°.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y°+90°=360°,解得:∠B=180°﹣2y°.∴的长度是:=.故选:B.【点评】本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y°.8.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+【分析】根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE 和CF的值,相加即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:过点A作AE⊥BC垂足为E,过点A作AF⊥DC垂足为F,由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:过点A作AF⊥DC垂足为F,过点A作AE⊥BC垂足为E,∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+.故选:D.【点评】本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.二.填空题(共8小题)9.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.10.(2018•武汉)如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.11.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.12.(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.【点评】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.【点评】本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.14.(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.15.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.【分析】根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【解答】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.16.(2012•武汉)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是m≥.【分析】C在以A为圆心,以2为半径的圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.【解答】解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC==,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.【点评】本题考查了解直角三角形,勾股定理,切线的性质等知识点的应用,能确定∠BOC的变化范围是解此题的关键,题型比较好,但是有一定的难度.三.解答题(共16小题)17.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)【分析】(1)如图1中,延长AM交CN于点H.想办法证明△ABM≌△CBN(ASA)即可.(2)①如图2中,作CH∥AB交BP的延长线于H.利用全等三角形的性质证明CH=BM,再利用平行线分线段成比例定理解决问题即可.②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.想办法求出CN,PN(用m,n表示),即可解决问题.【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=180°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴==.②解:如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=,BH=,AM=m,∵•AM•BP=•AB•BM,∴PB=,∵•BH•CN=•CH•BC,∴CN=,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN===.方法二:易证:===,∵PN=PB,tan∠BPQ====.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.18.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)①易求点A(3,0),b=4,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),则可求直线AD'的解析式为y=x﹣4,联立方程,可得P点横坐标为;②同理可得P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,得出直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)如图1,①设抛物线C1与y轴交于C点,直线AB与y轴交于D点,∵C1:y=(x﹣1)2﹣4,∴A(3,0),C(0,﹣3),∵直线y=﹣x+b经过点A,∴b=4,∴D(0,4),∵AP=AQ,PQ∥y轴,∴P、Q两点关于x轴对称,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),∴直线AD'的解析式为y=x﹣4,由,得x1=3,x2=,∴x Q=,∴x P=x Q=,∴P点横坐标为;②P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,∴直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.19.(2018•武汉)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出MP=MC,进而得出=,设MN=2m,PN=m,根据勾股定理得,PM==3m=CM,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∴∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠P AC====设MN=2m,PN=m,根据勾股定理得,PM==3m=CM,∴tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.20.(2018•武汉)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出。
武汉市光谷为明实验学校中考数学期末二次函数和几何综合汇编一、二次函数压轴题1.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分别是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值. ②△BEF 能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题. (1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.2.如图,抛物线213222y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 的坐标为()0m ,,过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、点B 、点C 的坐标;(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究当m 为何值时,四边形CQMD 是平行四边形;(3)在点P 的运动过程中,是否存在点Q ,使BDQ △是以BD 为直角边的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.3.某数学兴趣小组在探究函数y =x 2﹣2|x |+3的图象和性质时,经历了以下探究过程: (1)列表(完成下列表格). x … ﹣3 ﹣2 ﹣1 ﹣12121 2 3 … y…632236…(2)描点并在图中画出函数的大致图象;(3)根据函数图象,完成以下问题:①观察函数y =x 2﹣2|x |+3的图象,以下说法正确的有 (填写正确的序号) A .对称轴是直线x =1;B .函数y =x 2﹣2|x |+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2);C .当﹣1<x <1时,y 随x 的增大而增大;D .当函数y =x 2﹣2|x |+3的图象向下平移3个单位时,图象与x 轴有三个公共点;E .函数y =(x ﹣2)2﹣2|x ﹣2|+3的图象,可以看作是函数y =x 2﹣2|x |+3的图象向右平移2个单位得到.②结合图象探究发现,当m 满足 时,方程x 2﹣2|x |+3=m 有四个解. ③设函数y =x 2﹣2|x |+3的图象与其对称轴相交于P 点,当直线y =n 和函数y =x 2﹣2|x |+3图象只有两个交点时,且这两个交点与点P 所构成的三角形是等腰直角三角形,求n 的值.4.已知抛物线2:23G y mx mx =--有最低点为F .(1)当抛物线经过点E (-1,3)时,①求抛物线的解析式;②点M 是直线EF 下方抛物线上的一动点,过点M 作平行于y 轴的直线,与直线EF 交于点N ,求线段MN 长度的最大值;(2)将抛物线G 向右平移m 个单位得到抛物线1G .经过探究发现,随着m 的变化,抛物线1G 顶点的纵坐标y 和横坐标x 之间存在一个函数,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的交点为P ,请结合图象求出点P 的纵坐标的取值范围. 5.综合与探究如图1,已知抛物线2142y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y轴交于点C ,作直线BC ,点C 关于x 轴的对称点是点C '.(1)求点C '的坐标和直线BC 的表达式;(2)如图2,点M 在抛物线的对称轴上,N 为平面内一点,依次连接BM ,C M ',C N ',NB ,当四边形BMC N '是菱形时,求点M 坐标;(3)如图3,点P 是抛物线第一象限内一动点,过P 作x 轴的平行线分别交直线BC 和y 轴于点Q 和点E ,连接PC '交直线BC 于点D ,连接QC ',PB ,设点P 的横坐标为m ,△QC D '的面积为1S ,△PBD 的面积为2S ,求12S S -的最大值.6.如图,抛物线2:L y ax bx c =++经过(1,0),(0,3),(5,3)A B C -三点,该抛物线的顶点为D .(1)求该抛物线L的表达式和点D的坐标;(2)抛物线L'与抛物线L关于直线BC对称,P是抛物线L的B、M段上的一点,过点P 作y轴的平行线交抛物线L'与点Q,点P、Q关于抛物线L的对称轴对称点分别为M、N.试探究是否存在一点P,使得四边形PQNM为正方形?若存在,求出点P的横坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图1,若点D是抛物线上第一象限内的一动点,设点D的横坐标为m,连接CD,BD,BC,AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)如图2,若点N为抛物线对称轴上一点,探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.8.如图1,在平面直角坐标系中,已知抛物线y=a x2+b x+3经过A(1,0) 、B(-3,0)两点,与y轴交于点C.直线BC经过B、C两点.(1)求抛物线的解析式及对称轴;(2)将△COB 沿直线 BC 平移,得到△C 1O 1B 1,请探究在平移的过程中是否存在点 O 1落在抛物线上的情形,若存在,求出点O 1的坐标,若不存在,说明理由;(3)如图2,设抛物线的对称轴与x 轴交于点E ,连结AC ,请探究在抛物线上是否存在一点F ,使直线EF ∥AC ,若存在,求出点F 的坐标,若不存在,说明理由. 9.综合与探究如图,已知直线y mx n =+与抛物线2y x bx c =++分别相交于A 、B 两点,1,0A ,()0,3B -,点C 是抛物线与x 轴的另一个交点(与A 点不重合).(1)求抛物线的解析式及直线y mx n =+的解析式; (2)求ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使ABM 周长最短?若不存在,请说明理由;若存在,求出点M 的坐标.(4)如果对称轴上有一动点H ,在平面内是否存在点N ,使A 、B 、H 、N 四点构成矩形?若存在,直接写出N 点的坐标;若不存在,请说明理由10.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y =kx +n 与y 轴交于点C ,与抛物线y =﹣x 2+bx +c 的另一个交点为D ,已知A (﹣1,0),D (5,﹣6),P 点为抛物线y =﹣x 2+bx +c 上一动点(不与A 、D 重合). (1)直接写出抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,连接PA 、PD , ①当△PAD 的面积最大时,P 点的坐标是 ; ②当AB 平分∠DAP 时,求线段PA 的长.(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.二、中考几何压轴题11.如图(1),在矩形ABCD 中,8,6AB AD ==,点,E F 分别是边,DC DA 的中点,四边形DFGE 为矩形,连接BG .(1)问题发现 在图(1)中,CEBG=_________; (2)拓展探究将图(1)中的矩形DFGE 绕点D 旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图(2)的情形给出证明; (3)问题解决当矩形DFGE 旋转至,,B G E 三点共线时,请直接写出线段CE 的长.12.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 是AB 边上的动点,DE ⊥BC 于点E ,连接AE ,CD ,点F ,G ,H 分别是AE ,CD ,AC 的中点. (1)观察猜想:△FGH 的形状是(2)探究论证:把△BDE绕点B按逆时针方向旋转到如图所示的位置,(1)中的结论是否仍然成立?请说明理由.(3)拓展延伸:把△BDE绕点B在平面内自由旋转,若BC=6,BE=2,请直接写出△FGH 周长的取值范围.13.(感知)(1)如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AEEB =DE CB.(探究)(2)如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且EFEG=AEEB,连接BG交CD于点H.求证:BH=GH.(拓展)(3)如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且AEEB=DEEC,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.14.(1)问题发现如图1,ABC是等边三角形,点D,E分别在边BC,AC上,若∠ADE=60°,则AB,CE,BD,DC之间的数量关系是.(2)拓展探究如图2,ABC是等腰三角形,AB=AC,∠B=α,点D,E分别在边BC,AC上.若∠ADE=α,则(1)中的结论是否仍然成立?请说明理由. (3)解决问题如图3,在ABC 中,∠B =30°,AB =AC =4cm ,点P 从点A 出发,以1cm/s 的速度沿A→B 方向勾速运动,同时点M 从点B 出发,以3cm/s 的速度沿B→C 方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动,连接PM ,在PM 右侧作∠PMG =30°,该角的另一边交射线CA 于点G ,连接PC .设运动时间为t (s ),当△APG 为等腰三角形时,直接写出t 的值.15.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度; (2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.16.如图1,已知ABC 和ADE 均为等腰直角三角形,点D 、E 分别在线段AB 、AC 上,90C AED ∠=∠=︒.(1)观察猜想:如图2,将ADE 绕点A 逆时针旋转,连接BD 、CE ,BD 的延长线交CE 于点F .当BD 的延长线恰好经过点E 时,点E 与点F 重合,此时,①BDCE的值为______; ②∠BEC 的度数为______度;(2)类比探究:如图3,继续旋转ADE ,点F 与点E 不重合时,上述结论是否仍然成立,请说明理由;(3)拓展延伸:若2AE DE ==.10AC BC ==,当CE 所在的直线垂直于AD 时,请你直接写出线段BD 的长. 17.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD 是正方形,四边形BEDF 是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE .求证:AE ⊥CE .”并展示了如下的证明方法:证明:如图3,分别连接AC ,BD ,EF ,AF .设AC 与BD 相交于点O . ∵四边形ABCD 是正方形,∴OA =OC =12AC ,OB =OD =12BD ,且AC =BD . 又∵四边形BEDF 是矩形, ∴EF 经过点O ,∴OE=OF=12EF,且EF=BD.∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=31-,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.18.(问题探究)(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系?并加以证明.②若AC=BC=10,DC=CE=2,求线段AD的长.(拓展延伸)(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=21,BC=7,CD=3,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD 的长.19.在矩形ABCD中,ADkAB=(k为常数),点P是对角线BD上一动点(不与B,D重合),将射线PA绕点P逆时针旋转90°与射线CB交于点E,连接AE.(1)特例发现:如图1,当k=1时,将点P移动到对角线交点处,可发现点E与点B重合,则PAPE=,∠AEP=;当点P移动到其它位置时,∠AEP的大小(填“改变”或“不变”);(2)类比探究:如图2,若k≠1时,当k的值确定时,请探究∠AEP的大小是否会随着点P的移动而发生变化,并说明理由;(3)拓展应用:当k≠1时,如图2,连接PC,若PC⊥BD,//AE PC,PC=2,求AP的长.20.(模型构建)如图所示,在边长为1的正方形ABCD中,DEF的顶点E,F分别在AB,BC上(可与点A,B,C重合),且满足45EDF∠=︒.DEF的高线DG交线段EF于点G(可与E,F重合),设DGk AD=.(1)求k的值.(模型拓展)在(模型构建)的基础上,将条件“边长为1的正方形ABCD”改为“长8AB=、宽6AD=的矩形ABCD”(其他条件不变).(2)判断k的值是否改变.若改变,请求出k的取值范围;若不改变,请证明.(深入探究)在(模型构建)的基础上,设DEF的面积为S.(3)①求S的最小值;②当S取到最小值时,直接写出DG与GB的数量关系.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.F解析:(1)连线见解析,二次函数;(2)23)m=0或m=4 3【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK (AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=﹣8x+4,3∴x=0时,y=4,∴A(0,4),又∵B(﹣2,0),设直线AB的解析式为y=kx+b,∴204k b b ⎧-+=⎨=⎩, 解得24k b , ∴直线AB 的解析式为y =2x +4,过点F 作FR ⊥x 轴于点R ,∵D 点的横坐标为m ,∴F (﹣m ,﹣2m +4),∴ER =2m ,FR =﹣2m +4,∵EF 2=FR 2+ER 2,∴l =EF 2=8m 2﹣16m +16=8(m ﹣1)2+8, 令﹣83x +4=0,得x =32, ∴0≤m ≤32. ∴当m =1时,l 的最小值为8,∴EF 的最小值为22.(3)①∠FBE 为定角,不可能为直角.②∠BEF =90°时,E 点与O 点重合,D 点与A 点,F 点重合,此时m =0.③如图3,∠BFE =90°时,有BF 2+EF 2=BE 2.由(2)得EF 2=8m 2﹣16m +16,又∵BR =﹣m +2,FR =﹣2m +4,∴BF 2=BR 2+FR 2=(﹣m +2)2+(﹣2m +4)2=5m 2﹣20m +20,又∵BE 2=(m +2)2,∴(5m 2﹣20m +8)+(8m 2﹣16m +16)2=(m +2)2,化简得,3m 2﹣10m +8=0,解得m 1=43,m 2=2(不合题意,舍去), ∴m =43. 综合以上可得,当△BEF 为直角三角形时,m =0或m =43.【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..2.C解析:(1)1,04,00,2B C A -(),(),()(2)当2m =,四边形CQMD 是平行四边形(3)存在,点Q 的坐标为3,2(),()8,18- ,()1,0-【分析】(1)根据函数解析式列方程即可;(2)根据平行四边形的判定,用含未知数的值表示QM 的长度,从而可求解;(3)设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ,分两种情况讨论:①当∠QBD=90时,由勾股定理可得:222BQ BD DQ +=,②当∠QDB=90时,由勾股定理可得:222BQ BD DQ =+,可解出m 的值.【详解】(1)令0x =,则2y =,C 点的坐标为(0,2);令0y =,则2130222x x =-++ 解得121,4x x =-=,点A 为(-1,0);点B 为(4,0) ∴1,04,00,2B C A -(),(),()(2)如图1所示:点C 与点D 关于x 轴对称,点()0,2D -,设直线BD 的解析式为2y kx =-,将()4,0B 代入得:420k -= 解得12k = ∴直线BD 的解析式为:122y x =- ∵//QM DC∴当=QM DC 时,四边形CQMD 是平行四边形设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ,则1,22M m m ⎛⎫- ⎪⎝⎭∴2131224222m m m ⎛⎫-++--= ⎪⎝⎭解得12m = 20m =(不合题意,舍去)∴当2m =,四边形CQMD 是平行四边形(3)存在,设Q 点的坐标为213,222⎛⎫-++ ⎪⎝⎭m m m ∵BDQ △是以BD 为直角边的直角三角形∴①当∠QBD=90时,由勾股定理可得:222BQ BD DQ +=即()22222213134220222222m m m m m m ⎛⎫⎛⎫-+-+++=+-+++ ⎪ ⎪⎝⎭⎝⎭ 解得13m = 24m =(不合题意,舍去)∴Q 点的坐标为3,2()②当∠QDB=90时,由勾股定理可得:222BQ BD DQ =+即()22222213134220222222m m m m m m ⎛⎫⎛⎫-+-++=++-+++ ⎪ ⎪⎝⎭⎝⎭ 解得18m = 21m =-Q 点的坐标为()8,18- ()1,0-综上所述:点Q 的坐标为3,2(),()8,18- ,()1,0-.【点睛】本题考查了一次函数和抛物线的综合问题,解题的关键在于拿出函数解析式,会用含未知数的代数式表示出关键的点的坐标和线段的长度.3.B解析:(1)详见解析;(2)详见解析;(3)①B 、D 、E ;②2<m <3;③n =2或6.【分析】(1)把x =﹣12,0,12分别代入函数表达式即可求解;(2)描点确定函数图象;(3)①结合图象,根据二次函数的性质依次判断各项即可求解;②根据二次函数的图象即可解答;③如图,当直线y =n 处于直线m 或m ′的位置时,由此即可求解.【详解】(1)把x =﹣12,0,12分别代入函数表达式得:y =94,3,94; 故答案为94,3,94; (2)描点确定函数图象如下:(3)①A.对称轴是直线x=0,故错误;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2),故正确;C.当﹣1<x<1时,函数在y轴右侧,y随x的增大而增大,故错误;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点,正确;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到,正确;故答案为:B、D、E;②从图象看,2<m<3时,方程x2﹣2|x|+3=m有四个解;③如图,当直线y=n处于直线m或m′的位置时,点P和图象上的点构成等腰直角三角形,即n=2或6.【点睛】本题考查了二次函数的图象和性质,正确的识别图象,利用数形结合思想是解决问题的关键.4.E解析:(1)①2243y x x =--;②2;(2)2(1)y x x =-->;(3)43P y -<<-【分析】(1)①把点E (-1,3)代入223y mx mx =--求出m 的值即可;②先求出直线EF 的解析式,设出点M 的坐标,得到MN 的二次函数关系式,根据二次函数的性质求解即可; (2)写出抛物线G 的顶点式,根据平移规律即可得到1G 的顶点式,进而得到1G 的顶点坐标(1,3)m m +--,即1,3x m y m =+=--,消去m ,得到y 与x 的函数关系式,再由0m >即可求得x 的取值范围;(3)求出抛物线怛过点A (2,-3),函数H 的图象恒过点B (2,-4),从图象可知两函数图象的交点P 应在A ,B 之间,即点P 的纵坐标在A ,B 点的纵坐标之间,从而可得结论.【详解】解:(1)①∵抛物线2:23G y mx mx =--经过点E (-1,3)∴233m+m =-∴2m =∴抛物线的解析式为:2243y x x =--②如图,∵点F 为抛物线的最低点,∴22243=2(1)5y x x x =----∴(1,5)F -设直线EF 的解析式为:y kx b =+把E (-1,3),F (1,-5)代入得,35k b k b -+=⎧⎨+=-⎩ 解得,41k b =-⎧⎨=-⎩∴直线EF 的解析式为:41y x =--设2(,243)M a a a --,则(,41)N a a --∴22(41)243)=(22M a N a a a ------+=∵20-<∴当0a =时,MN 有最大值,最大值为2;(2)∵抛物线2:(1)3G y m x m =---∴平移后的抛物线21:(1)3G y m x m m =----∴抛物线1G 的顶点坐标为(1,3)m m +--∴1,3x m y m =+=--∴132x y m +=+-=-∴2y x =--∵0,1m m x >=-∴10x ->∴1x >∴y 与x 的函数关系式为:2(1)y x x =-->(3)如图,函数:2(1)H y x x =-->的图象为射线,1x =时,123y =--=-;2x =时,224y =--=-∴函数H 的图象恒过点(2,-4)∵抛物线2:(1)3G y m x m =---,当1x =时,3y m =--;当2x =时,33y m m =--=-;∴抛物线G 恒过点A (2,-3)由图象可知,若抛物线G 与函数H 的图象有交点P ,则有B P A y y y <<∴点P 纵坐标的取值范围为:43P y -<<-【点睛】本题考查了二次函数综合题,涉及到待定系数法求解析式、二次函数的性质和数形结合思想等知识,熟练运用二次函数的性质解决问题是本题的关键.5.A解析:(1)(0,4)C '-,y =-x +4;(2)M (1,-1);(3)12S S -的最大值是4.【分析】(1)先求得点A ,B ,C 的坐标,即可求得C '的坐标,再用待定系数法求得直线BC 的表达式;(2)过M 作MH ⊥y 轴于点H ,连接OM . 证明△OMB ≌△O MC ',即可得∠MOB =C OM ∠'.再求得∠MOB =C OM ∠'=45°;由此求得OH MH =. 再求得抛物线的对称轴,即可求得点M 的坐标;(3)过B 作BI ⊥PQ 于I .易求122S S QP -=,再求得PQ 的最大值,即可求得12S S -的最大值.【详解】(1)∵抛物线与x 轴相交于点A ,B ,当y =0时,21402x x -++=,解,得122,4x x =-=; ∴B (4,0)∵抛物线与x 轴相交于点C ,∴当x =0时,y =4,∴C (0,4),(0,4)C -'∴.设BC 的表达式为y =kx +b ,将B ,C 两点坐标分别代入得404k b b +=⎧⎨=⎩,解,得14k b =-⎧⎨=⎩. 直线BC 的表达式为y =-x +4 ;(2)过M 作MH ⊥y 轴于点H ,连接OM .∵四边形BMC N'是菱形,∴BM=MC',∵B(4,0),C(0,4),∴OB=OC,∵OM=OM,∴△OMB≌△O MC',∴∠MOB=C OM∠'.∵∠BO C'=90°,∴∠MOB=C OM∠'=45°;∵MH⊥y,OH MH∴=.∵抛物线的对称轴为直线11122x=-=⎛⎫⨯-⎪⎝⎭,1OH MH∴==.∴M(1,-1).(3)过B作BI⊥PQ于I.∵PQ //x 轴,∴∠IEO =90°90IEO EOB BIE ∠∠∠===,∴四边形EOBI 是矩形.BI OE ∴=.12ΔΔΔΔΔΔ1)11(2222QDC QD QPD QD QPC QPB P P S S S S S S S S QP C E QP BI QP C O QP ''∴-=-=''++-=⋅-⋅=⋅= ,∵点P 在抛物线上,且点P 的横坐标为m ,∴点P 的纵坐标为2142m m -++. ∵PQ //x 轴,∴点Q 的纵坐标为2142m m -++,将其代入y =-x +4, ∴点Q 的横坐标为212m m -. ∵点P 是抛物线第一象限内,∴点P 在点Q 右侧,2221112(2)2222PQ m m m m m m ⎛⎫∴=--=-+=--+ ⎪⎝⎭. 102-<, ∴当m =2时,PQ 的最大值是2,∴12S S -的最大值是4.【点睛】本题是二次函数的综合题,解决第(3)题时构建二次函数模型是解决问题的关键. 6.D 解析:(1)215322y x x =-++,点D 的坐标为549,28⎛⎫ ⎪⎝⎭;(2729-【分析】(1)将(1,0),(0,3),(5,3)A B C -三点坐标代入2y ax bx c =++,利用待定系数法可求出抛物线L 的表达式,再由抛物线对称轴公式可求出点D 的坐标;(2)根据题意可求得抛物线L '的表达式,设点P 的横坐标为m ,则可由已知分别表示出点Q 、M 、N 的坐标,利用正方形的性质则可列出方程,求解后即可得出点P 的横坐标.【详解】解:(1)将(1,0),(0,3),(5,3)A B C -代入2y ax bx c =++得:032553a b c c a b c -+=⎧⎪=⎨⎪++=⎩, 解得12523a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴该抛物线L 的表达式为:215322y x x =-++; ∵抛物线的顶点为D ,∴当522b x a =-=时,2155549()322228y =-⨯+⨯+=, ∴点D 的坐标为549,28⎛⎫ ⎪⎝⎭; (2)存在;如图所示:∵抛物线L '与抛物线L 关于直线BC 对称,(0,3)B ,∴12a =,设抛物线L '的表达式为2132y x bx =++, 将(5,3)C 代入得52b =-, ∴抛物线L '的表达式为215322y x x =-+ 设点P 的横坐标为m ,∵PQ ∥y 轴,则Q 的横坐标为m , ∵点P 、Q 关于抛物线L 的对称轴对称点分别为M 、N .∴M 、N 的横坐标为5-m .∴PM =5-m -m =5-2m .∵点P 的纵坐标为215322-++m m ,点Q 的纵坐标为215322m m -+, ∴PQ =(215322-++m m )-(215322m m -+)=25m m -+, 当PM =PQ 时,四边形PQNM 为正方形,∴2525m m m -=-+解得m = ∵P 是抛物线L 的B 、M 段上的一点,∴m <5-m ,解得m <52.∴m .∴点P 【点睛】本题考查了二次函数的图象与性质,熟练掌握待定系数法及二次函数的图象与性质是解题的关键.7.A解析:(1)224233y x x =-++;(2)1或2;(3)存在,点M 的坐标为()2,2或102,3⎛⎫-- ⎪⎝⎭或104,3⎛⎫- ⎪⎝⎭ 【分析】(1)把点A 、B 的坐标代入二次函数解析式进行求解即可;(2)过点D 作y 轴平行线交BC 于点E ,由题意易得C 点坐标是(0,2),然后可得直线BC 的解析式,然后可表示点E 坐标,进而可根据铅垂法进行表示△BCD 的面积,最后问题可进行求解;(3)设点M 的坐标为:(x ,y ),点N (1,s ),点B (3,0)、C (0,2),根据题意易得当以B ,C ,M ,N 为顶点的四边形是平行四边形,可分①当BC 是平行四边形的边时,②当BC 为对角线时,然后根据平行四边形的性质及中点坐标公式可求解.【详解】解:(1)把A (﹣1,0),B (3,0)代入y =ax 2+bx +2中,得:209320a b a b -+=⎧⎨++=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为224233y x x =-++; (2)过点D 作y 轴平行线交BC 于点E ,把x =0代入224233y x x =-++中,得:y =2, ∴C 点坐标是(0,2),又∵B (3,0),∴直线BC 的解析式为y =23-x +2, ∵点D (m ,224233m m -++),∴E (m ,23-m +2),∴DE =(224233m m -++)﹣(23-m +2)=23-m 2+2m , 由S △BCD =2S △AOC 得:12×DE ×OB =2×12×OA ×OC ,∴12(23-m 2+2m )×3=2×12×1×2, 整理得:m 2﹣3m +2=0解得:m 1=1,m 2=2∵0<m <3∴m 的值为1或2;(3)存在,理由:设点M 的坐标为:(x ,y ),y =224233x x -++,则有点N (1,s ),点B (3,0)、C (0,2),①当BC 是平行四边形的边时,当点C 向右平移3个单位,向下平移2个单位得到B ,同样点M (N )向右平移3个单位,向下平移2个单位N (M ),故:x +3=1,y ﹣2=s 或x ﹣3=1,y +2=s ,解得:x =﹣2或4,故点M 坐标为:(﹣2,103-)或(4,103-); ②当BC 为对角线时,由中点公式得:x +1=3,y +s =2,解得:x =2,故点M (2,2);综上,M 的坐标为:(2,2)或(﹣2,103-)或(4,103-). 【点睛】本题主要考查二次函数的综合,关键是根据题意得到函数解析式,然后利用平行四边形的存在性问题可进行分析. 8.F解析:(1)223y x x =--+,1x =-;(2)O 1)32-);(3)满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【分析】(1)把A (1,0),B (-3,0)代入y=ax 2+bx+3即可求解;(2)先求出直线OO 1的解析式为y x =,再根据223x x x --+=,求解即可或是根据23(23)3x x x +---+=得出x 的值,再根据直线OO 1的解析式为y x =求解;(3)先求出直线EF 解析式为 33y x =--,再根据22333x x x --+=--求解即可.【详解】解:(1)将点A (1, 0),B (-3, 0)代入抛物线解析式y=a x 2+b x+3得:{309330a b a b ++=-+= 解得:{12a b =-=-∴抛物线解析式为 223y x x =--+∴2(1)4y x =++ ∴1x =-(2)∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∵B(-3,0)∴OB =OC ∴ ∠CBO=45°∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1∴直线OO 1∥BC ∴ ∠O 1OA=45°∴直线OO 1的解析式为y x =根据题意 得 223x x x --+=整理得 2330x x +-=解得 1321x -+= 2321x --= ∴O 1(321-+,321-+ )或)(321--,321--) 解法2 ∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∴OC=3∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 01C 1=3∴23(23)3x x x +---+=整理得 2330x x +-=解得 13212x -+= 23212x --= ∵B(-3,0)∴OB =OC ∴ ∠CBO=45°∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1∴直线OO 1∥BC ∴ ∠O 1OA=45°∴直线OO 1的解析式为y=x∴O 1(3212-+,3212-+ )或(3212--,3212--)(3)∵抛物线对称轴与x 轴交于点E,则点E 的坐标为E(-1,0),过点C 作CF ∥x 轴根据抛物线的对称性得F 的坐标为F(-2,3)∴AE=CF=2 ∵CF ∥AE ∴四边形CFEA 为平行四边形∴EF ∥CA设直线EF 的解析式为y kx b =+得:{320k b k b =-+=-+ 解得:{33k b =-=- ∴直线EF 解析式为 33y x =--根据题意 得 22333x x x --+=--解得12x =- 23x =满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线的判定和性质,解题的关键是学会利用参数构建方程组解决问题,学会用转化的思想思考问题. 9.A解析:(1)33y x =-,223y x x =+-;(2)6;(3)存在点M 使ABM 周长最短,其坐标为()1,2--;(4)存在,10,3⎛⎫ ⎪⎝⎭,72,3⎛⎫-- ⎪⎝⎭,()2,1-,()2,2- 【分析】(1)把A 、B 两点的坐标分别代入抛物线2y x bx c =++和直线y mx n =+中,解之即可; (2)由图可知,12ABC S AC OB =⋅,所以只需求出AC ,OB 的长即可,因为C 点为抛物线与x 轴的一个交点,令y=0即可求出C 点坐标,根据已知可得A 点坐标,从而得到AC 的长,根据已知得到B 点坐标,可得OB 的长,从而求出ABC 的面积;(3)由题意知,A 、C 关于对称轴对称,则可知MA MC =,故当B 、M 、C 三点在同一条直线上时MB MC +最小,此时ABM 的周长最小,连接BC 交对称轴于点M ,则M 即为满足条件的点,设直线BC 的解析式为y kx m =+,将B ,C 的坐标代入即可求出该解析式,令x=-1,即可求出点M 的坐标;(4)在平面内是否存在点N ,使A 、B 、H 、N 四点构成矩形,求N 点坐标时,需分情况讨论,当HB ⊥AB 时,根据互相垂直的两直线的斜率之积为-1,互相平行的两直线的斜率相等求出直线HB ,直线HN ,直线AN 的解析式,根据N 点为直线HN 和直线AN 的交点,联立方程组解之即可;同理可得当HA ⊥AB 时,N 点的坐标;而当AB 为对角线时,可得HA ⊥AB ,从而可求出直线AH 的解析式,设H 点坐标为()1,y -,根据△AHB 为直角三角形,利用勾股定理求出H 点的坐标,然后在利用互相垂直的两直线的斜率之积为-1,互相平行的两直线的斜率相等求出N 点的坐标.【详解】解:(1)把A 、B 两点的坐标分别代入2y x bx c =++得103b c c ++=⎧⎨=-⎩, 解得23b c =⎧⎨=⎩, ∴抛物线解析式为223y x x =+-.把A 、B 两点的坐标分别代入y mx n =+得03m n n +=⎧⎨=-⎩, 解得33m n =⎧⎨=-⎩, ∴直线y mx n =+的解析式为33y x =-.(2)由(1)得,抛物线解析式为223y x x =+-,令0y =得2023x x =+-,解得11x =,23x =-,()3,0C ∴-,∵1,0A ,∴4AC =,∵()0,3B -,∴OB=3,1143622ABC S AC OB ∴=⋅=⨯⨯=; (3)()222314y x x x =+-=+-,∴抛物线的对称轴为1x =-,A 、C 关于对称轴对称,MA MC ∴=, MB MA MB MC ∴+=+,∴当B 、M 、C 三点在同一条直线上时MB MC +最小,此时ABM 的周长最小 ∴连接BC 交对称轴于点M ,则M 即为满足条件的点, 设直线BC 的解析式为y kx m =+,直线BC 过点()0,3B -,()3,0C -,303k m m -+=⎧∴⎨=-⎩,解得13k m =-⎧⎨=-⎩, ∴直线BC 的解析式3y x =--,当1x =-时,2y =-,()1,2M ∴--,∴存在点M 使ABM 周长最短,其坐标为()1,2--. (4)存在,①当HB ⊥AB 时,如图所示由(1)得直线AB 的解析式为33y x =-, ∵HB ⊥AB ,∴设直线HB 的解析式为13y x b =-+,将B(0,-3)代入得 3b =-,∴直线HB 的解析式为133y x =--, 当x=-1时,y=13-×(-1)-3=83-,∴H 点的坐标为81,3⎛⎫-- ⎪⎝⎭,∵四边形ABHN 为矩形,∴HN ∥AB ,AN ∥HB ,∴设直线HN 的解析式为y=3x+m ,把H 点坐标代入,得3×(-1)+m=83-, 解得m=13, ∴直线HN 的解析式为y=3x+13, ∴设直线AN 的解析式为13y x n =-+,把A 点坐标代入,得103n -+=, 解得n=13, ∴设直线AN 的解析式为1133y x =-+, ∵N 点为直线HN 和直线AN 的交点,∴1331133y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩解得013x y =⎧⎪⎨=⎪⎩, ∴N 点坐标为10,3⎛⎫ ⎪⎝⎭. ②当HA ⊥AB 时,如图由(1)得直线AB 的解析式为33y x =-, ∵HA ⊥AB ,∴设直线HA 的解析式为13y x b =-+,将A(1,0)代入得13-+b=0, 解得b=13,∴直线HA 的解析式为1133y x =-+, 当x=-1时,()1121333y =-⨯-+=, ∴H 点的坐标为21,3⎛⎫- ⎪⎝⎭, ∵四边形ABNH 是矩形,∴AB ∥NH ,BN ∥AH ,∴设直线HN 的解析式为y=3x+m ,把H 点坐标代入,得()2313m =⨯-+, 解得m=113, ∴设直线HN 的解析式为y=3x+113, ∴设直线BN 的解析式为13y x n =-+,把B 点坐标代入,得 n=-3,∴设直线BN 的解析式为133y x =--, ∵N 点为直线HN 和直线BN 的交点,∴1133133y x y x ⎧=+⎪⎪⎨⎪=--⎪⎩解得273x y =-⎧⎪⎨=-⎪⎩, ∴N 点坐标为72,3⎛⎫-- ⎪⎝⎭. ③当AB 为对角线时,如图设H 点坐标为()1,y -,∵四边形AHBN 为矩形,∴△AHB 为直角三角形,∠AHB=90°,∴AH 2+BH 2=AB 2,即()()()2222111313y y --+++--=+-⎡⎤⎡⎤⎣⎦⎣⎦, 解得121,2y y =-=-,∴H 点坐标为(-1,-1),(-1,-2),(a )当H 点坐标为(-1,-1)时,设直线AH 的解析式为y=kx+b ,把A ,H 点坐标代入,得01k b k b +=⎧⎨-+=-⎩ 解得1212k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AH 的解析式为1122y x =-, ∵AH ∥BN , ∴设直线BN 的解析式为12y x b =+,把B 点坐标代入,得b=-3,∴直线BN 的解析式为132y x =-,∵AN ⊥BN ,∴设直线AN 的解析式为y=-2x+m ,把A 点坐标代入,得-2+m=0,解得m=2,∴直线AN 的解析式为y=-2x+2,∵N 点为直线AN 与BN 的交点, ∴22132y x y x =-+⎧⎪⎨=-⎪⎩ 解得22x y =⎧⎨=-⎩, ∴N 点坐标为(2,-2);(b )当H 点坐标为(-1,-2)时,设直线AH 的解析式为y=kx+b ,把A ,H 点坐标代入,得02k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=-⎩, ∴直线AH 的解析式为y=x-1,∵AH ∥BN ,∴设直线BN 的解析式为y=x+n ,把B 点坐标代入,得n=-3,∴直线BN 的解析式为y=x-3,∵AN ⊥BN ,∴设直线AN 的解析式为y=-x+m ,把A 点坐标代入,得-1+m=0,解得m=1,∴直线AN 的解析式为y=-x+1,∵N 点为直线AN 与BN 的交点,∴13y x y x =-+⎧⎨=-⎩解得21x y =⎧⎨=-⎩, ∴N 点坐标为(2,-1).综上所述,存在点N ,使A 、B 、H 、N 四点构成矩形,N 点坐标为10,3⎛⎫ ⎪⎝⎭ 72,3⎛⎫-- ⎪⎝⎭ ()2,1- ()2,2-.【点睛】本题为二次函数的综合运用,涉及待定系数法,轴对称的性质,勾股定理,三角形的面积等知识.在(2)中求得点C 是解题的关键,在(3)中确定出M 点是解题的关键,在(4)中分情况讨论是解题的关键.10.A解析:(1)y =﹣x ﹣1,y =﹣x 2+3x +4;(2)①(2,6);②PA ;(3)点M 的坐标为:3或(2或(4,﹣5)或(﹣4,3.【分析】(1)将点A 、D 的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)①当△PAD 的面积最大时,P 点到直线AD 的距离就最大.即当直线y=-x+m 与抛物线只有一个交点时满足条件,△=42+4(m-4)=0,解得m=8,解方程可求出答案; ②过点P 作PE ⊥x 轴于点E ,证明△PEA 是等腰直角三角形,得出PE=EA ,设P 点坐标为(m ,n ),由题意得,m+1=-m 2+3m+4,求出m=3,由直角三角形的性质可得出答案; (3)分NC 是平行四边形的一条边、NC 是平行四边形的对角线,两种情况分别求解即可.【详解】(1)将点A 、D 的坐标代入直线表达式得:056k n k n -+=⎧⎨+=-⎩,解得:11k n =-⎧⎨=-⎩, 故直线l 的表达式为:y =﹣x ﹣1,将点A 、D 的坐标代入抛物线表达式,同理可得抛物线的表达式为:y =﹣x 2+3x +4;(2)①当△PAD 的面积最大时,P 点到直线AD 的距离就最大,所以P 点在与直线AD 平行并且与抛物线相切的直线上,即P 点是这两个图像的唯一交。
武汉市光谷为明实验学校九年级上册压轴题数学模拟试卷及答案一、压轴题1.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ .……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)2.已知函数1221,(21)1y x m y m x =+-=++均为一次函数,m 为常数.(1)如图1,将直线AO 绕点()1,0A -逆时针旋转45°得到直线l ,直线l 交y 轴于点B .若直线l 恰好是1221,(21)1y x m y m x =+-=++中某个函数的图象,请直接写出点B 坐标以及m 可能的值;(2)若存在实数b ,使得||(1)10m b b ---=成立,求函数1221,(21)1y x m y m x =+-=++图象间的距离;(3)当1m 时,函数121y x m =+-图象分别交x 轴,y 轴于C ,E 两点,(21)1y m x =++图象交x 轴于D 点,将函数11y y y =的图象最低点F 向上平移5621m +个单位后刚好落在一次函数121y x m =+-图象上,设12y y y =的图象,线段OD ,线段OE 围成的图形面积为S ,试利用初中知识,探究S 的一个近似取值范围.(要求:说出一种得到S 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)3.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =(如图).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.4.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标;(2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.5.在平面直角坐标系中,O 是坐标原点,抛物线2115:L y x bx a a=+-的顶点D 在第四象限,且经过(1,)A m n +,(1,)(0,0)B m n m n ->>两点直线AB 与y 轴交于点C ,与抛物线的1L 对称轴交于点E ,8AC BC ⋅=,点E 的纵坐标为1.(1)求抛物线1L 所对应的函数表达式;(2)若将直线AB 绕着点E 旋转,直线AB 与抛物线1L 有一个交点Q 在第三象限,另一个交点记为P ,抛物线2L 与抛物线1L 关于点P 成中心对称,抛物线2L 的顶点记为1D . ①若点Q 的横坐标为-1,抛物线1L 与抛物线2L 所对应的两个函数y 的值都随着x 的增大而增大,求相应的x 的取值范围;②若直线PQ 与抛物线2L 的另一个交点记为Q ,连接1PD ,11Q D ,试间:在旋转的过程中,1PDQ ∠的度数会不会发生变化?请说明理由. 6.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '.①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).7.如图1,抛物线24y ax bx =+-与x 轴交于(3,0)A -、(4,0)B 两点,与y 轴交于点C ,作直线BC .点D 是线段BC 上的一个动点(不与B ,C 重合),过点D 作DE x ⊥轴于点E .设点D 的横坐标为(04)m m <<.(1)求抛物线的表达式及点C 的坐标;(2)线段DE 的长用含m 的式子表示为 ;(3)以DE 为边作矩形DEFC ,使点F 在x 轴负半轴上、点G 在第三象限的抛物线上. ①如图2,当矩形DEFC 成为正方形时,求m 的值;②如图3,当点O 恰好是线段EF 的中点时,连接FD ,FC .试探究坐标平面内是否存在一点P ,使以P ,C ,F 为顶点的三角形与FCD ∆全等?若存在,直接写出点P 的坐标;若不存在,说明理由.8.已知抛物线y =ax 2+bx+c(a >0),顶点D 在y 轴上,与x 6(1)求a 、c 满足的关系式;(2)若直线y =kx-2a 与抛物线交于A 、B 两点(点A 在点B 左侧),以AB 为直径的圆恒过点D .①求抛物线的解析式;②设直线y =kx-2a 与y 轴交于点M 、直线l 1:y =px+q 过点B ,且与抛物线只有一个公共点,过点D 作x 轴的平行线l 2,l 1与l 2交于点N .分别记BDM 、NDM 的面积为S 1,S 2,求12S S . 9.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点,O B 重合).(1)如图①,当1OP =时,求点P 的坐标;(2)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '与OAB 重叠部分为四边形,,O P O Q ''分别与边AB 相交于点,C D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '与OAB 重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).10.如图1,与为等腰直角三角形,与 重合,,.固定,将绕点顺时针旋转,当边与边重合时,旋转终止.现不考虑旋转开始和结束时重合的情况,设(或它们的延长线)分别交(或它们的延长线)于点,如图2. (1)证明:;(2)当为何值时,是等腰三角形?11.如图,在矩形ABCD 中,AB =6,BC =8,点E ,F 分别在边BC ,AB 上,AF =BE =2,连结DE ,DF ,动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动.(1)求EF 的长.(2)设CN =x ,EM =y ,求y 关于x 的函数表达式,并写出自变量x 的取值范围. (3)连结MN ,当MN 与△DEF 的一边平行时,求CN 的长.12.如图1,抛物线M 1:y =﹣x 2+4x 交x 正半轴于点A ,将抛物线M 1先向右平移3个单位,再向上平移3个单位得到抛物线M 2,M 1与M 2交于点B ,直线OB 交M 2于点C . (1)求抛物线M 2的解析式;(2)点P 是抛物线M 1上AB 间的一点,作PQ ⊥x 轴交抛物线M 2于点Q ,连接CP ,CQ .设点P 的横坐标为m ,当m 为何值时,使△CPQ 的面积最大,并求出最大值; (3)如图2,将直线OB 向下平移,交抛物线M 1于点E ,F ,交抛物线M 2于点G ,H ,则EG HF的值是否为定值,证明你的结论.13.如图,已知矩形ABCD 中,AB=8,AD=6, 点E 是边CD 上一个动点,连接AE ,将△AED 沿直线AE 翻折得△AEF.(1) 当点C 落在射线AF 上时,求DE 的长;(2)以F 为圆心,FB 长为半径作圆F ,当AD 与圆F 相切时,求cos ∠FAB 的值;(3)若P 为AB 边上一点,当边CD 上有且仅有一点Q 满∠BQP=45°,直接写出线段BP 长的取值范围.14.如图,在直角ABC ∆中,90C ∠=︒,5AB =,作ABC ∠的平分线交AC 于点D ,在AB 上取点O ,以点O 为圆心经过B 、D 两点画圆分别与AB 、BC 相交于点E 、F (异于点B ).(1)求证:AC 是O 的切线;(2)若点E 恰好是AO 的中点,求BF 的长;(3)若CF 的长为34. ①求O 的半径长;②点F 关于BD 轴对称后得到点F ',求BFF '∆与DEF '∆的面积之比.15.如图1,已知Rt ABC ∆中,90ACB ∠=,2AC =,23BC =,它在平面直角坐标系中位置如图所示,点,A C 在x 轴的负半轴上(点C 在点A 的右侧),顶点B 在第二象限,将ABC ∆沿AB 所在的直线翻折,点C 落在点D 位置(1)若点C 坐标为()1,0-时,求点D 的坐标;(2)若点B 和点D 在同一个反比例函数的图象上,求点C 坐标;(3)如图2,将四边形BCAD 向左平移,平移后的四边形记作四边形1111B C A D ,过点1D 的反比例函数(0)k y k x=≠的图象与CB 的延长线交于点E ,则在平移过程中,是否存在这样的k ,使得以点1,,E B D 为顶点的三角形是直角三角形且点11,,D B E 在同一条直线上?若存在,求出k 的值;若不存在,请说明理由16.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC 是“近直角三角形”,∠B >90°,∠C =50°,则∠A = 度;(2)如图1,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4.若BD 是∠ABC 的平分线, ①求证:△BDC 是“近直角三角形”;②在边AC 上是否存在点E (异于点D ),使得△BCE 也是“近直角三角形”?若存在,请求出CE 的长;若不存在,请说明理由.(3)如图2,在Rt △ABC 中,∠BAC =90°,点D 为AC 边上一点,以BD 为直径的圆交BC 于点E ,连结AE 交BD 于点F ,若△BCD 为“近直角三角形”,且AB =5,AF =3,求tan ∠C 的值.17.在平面直角坐标系xoy 中,点A (-4,-2),将点A 向右平移6个单位长度,得到点B .(1)若抛物线y =-x 2+bx +c 经过点A ,B ,求此时抛物线的表达式;(2)在(1)的条件下的抛物线顶点为C ,点D 是直线BC 上一动点(不与B ,C 重合),是否存在点D ,使△ABC 和以点A ,B ,D 构成的三角形相似?若存在,请求出此时D 的坐标;若不存在,请说明理由;(3)若抛物线y =-x 2+bx +c 的顶点在直线y =x +2上移动,当抛物线与线段AB 有且只有一个公共点时,求抛物线顶点横坐标t 的取值范围.18.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标;(3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式;②直接写出N 点的运动轨迹长度为 . 19.如图,在ABCD 中,E 为边BC 的中点,F 为线段AE 上一点,连结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H ,设AD EF x AB AF==.(1)当1x =时,求:AG AB 的值;(2)设GDH EBAS y S =△△,求y 关于x 的函数关系式; (3)当3DH HC =时,求x 的值.20.如图1,抛物线221y x x =-+-的顶点A 在x 轴上,交y 轴于B ,将该抛物线向上平移,平移后的抛物线与x 轴交于,C D ,顶点为()1,4E .(1)求点B的坐标和平移后抛物线的解析式;(2)点M在原抛物线上,平移后的对应点为N,若OM ON,求点M的坐标;(3)如图2,直线CB与平移后的抛物线交于F.在抛物线的对称轴上是否存在点P,使得以,,C F P为顶点的三角形是直角三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)证明见解析;(2)① 补图见解析;②证明见解析.【解析】【分析】【详解】(1)证明:∵AB=AC,AD为BC边上的高,∠BAD=20°,∴∠BAC=2∠BAD=40°.∵CF⊥AB,∴∠AFC=90°.∵E为AC中点,∴EF=EA=12 AC.∴∠AFE=∠BAC=40°.(2)① 当点P在边AB上是,补全图形如图当点P在AB的延长线上是,补全图形如图②Ⅰ、当点P在边AB上时,证明:想法1:如图3,连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠PED=∠APE.∵∠ADC=90∘,E为AC中点,∴12 AE DE CE AC ===同理可证12 AE NE CE AC ===∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上,∴∠PED=2∠MAD.∴∠APE=2∠MAD.想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90∘.∵E为AC中点,∴AE=NE=12 AC.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.∴∠NEC=∠ANE+∠NAC=2α+2β.∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC−∠BAC=2α.∴∠APE=2∠MAD.Ⅱ、当点P在AB的延长线上时证明:想法1:连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠1=∠APE.∵∠ADC=90°,E为AC中点,∴12AE DE CE AC===.同理可证12AE NE CE AC===.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.∴∠1=2∠MAD.∴∠APE=2∠MAD.想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90∘.∵E为AC中点,∴AE=NE=12 AC.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.∴∠NEC=∠ANE+∠NAC=2α+2β.∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC−∠BAC=2α.∴∠APE=2∠MAD.想法3:在NE上取点Q,使∠NAQ=2∠MAD,12∠∠∴=,AB AC AD BC =⊥BAD CAD ∴∠=∠12BAD CAD ∴∠-∠=∠-∠即∠3=∠4.34NAQ NAQ ∴∠+∠=∠+∠即PAQ EAN ∠=∠CN AM ⊥90ANC ︒∴∠=∵E 为AC 的中点,12AE NE AC ∴== ,ANE EAN PAQ ANE ∴∠=∠∠=∠AQP AQP ∠=∠~PAQ ANQ ∴2APE NAQ MAD ∴∠=∠=∠2.(1)(0,1);1或0 (22(3)348131200010S << 【解析】【分析】(1)由题意,可得点B 坐标,进而求得直线l 的解析式,再分情况讨论即可解的m 值; (2)由非负性解得m 和b 的值,进而得到两个函数解析式,设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH ,证得四边形GPTH 是正方形,求出GP 即为距离;(3)先根据解析式,用m 表示出点C 、E 、D 的坐标以及y 关于x 的表达式为()221221421y y y m x m x m =⋅+++-=,得知y 是关于x 的二次函数且开口向上、最低点为其顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭,根据坐标平移规则,得到关于m 的方程,解出m值,即可得知点D 、E 的坐标且抛物线过D 、E 点,观察图象,即可得出S 的大体范围,如:ODE S S <,较小的可为平行于DE 且与抛物线相切时围成的图形面积. 【详解】解:(1)由题意可得点B 坐标为(0,1),设直线l 的表达式为y=kx+1,将点A (-1,0)代入得:k=1,所以直线l 的表达式为:y=x+1,若直线l 恰好是121y x m =+-的图象,则2m-1=1,解得:m=1,若直线l 恰好是2(21)1y m x =++的图象,则2m+1=1,解得:m=0,综上,()0,1B ,1m =或者0m =(2)如图,()110m b b ---=()110m b b ∴+--=0m ≥,10b -≥0m ∴=,10b -=0m ∴=11y x ∴=-,21y x =+设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH1OG OH OP OT ====,PH GT ⊥∴四边形GPTH 是正方形//GH PT ∴,90HGP ∠=︒,即HG GP ⊥2HP =2GP ∴=(3)121y x m =+-,()2211y m x =++121y x m =+-分别交x 轴,y 轴于C ,E 两点()12,0C m ∴-,()0,21E m -()2211y m x =++图象交x 轴于D 点1,021D m -∴+⎛⎫ ⎪⎝⎭()()()22122121121421y y y x m m x m x m x m =⋅=+-++=+++-⎡⎤⎣⎦1m >210m ∴+>∴二次函数()2221421y m x m x m =+++-开口向上,它的图象最低点在顶点∴顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭ 抛物线顶点F 向上平移5621m +,刚好在一次函数121y x m =+-图象上 ()()2222156221212121m m m m m m -∴-+=-+-+++且1m2m ∴=2125163(3)(51)y y y x x x x =⋅=+=∴+++,∴13y x =+,251y x =+∴由13y x =+,251y x =+得到1,05D ⎛⎫- ⎪⎝⎭,()0,3E , 由25163y x x =++得到与x 轴,y 轴交点是()3,0-,1,05⎛⎫- ⎪⎝⎭,()0,3, ∴抛物线经过1,05D ⎛⎫- ⎪⎝⎭,()0,3E 两点 12y y y ∴=⋅的图象,线段OD ,线段OE 围成的图形是封闭图形,则S 即为该封闭图形的面积探究办法:利用规则图形面积来估算不规则图形的面积.探究过程:①观察大于S 的情况.很容易发现ODE S S < 1,05D ⎛⎫- ⎪⎝⎭,()0,3E 11332510ODE S =⨯⨯=,310S ∴< (若有S 小于其他值情况,只要合理,参照赋分.)②观察小于S 的情况.选取小于S 的几个特殊值来估计更精确的S 的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置:位置一:如图当直线MN 与DE 平行且与抛物线有唯一交点时,设直线MN 与x ,y 轴分别交于M ,N 1,05D ⎛⎫- ⎪⎝⎭,()0,3E ∴直线:153DE y x =+ 设直线1:15MN y x b =+25163y x x =++21530x x b ∴++-=()1430b ∴∆=-⨯-=,15920b =∴直线59:1520MN y x =+ ∴点59,0300M ⎛⎫- ⎪⎝⎭15959348122030012000OMN S =⨯⨯=∴,348112000S ∴> 位置二:如图当直线DR 与抛物线有唯一交点时,直线DR 与y 轴交于点R设直线2:DR y kx b =+,1,05D ⎛⎫- ⎪⎝⎭∴直线1:5DR y kx k =+ 25163y x x =++()21516305x k x k +-∴+-= ()211645305k k ⎛⎫∴∆=--⨯⨯-= ⎪⎝⎭,14k = ∴直线14:145DR y x =+∴点140,5R ⎛⎫ ⎪⎝⎭1141725525ODR S ∴=⨯⨯=,725S ∴> 位置三:如图当直线EQ 与抛物线有唯一交点时,直线EQ 与x 轴交于点Q设直线:3EQ y tx =+25163y x x =++()25160x t x +∴-= ()2160t ∴∆=-=,16t = ∴直线:163EQ y x =+ ∴点3,016Q ⎛⎫- ⎪⎝⎭139321632OEQ S =⨯⨯=∴,932S ∴> 348197120003225>> 我们发现:在曲线DE 两端位置时的三角形的面积远离S 的值,由此估计在曲线DE 靠近中间部分时取值越接近S 的值探究的结论:按上述方法可得一个取值范围348131200010S << (备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)【点睛】本题是一道综合性很强的代数与几何相结合的压轴题,知识面广,涉及有旋转的性质、坐标平移规则、非负数的性质、一次函数的图象与性质、二次函数的图象与性质、一元二次方程、不规则图形面积的估计等知识,解答的关键是认真审题,找出相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,利用相关信息进行推理、探究、发现和计算.3.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =231或CM =123+ 【解析】 【分析】 (1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由2PC =及旋转的性质,证明△EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上,∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H , ∵2PC 2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF , ∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°, ∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴22(12)(50)m m --+--221634m m -+ 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴22(14)(52)m m --+--221634m m -+ ∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED . ②当点E 在(1)所求的抛物线2134y x x =-++上时,把E (m-1,5-m )代入,整理得:m 2-10m+13=0, 解得:m=523+m=523-, ∴CM =231或CM =123+. 【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.4.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】 【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
POE D CBAEO DM CBA圆综合题专题1、如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过电D 作EF ⊥AC 于点E ,交AB 的延长线与点F 。
(1)求证:EF 是⊙O 的切线;(2)当AB=10,BC=12时,求tan ∠BAC 的值。
2.如图,AB 为⊙O 的直径,OE ⊥AB ,为⊙O 上一点,连接,BM 与OE 交于N 点 已知23,交⊙O 于点D ,连接AD ,BD(1)求证:AD=BD; (2)若AB=6,in ∠ACB=53,C 为弧AD 的中点,连接DO ,并延长交BC 于点E ,求OE 的长5(8分)如图, Rt△ACD 中,∠ACD =90° 以AC 边为直径作⊙O , 交AD 于E 过E 作⊙O 的切线EB , 交CD 于B 连接EC 、AB , 交于F 点 ⑴求证:CD EB 21=; ⑵若31=FC EF ,求tan∠ABC 的值练习1、如图,AB 为⊙O 直径,MN 是弦,AE ⊥MN 与E ,BF ⊥MN 与F ,AB=10,MN=8,则BF-AE 等于( )A 、5B 、6C 、7D 、82.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,CD 切⊙O 于点C ,BD ⊥CD 交⊙O 于点E ,若AB =1,则in∠DCE 的值为( ) A .CD 的长E A OF(第22题)B.CE的长C.DE的长D.BE的长3、如图,⊙O过电B、C圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O 的直径为()A、6B、13C、13D、2134、如图,圆O的直径AB的长为13,弦AC长为5,∠ACB的平分线交圆O于点D,则CD长为()A、6B、2722、25 如图,AB是⊙O的直径,CD是弦,CD平分∠ACB,AI平分∠CAB,⊙O的半径为1,则DI的长为32 D 16.如图在半圆O中,直径AB=10,四边形ABCD为等腰梯形,且顶点都在半圆上,若DC = 6,则tan∠A的值为()A.43B.53C.2 D57.已知直角梯形ABCD中,∠A=∠B=90º,AB=BC=2,以CD为直径的⊙O与AB切于点P,则tan CPF的值为A.12B.34C.43D.358.如图,Rt△ABC中∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,与边BC交于点E,FOACDPIDOA BCODAE B若AD=59,,AC=长为( ) A . 23 B .2 C .25D .5。
复习过关 自变量取值X 围、不等式的解集 1(2012某某)函数12
y x =- 中,自变量x 的取值X 围是( ) A .2x > B .2x <C .2x ≠ D .2x ≠- 2(2012聊城)函数y=中自变量x 的取值X 围是( )
A .x >2
B .x <2
C .x≠2
D .x≥2
3、函数y=1+中自变量x 的取值X 围是
4、当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值X 围是( ).
A .y ≥-7
B .y ≥9
C .y >9
D .y ≤9
5、在函数x y 21-=自变量x 的取值X 围是
6.下列函数中,自变量x 的取值X 围为x <1的是( )
A . 11y x =-
B . 11y x =-
C .1y x =-
D .11y x
=- 6y x =-中,自变量x 的取值X 围是
8.函数31
x y x +=-中自变量x 的取值X 围是 9.函数1--
=x x y 中自变量x 的取值X 围是 不等式组的解集过关训练
1.(2012某某)在数轴上表示不等式x ﹣1<0的解集,正确的是( )
A .
B .
C .
D .
2.(2012某某某某)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的 A . B . C . D .
3.(2012某某)不等式组的解集在数轴上表示为()
A.B.
C.D.
4、(2012义乌市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是()A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0。
2024年湖北省武汉市初中毕业生学业水平考试数学押题卷一、单选题1.下列为负数的是( ) A .0B .2024C .2024-D .2024-2.下面四个化学仪器示意图中,不是轴对称图形的是( )A .B .C .D .3.某学校开设了劳动教育课程,小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为( ) A .18B .16C .14D .134.计算()322x -的正确结果是( ) A .58x -B .68x -C .58xD .68x5.如图,A ,B ,C ,D 是四位同学画出的一个空心圆柱的主视图和俯视图,其中正确的一组是( )A .主视图: 俯视图:B .主视图: 俯视图:C .主视图: 俯视图:D .主视图: 俯视图:6.已知点()1,M m y ,()21,N y -在直线1y x =-+上,且12y y >,则m 的取值范围是( ) A .1m <-B .1m >-C .1m <D .1m >7.若关于x 的分式方程2111x mx x+=--的解为负数,则m 的取值范围是( ) A . 1m <-且2m ≠- B . 1m <- C . 1m >且2m ≠-D .1m >8.如图,正方形OABC 中,点()4,0A ,点D 为AB 上一点,且1BD =,连接OD ,过点C 作CE OD ⊥交OA 于点E ,过点D 作MN CE ∥,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .()5,0B .()6,0C .25,04⎛⎫⎪⎝⎭D .27,04⎛⎫ ⎪⎝⎭9.如图,在O e 中,将»AB 沿弦AB 翻折,使»AB 恰好经过圆心O ,C 是劣弧AB 上一点.已知2AE =,tan CBA ∠=AB 的长为( )A .B .6CD .10.如图,将一张边长为1的正方形纸片分割成7部分,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,则234561111111222222S =------阴影.借助图形,则23202320241111122222++++=L ( )A .2023112-B .2024112-C .2025112-D .2024122-二、填空题11.今年春季以来,甘肃天水麻辣烫成为美食界和旅游圈的“顶流”,持续火爆“出圈”,不仅吸引了无数游客和美食博主前往打卡,也带动了当地的消费.各大短视频平台上,“甘肃麻辣烫”相关话题累计播放量已超过3260000000次,数据3260000000用科学记数法可表示为. 12.写出一个大于2-且小于0的无理数. 13.方程1321x x =+的解为. 14.榫卯是古代中国建筑、家具及其它器械的主要结构方式.如图,在某燕尾榫中,榫槽的横截面ABCD 是梯形,其中AD BC ∥,=AB DC ,燕尾角=60B ∠︒,外口宽AD 为10cm ,榫槽深度为4cm ,则它的里口宽BC 为cm (结果保留根号).15.二次函数2y ax bx c =++的部分图象如图所示,与y 轴交于()0,1-,对称轴为直线1x =.下列结论:①0abc >;②13a >;③()111,P t y -和()221,P t y +在该二次函数的图象上,则当实数1t <时,12y y >;④方程21ax bx c ++=的所有根的和为2,其中正确结论是.16.如图,已知Rt ABC △中,90ACB ∠=o ,AC BC ==M 满足1AM =,将线段CM 绕点C 顺时针旋转90︒得到线段CN ,连接AN ,则AN 的最小值为.三、解答题17.(1()()20242312--+-;(2)解方程:2540x x +-=.18.如图,正方形ABCD 的对角线,AC BD 相交于点O .E 是线段OB 上的点(不与O 、B 重合),过点D 作DF CE ⊥,交BC 于点H .(1)求证:OE OG =;(2)若CE 平分2BCO AB ∠=,,求BE 的长.19.3月14日被定为“国际数学日”,某校数学兴趣小组为调查学生对相关知识的了解情况,从全校学生中随机抽取n 名学生进行测试,测试成绩进行整理后分成五组,并绘制成如下的频数分布直方图和扇形统计图.(1)m =,n =,补全频数分布直方图;(2)在扇形统计图中,“7080~”这组的扇形圆心角为;(3)测试结束后,九年级一班从本班获得优秀(测试成绩80≥分)的甲、乙、丙、丁四名同学中随机抽取两名宣讲数学知识,请用列表或画树状图的方法求恰好抽到甲、乙两名同学的概率.20.如图,已知在ABC V 中,9AB AC ==,cos B =点G 是ABC V 的重心,延长AG 交边BC 于点D ,以G 为圆心,GA 为半径的圆分别交边AB 、AC 于点E 、F .(1)求AG 的长; (2)求BE 的长.21.已知ABC V 在平面直角坐标系xOy 中的位置如图所示.(1)画出把ABC V 先向右平移5个单位,再向下平移2个单位后所得到的A B C '''V ; (2)求ABC V 面积;(3)平移后A C ''与x 轴交点为点Q ,求点Q 坐标.22.某公司计划用一种长为100cm ,宽为60cm 的长方形铁片制作无盖盒子.如图,在铁片的四个角各截去一个边长相同的小正方形,剩下的材料制作一个无盖盒子.(1)设截去的小正方形的边长为cm x ,制作的无盖盒子的侧面积为2cm y ,写出y 与x 之间的关系式,并描述盒子的侧面积随小正方形边长的变化而变化的情况;(2)已知该种长方形铁片的成本为每块40元,当制成的无盖盒子的销售单价为70元时,每天可以售出140个,经调查发现,这种盒子的销售单价每降低1元,其销售量相应增加10个.不考虑其他因素,公司将销售单价n (元)定为多少时,每天销售无盖盒子所获利润w (元)最大?最大利润是多少?23.如图,已知正方形ABCD ,点P 是边BC 上的一个动点(不与点B 、C 重合),点E 在DP 上,满足AE AB =,延长BE 交CD 于点F .(1)求证:135BED ∠=︒; (2)连接CE ,当CE BF ⊥时,求BPPC的值. 24.如图,在平面直角坐标系中,点A 、B 在x 轴上,点C 、D 在y 轴上,且3OB OC ==,1OA OD ==,抛物线2(0)y ax bx c a =++≠经过、、A B C 三点,直线AD 与抛物线交于另一点M .(1)求这条抛物线的解析式;(2)在抛物线对称轴上是否存在一点N,使得ANCV的周长最小,若存在,请求出点N的坐标,若不存在,请说明理由;(3)点E是直线AM上一动点,点P为抛物线上直线AM下方一动点,当线段PE的长度最大时,请求出点P的坐标和V AMP面积的最大值.。
湖北省武汉为明实验学校2012年全国各地中考数学压轴题汇编一(含详细答案)【2012临沂】1、如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【2012菏泽】2、如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.【2012义乌市】3、如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?【2012•杭州】4、在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.【2012•烟台】5、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.【2012•益阳】6、已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)【2012•广州】7、如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.【2012•丽水】8、在△ABC中,∠ABC=45°,t a n∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【2012铜仁】9、如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.【 2012泰安】(10、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.答案:1、解:(1)如图,过B 点作BC⊥x 轴,垂足为C ,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵O A=OB=4, ∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B 的坐标为(﹣2,﹣2);(2)∵抛物线过原点O 和点A .B ,∴可设抛物线解析式为y=ax 2+bx ,将A (4,0),B (﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x 2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x 轴的交点为D ,设点P 的坐标为(2,y ), ①若OB=OP ,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD 中,∠PDO=90°,si n∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P 、O 、B 三点在同一直线上, ∴y=2不符合题意,舍去,∴点P 的坐标为(2,﹣2)②若OB=PB ,则42+|y+2|2=42,解得y=﹣2,故点P 的坐标为(2,﹣2),③若OP=BP ,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P 的坐标为(2,﹣2),综上所述,符合条件的点P 只有一个,其坐标为(2,﹣2),2、解:(1)△A ′B ′O 是由△ABO 绕原点O 逆时针旋转90°得到的,又A (0,1),B (2,0),O (0,0),∴A ′(﹣1,0),B ′(0,2).设抛物线的解析式为:2(0)y ax bx c a =++≠,∵抛物线经过点A ′、B ′、B ,02042a b c ca b c =-+⎧⎪∴=⎨⎪=++⎩,解之得112a b c =-⎧⎪=⎨⎪=⎩,∴满足条件的抛物线的解析式为22y x x =-++..(2)∵P 为第一象限内抛物线上的一动点,设P (x ,y ),则x >0,y >0,P 点坐标满足22y x x =-++.连接PB ,PO ,PB ′,B OA B O OB PB A B S S S S '''''∆∆∆∴=++P P 四边形11112+2+2222x y =⋅⋅⋅⋅⋅⋅ 22(2)123x x x x x =+-+++=-++.假设四边形PB A B ''的面积是A B O ''∆面积的4倍,则2234x x -++=,即2210x x -+=,解之得1x =,此时21122y =-++=,即(1,2)P .∴存在点P (1,2),使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍.(3)四边形PB ′A ′B 为等腰梯形,答案不唯一,下面性质中的任意2个均可. ①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.或用符号表示:①∠B ′A ′B=∠PBA ′或∠A ′B ′P=∠BPB ′;②PA ′=B ′B ;③B ′P ∥A ′B ;④B ′A ′=PB .3、解:(1)把点A (3,6)代入y=kx 得;∵6=3k,∴k=2,∴y=2x.(2012义乌市) OA=.…(3分) (2)是一个定值,理由如下:如答图1,过点Q 作QG⊥y 轴于点G ,Q H⊥x 轴于点H .①当QH 与QM 重合时,显然QG 与QN 重合, 此时;②当QH 与QM 不重合时,∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,当点P、Q在抛物线和直线上不同位置时,同理可得.…(7分)①①(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R ∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴点F(, 0),设点B(x,),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴点B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5 …(8分);(求AB也可采用下面的方法)设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5…(8分)(其它方法求出AB的长酌情给分)在△ABE与△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.…(9分)设OE=x,则AE=﹣x (),由△ABE∽△OED得,∴∴()…(10分)∴顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个.∴当时,E点只有1个…(11分)当时,E点有2个…(12分).4、解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,的对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ==,∵OA==,∴=,解得:k=±.5、解:(1)A(1,4).…(1分)由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.…(2分)(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).…(3分)∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.…(4分)∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.…(5分)又点A到GE的距离为,C到GE的距离为2﹣,即S△ACG=S△AEG+S△CEG=•EG•+•EG(2﹣)=•2(t﹣)=﹣(t﹣2)2+1.…(7分)当t=2时,S△ACG的最大值为1.…(8分)(3)t=或t=20﹣8.…(12分)(说明:每值各占(2分),多出的值未舍去,每个扣1分)6、解:(1)∵P与P′(1,3)关于x轴对称,∴P点坐标为(1,﹣3);…(2分)∵抛物线y=a(x﹣1)2+c过点A(,0),顶点是P(1,﹣3),∴;…(3分)解得;…(4分)则抛物线的解析式为y=(x﹣1)2﹣3,…(5分)即y=x2﹣2x﹣2.(2)∵CD平行x轴,P′(1,3)在CD上,∴C、D两点纵坐标为3;…(6分)由(x﹣1)2﹣3=3,解得:,,…(7分)∴C、D两点的坐标分别为(,3),(,3)∴CD=…(8分)∴“W”图案的高与宽(CD)的比=(或约等于0.6124)…(10分).7、解:(1)令y=0,即=0,解得x1=﹣4,x2=2,∴A、B点的坐标为A(﹣4,0)、B(2,0).(2)S△ACB=AB•OC=9,在Rt△AOC中,AC===5,设△ACD中AC边上的高为h,则有AC•h=9,解得h=.如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,∴CE==.设直线AC的解析式为y=kx+b,将A(﹣4,0),B(0,3)坐标代入,得到,解得,∴直线AC解析式为y=x+3.直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,∴直线l1的解析式为y=x+3﹣=x﹣.则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣4,).同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)综上所述,D点坐标为:D1(﹣4,),D2(﹣1,).(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.连接FM,过M作MN⊥x轴于点N.∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.又FE=5,则在Rt△MEF中,ME==4,sin∠MFE=,cos∠MFE=.在Rt△FMN中,MN=MN•sin∠MFE=3×=,F N=MN•cos∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x﹣3.8、解:(1)在Rt△OCE中,OE=OC t a n∠OCE==,∴点E(0,2).设直线AC的函数解析式为y=kx+,有,解得:k=.∴直线AC的函数解析式为y=.(2)在Rt△OGE中,t a n∠EOG=t a n∠OCE==,设EG=3t,OG=5t,OE==t,∴,得t=2,故EG=6,OG=10,∴S△OEG=.(3)存在.①当点Q在AC上时,点Q即为点G,如图1,作∠FOQ的角平分线交CE于点P1,由△OP1F≌△OP1Q,则有P1F⊥x轴,由于点P1在直线AC上,当x=10时,y=-=,∴点P1(10,).②当点Q在AB上时,如图2,有OQ=OF,作∠FOQ的角平分线交CE于点P2,过点Q作QH⊥OB于点H,设OH=a,则BH=QH=14-a,在Rt△OQH中,a2+(14-a)2=100,解得:a1=6,a2=8,∴Q(-6,8)或Q(-8,6).连接QF交OP2于点M.当Q(-6,8)时,则点M(2,4).当Q(-8,6)时,则点M(1,3).设直线OP2的解析式为y=kx,则2k=4,k=2.∴y=2x.解方程组,得.∴P 2();当Q (-8,6)时,则点M(1,3). 同理可求P 2′().综上所述,满足条件的P 点坐标为(10,)或()或().9、解:(1):由题意得,A (3,0),B (0,3)∵抛物线经过A 、B 、C 三点,∴把A (3,0),B (0,3),C (1,0)三点分别代入2y ax bx c =++得方程组⎪⎩⎪⎨⎧=++==++03039c b a c c b a 解得:⎪⎩⎪⎨⎧=-==341c b a∴抛物线的解析式为243y x x =-+(2)由题意可得:△ABO 为等腰三角形,如图所示,若△ABO∽△AP 1D ,则1DP OBAD AO =∴DP 1=AD=4 , ∴P 1(1,4)-若△ABO∽△ADP 2 ,过点P 2作P 2 M⊥x 轴于M ,AD=4,∵△ABO 为等腰三角形, ∴△ADP 2是等腰三角形,由三线合一可得:DM=AM=2= P 2M ,即点M 与点C 重合∴P 2(1,2) (3)如图设点E (,)x y ,则||2||21y y AD S ADE =⋅⋅=∆ ①当P 1(-1,4)时, S 四边形AP1CE =S 三角形ACP1+S 三角形ACE||2214221y ⋅⨯+⨯⨯== 4y +∴24y y =+ ∴4y = ∵点E 在x 轴下方 ∴4y =-代入得: 2434x x -+=-,即 0742=+-x x ∵△=(-4)2-4×7=-12<0 ∴此方程无解②当P 2(1,2)时,S 四边形AP2CE =S 三角形ACP2+S 三角形ACE = 2y +∴22y y =+ ∴2y =∵点E 在x 轴下方 ∴2y =- 代入得:2432x x -+=- 即 0542=+-x x ,∵△=(-4)2-4×5=-4<0∴此方程无解综上所述,在x 轴下方的抛物线上不存在这样的点E 。