2016年山东省济南市天桥区八年级下学期数学期末试卷与解析答案
- 格式:doc
- 大小:536.00 KB
- 文档页数:25
山东省济南市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项 (共10题;共30分)1. (3分) (2017八下·胶州期末) 若分式有意义,则x的取值范围是()A . x>1B . x>﹣1C . x≠0D . x≠﹣12. (3分) (2021九上·台州月考) 观察下列图形,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (3分)已知a<b,则下列式子正确的是()A . a+5>b+5B . 3a>3b;C . -5a>-5bD . >4. (3分) (2020七下·秦淮期末) 下列各式从左到右的变形中,是因式分解的是()A . 8a2b2=2a2·4b2B . 1-a2=(1+a)(1-a)C . (x+2)(x-1)=x2+x-2D . a2-2a+3=(a-1)2+25. (3分)一个多边形的每个内角都是144°,这个多边形是()A . 八边形B . 十边形C . 十二边形D . 十四边形6. (3分) (2020七下·湘桥期末) 中国上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”。
通过平移,可将图中的吉祥物“海宝”平移到图()A .B .C .D .7. (3分)直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A . x>-1B . x<-1C . x<-2D . 无法确定8. (3分)(2019·河南模拟) 如图,□ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB =4,∠ABC=60°,则OE的长是()A .B . 2C . 2D .9. (3分)在实数范围内定义一种新运算“*”,其规则是a*b=a2-b2,如果(x+2)*5>(x-5)(5+x),则x的取值范围是()A . x>-1B . x<-1C . x>46D . x<4610. (3分) (2019九上·中卫期中) 如果菱形的边长是a,一个内角是,那么菱形较短的对角线长等于()A .B .C .D .二、填空题(共4小题,每小题3分,计12分) (共4题;共12分)11. (3分) (2019七下·嘉兴期末) 因式分解x3-xy2=________ .12. (3分)(2018·铜仁模拟) 若关于x的方程无解,则m=________13. (3分)(2018·鼓楼模拟) 如图,在□ABCD中, E、F分别是AB、CD的中点.当□ABCD满足________时,四边形EHFG是菱形.14. (3分)(2020·常德模拟) 如图,在中,已知依次连接的三边中点,得,再依次连接的三边中点得,···,则的周长为________.三、解答题(共11小题,计78分.解答应写出过程) (共11题;共75分)15. (2分)(2020·温州模拟)(1)计算: 3(2)解方程:16. (5分)(2018·宁夏) 解不等式组:17. (5分)(2020·深圳模拟) 先化简,再求值:,其中.18. (5分) (2019八上·龙湾期中) 如图,在4×4方格中,按要求作出以AB为边,第三个顶点在格点上的等腰三角形ABC.(1)面积为2(2)面积为2.5(3)面积为________(要求不与1、2图形全等)19. (7分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.20. (7.0分) (2020八上·文水期末) 综合与实践问题情境在中,,,于点,点是射线上一点,连接,过点作于点,且交直线于点 .(1)如图1,当点在线段上时,求证: .自主探究(2)如图2,当点在线段上时,其它条件不变,请猜想与之间的数量关系,并说明理由.拓展延伸(3)如图3,当点在线段的延长线上时,其它条件不变,请直接写出与之间的数量关系.21. (7分)(2017·绿园模拟) 如图在数学活动课中,小敏为了测量小院内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为12m,则旗杆AB的高度是多少米?(参考值:≈1.73,≈1.41,结果精确到0.1米)22. (7分) (2020七下·孝义期末) 如图,三角形三个顶点的坐标分别是,将三角形进行平移,点A的对应点为,点B的对应点是,点C 的对应点是.(1)画出平移后的三角形并写出的坐标;(2)写出由三角形平移得到三角形的过程;(3)分别连接,则和有怎样的关系?(直接写出答案,不需证明)23. (8.0分) (2020七下·灌南月考) 甲、乙两家超市以相同的价格出售同样的商品.为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价九折优惠.设顾客预计累计购物元( >300)(1)请用x的代数式分别表示顾客在两家超市购物所付的费用;(2)试比较顾客到哪家超市购物更优惠?说明你的理由.24. (10分)(2016·南岗模拟) 某商场购进甲、乙两种服装,每件甲种服装比每件乙种服装贵25元,该商场用2000元购进甲种服装,用750元购进乙种服装,所购进的甲种服装的件数是所购进的乙种服装的件数的2倍.(1)分别求每件甲种服装和每件乙种服装的进价;(2)若每件甲种服装售价130元,将购进的两种服装全部售出后,使得所获利润不少于750元,问每件乙种服装售价至少是多少元?25. (12分) (2020八上·苍南期末) 如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,-4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF。
山东省济南市历下区2015-2016学年八年级数学下学期期末考试试题一.选择题(本大题共12个小题,每小题三分,共36分,在每小题给出的4个选项中,只有一项,符合题目要求的)1.计算的结果是()A.B.C.2x D.2y2.下列几何图形中,即是中心对称图形又是轴对称图形的是()A.四边形B.等腰三角形C.菱形 D.梯形3.下列多项式中,能运用公式法进行因式分解的是()A.a2+b2 B.x2+9 C.m2﹣n2D.x2+2xy+4y24.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和45.分式﹣可变形为()A.﹣B. C.﹣D.6.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.148.要使分式为零,那么x的值是()A.﹣2 B.2 C.±2 D.09.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)10.已知=3,则的值为()A.B.C.D.﹣11.如图,矩形ABCD的面积为10cm2,它的两条对角线交于,点O1以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC n O n的面积为()A.10cm2B. cm2C. cm2D.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B 恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④二.填空题(共7小题)13.分解因式:x2y﹣y3= .14.菱形的周长是40cm,两邻角的比是1:2,则较短的对角线长.15.函数y=中,自变量x的取值范围是.16.已知两个分式:A=,B=,其中x≠±2,则A与B的关系是.17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.18.若x=3是分式方程=0的根,则a的值是.19.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三.解答题(本大题共8小题,共63分,解答应写出文字说明,证明过程,或演算步骤)20.(1)当时,求的值(2)解方程.21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF 是菱形.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.26.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB 交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .27.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.四、选择题(共1小题,每小题0分,满分0分)28.(2016•满洲里市模拟)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19五、解答题(共2小题,满分0分)29.(2016春•历下区期末)分解因式:4x2+4xy+y2﹣4x﹣2y﹣3.30.(2016春•历下区期末)如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.2015-2016学年山东省济南市历下区八年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共12个小题,每小题三分,共36分,在每小题给出的4个选项中,只有一项,符合题目要求的)1.计算的结果是()A.B.C.2x D.2y【考点】分式的乘除法.【分析】根据分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘进行计算即可.【解答】解:原式=×=x,故选:B.【点评】此题主要考查了分式的除法,关键是掌握分式的除法法则,注意结果要化简.2.下列几何图形中,即是中心对称图形又是轴对称图形的是()A.四边形B.等腰三角形C.菱形 D.梯形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念解答即可.【解答】解:A、不一定是轴对称图形,也不一定是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不一定是轴对称图形,也不一定不是中心对称图形.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列多项式中,能运用公式法进行因式分解的是()A.a2+b2 B.x2+9 C.m2﹣n2D.x2+2xy+4y2【考点】因式分解-运用公式法.【分析】直接利用公式法分解因式进而判断得出答案.【解答】解:A、a2+b2,无法分解因式,故此选项错误;B、x2+9,无法分解因式,故此选项错误;C、m2﹣n2=(m+n)(m﹣n),故此选项正确;D、x2+2xy+4y2,无法分解因式,故此选项错误;故选:C.【点评】此题主要考查了公式法分解因式,熟练应用公式是解题关键.4.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4【考点】平行四边形的性质.【分析】根据平行四边形的性质和角平分线,可推出AB=BE,再由已知条件即可求解.【解答】解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选B.【点评】命题立意:考查平行四边形性质及等腰三角形的性质.5.分式﹣可变形为()A.﹣B. C.﹣D.【考点】分式的基本性质.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣ =﹣=,故选D.【点评】本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.6.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形外角和定理和三角形外角的性质解答.【解答】解:∵三角形三个外角度数之比是3:4:5,设三个外角分别是α,β,γ,则α=360°×=90°,∴此三角形一定是直角三角形.故选:B.【点评】三角形外角和定理:三角形三个外角的和等于360°;三角形外角的性质:三角形的外角等于和它不相邻的两个内角的和.7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质.【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.要使分式为零,那么x的值是()A.﹣2 B.2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x2﹣4=0且x﹣2≠0,解得x=﹣2.故选:A.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.9.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,即可作出判断.【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选D【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【专题】计算题.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.如图,矩形ABCD的面积为10cm2,它的两条对角线交于,点O1以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC n O n的面积为()A.10cm2B. cm2C. cm2D.【考点】平行四边形的性质;平行线的性质.【专题】规律型.【分析】根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S 矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形ABC n O n的面积.【解答】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形==;,…,∴平行四边形ABC n O n的面积为=10×(cm2).故选:D.【点评】此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B 恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④【考点】翻折变换(折叠问题);矩形的性质.【专题】几何图形问题;压轴题.【分析】求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.【解答】解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.【点评】本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.二.填空题(共7小题)13.分解因式:x2y﹣y3= y(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再利用平方差公式进行二次分解.【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为:y(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用平方差公式进行二次因式分解是解题的关键,分解要彻底.14.菱形的周长是40cm,两邻角的比是1:2,则较短的对角线长10cm .【考点】菱形的性质;等边三角形的判定与性质.【分析】作出草图,先求出菱形的边长,再根据邻角互补求出较小的内角,从而判定出△ABC是等边三角形,根据等边三角形的三条边都相等解答即可.【解答】解:如图,∵菱形的周长是40cm,∴AB=40÷4=10cm,∵两邻角的比是1:2,∴∠B=×180°=60°,∵菱形的边AB=BC,∴△ABC是等边三角形,∴较短的对角线AC=AB=10cm.故答案为:10cm.【点评】本题考查了菱形的四条边都相等,邻角互补的性质,等边三角形的判定与性质,熟记性质是解题的关键,作出图形更形象直观.15.函数y=中,自变量x的取值范围是x≥2且x≠3 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥2且x≠3.故答案是:x≥2且x≠3.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.16.已知两个分式:A=,B=,其中x≠±2,则A与B的关系是互为相反数.【考点】分式的加减法.【分析】首先把B的结果求出,然后和A比较即可解决问题.【解答】解:B====,而A=,∴A与B的关系是互为相反数.【点评】此题主要考查了分式的计算,通过分式的计算化简B,然后利用相反数的定义即可解决问题.17.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5 度.【考点】等腰三角形的性质;三角形内角和定理;正方形的性质.【专题】计算题.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.18.若x=3是分式方程=0的根,则a的值是 5 .【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,把x=3代入整式方程求出a的值即可.【解答】解:去分母得:(a﹣2)(x﹣2)﹣x=0,把x=3代入整式方程得:a﹣2﹣3=0,解得:a=5,故答案为:5【点评】此题考查了分式方程的解,分式方程的解即为能使方程成立的未知数的值,注意分母不能为0.19.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有①②③.(把你认为正确的序号都填上)【考点】菱形的性质.【专题】压轴题;动点型.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三.解答题(本大题共8小题,共63分,解答应写出文字说明,证明过程,或演算步骤)20.(1)当时,求的值(2)解方程.【考点】解分式方程;分式的化简求值.【专题】计算题;分式;分式方程及应用.【分析】(1)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣•a=﹣=,当a=1﹣时,原式=﹣;(2)去分母得:2(x﹣1)+3(x+1)=6,去括号得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验,x=1是增根,原方程无解.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质.【分析】根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.【点评】本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF 是菱形.【考点】菱形的判定;平行四边形的性质.【专题】证明题.【分析】先根据题中已知条件判定四边形AEDF是平行四边形,然后再推出一组邻边相等.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED,∴四边形AEDF为菱形.【点评】本题考查菱形的判定和平行四边形的性质.运用了菱形的判定方法“一组邻边相等的平行四边形是菱形”.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?【考点】多边形内角与外角.【分析】首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多540°,由此列出方程解出边数,进一步可求出它每一个内角的度数.【解答】解:设这个多边形边数为n,则(n﹣2)•180=360+720,解得:n=8,∵这个多边形的每个内角都相等,∴它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.【点评】本题主要考查多边形的内角和定理,解题的关键是根据题意列出方程从而解决问题.24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.【考点】正方形的性质.【分析】根据等腰三角形的性质求出∠DAE,然后求出∠BAE的度数,再根据等腰三角形两底角相等列式计算即可得解.【解答】解:∵AE=AD,∠ADE=75°,∴∠AED=∠ADE=75°,∴∠DAE=30°,在正方形ABCD中,∵AB=AD.∴AB=AE,∵∠BAD=90°∴∠BAE=120°,∴∠AEB=30°.【点评】本题考查了正方形的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.【考点】分式方程的应用.【专题】行程问题.【分析】行驶速度:设列车提速前的速度为x千米/时,则提速后的速度为3.2x千米/时;行驶路程都是1280千米;行驶时间分别是:;因为从甲站到乙站的时间缩短了11小时,所以,提速前的时间﹣提速后的时间=11.【解答】解:设列车提速前的速度为x千米/时,则提速后的速度为3.2x千米/时.根据题意得:.解这个方程得:x=80.经检验;x=80是所列方程的根.∴80×3.2=256(千米/时).答:列车提速后的速度为256千米/时.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB 交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= 2或10 .【考点】平行四边形的判定与性质;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)证明四边形AFDE是平行四边形,且△DEC和△BDF是等腰三角形即可证得;(2)与(1)的证明方法相同;(3)根据(1)(2)中的结论直接求解.【解答】解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B∴DF=BF∴DE+DF=AB=AC;(2)图②中:AC+DE=DF.图③中:AC+DF=DE.(3)当如图①的情况,DF=AC﹣DE=6﹣4=2;当如图②的情况,DF=AC+DE=6+4=10.故答案是:2或10.【点评】本题考查平行四边形的判定与性质以及等腰三角形的判定,是一个基础题.27.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】四边形综合题.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)证明:如图1,∵BE平分∠DBC,OD是正方形ABCD的对角线,∴∠EBC=∠DBC=22.5°,由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;在△DBG和△FBG中,,∴△DBG≌△FBG(ASA),∴BD=BF,DG=FG(全等三角形的对应边相等),∵BD==,∴BF=,∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1,①当BH=BP时,则BP=﹣1,∵∠PBC=45°,设P(x,x),∴2x2=(﹣1)2,解得x=2﹣或﹣2+,∴P(2﹣,2﹣)或(﹣2+,﹣2+);②当BH=HP时,则HP=PB=﹣1,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P(,),综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(2﹣,2﹣)、(﹣2+,﹣2+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.四、选择题(共1小题,每小题0分,满分0分)28.(2016•满洲里市模拟)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】勾股定理.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.【点评】本题考查了勾股定理,要充分利用正方形的性质,找到相等的量,再结合三角函数进行解答.五、解答题(共2小题,满分0分)29.(2016春•历下区期末)分解因式:4x2+4xy+y2﹣4x﹣2y﹣3.【考点】因式分解-分组分解法.【专题】计算题;因式分解.【分析】原式结合后,利用完全平方公式及十字相乘法分解即可.【解答】解:原式=(4x2+4xy+y2)﹣(4x+2y)﹣3=(2x+y)2﹣2(2x+y)﹣3=(2x+y+1)(2x+y﹣3).【点评】此题考查了因式分解﹣分组分解法,将原式进行适当的结合是解本题的关键.30.(2016春•历下区期末)如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.【考点】平行四边形的判定;坐标与图形性质;等腰三角形的判定;勾股定理.【分析】(1)根据二次根式的性质得出a,b的值进而得出答案;(2)由题意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根据平行四边形的判定可得21﹣2t=16﹣t,再解方程即可;(3)①当PQ=CQ时,122+t2=(16﹣t)2,解方程得到t的值,再求P点坐标;②当PQ=PC时,由题意得:QM=t,CM=16﹣2t,进而得到方程t=16﹣2t,再解方程即可.【解答】解:(1)∵b=++16,∴a=21,b=16,故B(21,12)C(16,0);(2)由题意得:AP=2t,QO=t,则:PB=21﹣2t,QC=16﹣t,∵当PB=QC时,四边形PQCB是平行四边形,∴21﹣2t=16﹣t,解得:t=5,∴P(10,12)Q(5,0);(3)当PQ=CQ时,过Q作QN⊥AB,由题意得:122+t2=(16﹣t)2,解得:t=,故P(7,12),Q(,0),当PQ=PC时,过P作PM⊥x轴,由题意得:QM=t,CM=16﹣2t,则t=16﹣2t,解得:t=,2t=,故P(,12),Q(,0).【点评】此题主要考查了平行四边形的判定,等腰三角形的判定,关键是注意分类讨论,不要漏解.。
2015-2016学年山东省济南市天桥区八年级(下)期末数学试卷一、选择题(共15小题,每小题3分,满分45分,每小题只有一个正确选项)1.(3分)若x>y,则下列变形正确的是()A.x+3>y+3B.x﹣3<y﹣3C.﹣3x>﹣3y D.﹣2.(3分)下列从左到右的变形属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣9=(x+3)(x﹣3)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.(x+2)(x﹣2)=x2﹣43.(3分)下列电视台的台标,是中心对称图形的是()A.B.C.D.4.(3分)要使分式有意义,则x的取值应满足()A.x≠2B.x≠1C.x=2D.x=15.(3分)一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形6.(3分)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2B.3C.5D.77.(3分)已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4B.12C.24D.288.(3分)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米9.(3分)下列条件中,不能判断四边形ABCD是平行四边形的为()A.AB∥CD,AD∥BC B.AB=CD,AD=BCC.AB∥CD,AD=BC D.AB∥CD,AB=CD10.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.11.(3分)用配方法解下列方程时,配方正确的是()A.方程x2﹣6x﹣5=0,可化为(x﹣3)2=4B.方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015C.方程a2+8a+9=0,可化为(a+4)2=25D.方程2x2﹣6x﹣7=0,可化为12.(3分)如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD 上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③D.①②③④13.(3分)如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2B.3C.4D.414.(3分)如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.15.(3分)如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2017个小正三角形时,则最小正三角形的面积等于()A.B.()671C.D.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分解因式:a2﹣2a+1=.17.(3分)要使分式的值是0,则x的值是.18.(3分)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=.19.(3分)如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE=度.20.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解集为.21.(3分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.三、解答题(共8小题,满分57分)22.(7分)完成下列各题(1)计算:+(2)解不等式组.23.(3分)解分式方程:=.24.(4分)如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试说明四边形AECF是平行四边形.25.(8分)如图,是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图内阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么花园各角处的正方形观光休息亭的周长为多少米?26.(8分)如图,在△ABC中.AB=AC.(l)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=.(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=.(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:.(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,井说明理由.27.(9分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?28.(9分)如图,在在平面直角坐标系中,四边形ABCD是梯形,AD∥BC,E是BC的中点,BC=12,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,点P是BC 边上一个动点,(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)在(1)的条件下,点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.29.(9分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB 于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.2015-2016学年山东省济南市天桥区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分,每小题只有一个正确选项)1.【解答】解:A、两边都加3,不等号的方向不变,故A正确;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘以﹣3,不等号的方向改变,故C错误;D、两边都除以﹣3,不等号的方向改变,故D错误;故选:A.2.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.3.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选:D.4.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.5.【解答】解:360÷36=10.故选:D.6.【解答】解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选:A.7.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选:B.8.【解答】解:∵点E,F分别是边AB,AC的中点,EF=5米,∴BC=2EF=10米,∵△ABC是等边三角形,∴AB=BC=AC,∴BE=CF=BC=5米,∴篱笆的长=BE+BC+CF+EF=5+10+5+5=25米.故选:C.9.【解答】解:A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.故选:C.10.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.11.【解答】解:A、由原方程得到:方程x2﹣6x+32=5+32,可化为(x﹣3)2=14,故本选项错误;B、由原方程得到:方程y2﹣2y+12=2015+12,可化为(y﹣1)2=2016,故本选项错误;C、由原方程得到:方程a2+8a+42=﹣9+42,可化为(a+4)2=7,故本选项错误;D、由原方程得到:方程x2﹣3x+()2=+()2,可化为,故本选项正确;故选:D.12.【解答】解:∵AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,∴DE=DF,且AD上任一点到AB、AC的距离相等;又AB=AC,根据三线合一的性质,可得AD垂直平分BC∴BD=CD,AD上任一点到B、C的距离相等.故选:D.13.【解答】解:∵DE是AC的垂直的平分线,F是AB的中点,∴DF∥BC,∴∠C=90°,∴四边形BCDE是矩形.∵∠A=30°,∠C=90°,BC=2,∴AB=4,∴AC==2.∴BE=CD=.∴四边形BCDE的面积为:2×=2.故选:A.14.【解答】解:连接BP,过C作CM⊥BD,∵S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1且正方形对角线BD==,又BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:A.15.【解答】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第m次操作后,总的正三角形的个数为3m+1.则:2017=3m+1,解得:m=671,故若要得到2017个小正三角形,则需要操作的次数为672次,∵第一次操作后小正三角形面积为:×2×2sin60°=,第二次操作后小正三角形面积为:×1×sin60°=,第三次操作后小正三角形面积为:××sin60°=,∴第672次操作后最小正三角形的面积为:故选:B.二、填空题(共6小题,每小题3分,满分18分)16.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.17.【解答】解:依题意,得x2﹣4=0,且x﹣2≠0,解得x=﹣2.故答案是:﹣2.18.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根分别为x1和x2,根据韦达定理,∴x1+x2=3,故答案为:3.19.【解答】解:∵在▱ABCD中,∠B=80°,∴AD∥BC,AB=CD,∴∠ADE=∠CED,∵DE是∠ADC的角平分线,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD,∵BE=CE,∴AB=BE,∴∠AEB=∠BAE=50°,∴∠DAE=∠AEB=50°.故答案为:50.20.【解答】能使函数y=k1x+b的图象在函数y=k2x的上边时的自变量的取值范围是x<﹣1.故关于x的不等式k1x+b>k2x的解集为:x<﹣1.故答案为:x<﹣1.21.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴△BFE∽△CHE,∴====1,∴EF=EH=,CH=BF=1,∵S△DHF=DH•FH=×(1+3)×2=4,∴S△DEF=S△DHF=2,故答案为:2.三、解答题(共8小题,满分57分)22.【解答】解:(1)原式=﹣==1;(2),由①得,x<4,由②得,x≥2,故不等式组的解集为:2≤x<4.23.【解答】解:去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.24.【解答】证明:∵四边形ABCD为平行四边形,∴AD=CB,AD∥CB,∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,AE∥CF.在△AED和△CFB中,,∴△AED≌△CFB(AAS),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形.25.【解答】解:设矩形花园各角处的正方形观光休息亭的边长为x米,根据题意得:(100﹣2x)(50﹣2x)=3600,解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的周长为20米.26.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∠ADC=90°.∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=15°.故答案为15°;(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∠ADC=90°.∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=∠ADC﹣∠ADE=20°.故答案为20°;(3)∠BAD=2∠EDC(或∠EDC=∠BAD).故答案为∠EDC=∠BAD;(4)仍成立,理由如下:∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C,又∵AB=AC,∴∠B=∠C,∴∠BAD=2∠EDC,∴∠EDC=∠BAD.27.【解答】解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).28.【解答】解:(1)∵AD∥BC,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,∴OC=9,D点的纵坐标为4,D点的横坐标为5,作DN⊥BC交于N,如图1所示:则四边形OADN为矩形,∴CN=OC﹣ON=OC﹣AD=9﹣5=4,DF=4,∴△DFC为等腰直角三角形,∴CD==4,若以点P、A、D、E为顶点的四边形为平行四边形,则AD=PE=5,有两种情况:①当P在E的左边,∵E是BC的中点,∴BE=6,∴BP=BE﹣PE=6﹣5=1;②当P在E的右边,BP=BE+PE=6+5=11;故当BP=1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(2)①当BP=1时,此时CN=DN=4,NE=6﹣4=2,∴DE===2≠AD,故不能构成菱形.②当BP′=11时,以点P′、A、D、E为顶点的四边形是平行四边形∴EP′=AD=5,过D作DN⊥BC于N,如图2所示:由(1)得:DN=CN=4,∴NP′=BP′﹣BN=BP′﹣(BC﹣CN)=11﹣(12﹣4)=3.∴DP′===5,∴EP′=DP′,故此时平行四边形P′DAE是菱形,即以点P、A、D、E为顶点的四边形能构成菱形.29.【解答】(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF ∴CD=CB,∠CDG=∠CBG=90°在Rt△CDG和Rt△CBG中∴△CDG≌△CBG(HL),(2)解:∵△CDG≌△CBG∴∠DCG=∠BCG,DG=BG在Rt△CHO和Rt△CHD中∴△CHO≌△CHD(HL)∴∠OCH=∠DCH,OH=DH∴HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形如图,连接BD、DA、AE、EB因为四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G 为AB中点的时候.因为DG=BG,所以此时同时满足DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形.所以当G点为AB中点时,四边形AEBD为矩形.∵四边形DAEB为矩形∴AG=EG=BG=DG∵AB=6∴AG=BG=3设H点的坐标为(x,0)则HO=x∵OH=DH,BG=DG∴HD=x,DG=3在Rt△HGA中∵HG=x+3,GA=3,HA=6﹣x ∴(x+3)2=32+(6﹣x)2∴x=2∴H点的坐标为(2,0).。
2016-2017学年山东省济南市天桥区八年级(下)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(4分)如果a>b,那么下列各式中正确的是()A.a>﹣b B.a<﹣b C.﹣2a>﹣2b D.﹣2a<﹣2b2.(4分)下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个3.(4分)若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣24.(4分)如图,D,E分别是△ABC的边AC和BC的中点,已知DE=2,则AB=()A.1 B.2 C.3 D.45.(4分)下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y6.(4分)一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是()A.x<3 B.x≥﹣1 C.﹣1<x≤3 D.﹣1≤x<37.(4分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>58.(4分)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分且相等的四边形是矩形D.一组对边相等,另一组对边平行的四边形是平行四边形9.(4分)若x2﹣4x+p=(x+q)2,那么p、q的值分别是()A.p=4,q=2 B.p=4,q=﹣2 C.p=﹣4,q=2 D.p=﹣4,q=﹣210.(4分)某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8% B.18% C.20% D.25%11.(4分)若(+)•y=1(其中x≠±2),则y等于()A.x﹣2 B.x+2 C.﹣x﹣2 D.﹣x+212.(4分)如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①②B.①④C.①②④D.①③④二、填空题(本大题共个小题.每小题4分,共24分.)13.(4分)因式分解:2a2﹣8=.14.(4分)七边形的内角和是.15.(4分)化简﹣的结果是.16.(4分)不等式4x﹣6≥7x﹣15的正整数解的个数是.17.(4分)平行四边形ABCD中,AE⊥BC,AF⊥CD,BA⊥AF,EC=3,CF=1,∠ECF=120°,平行四边形ABCD的面积是.18.(4分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1)(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2017的坐标为.三、解答题(共8小题;共78分).19.(8分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.20.(8分)解方程.(1)=(2)x2+4x+3=0.21.(9分)(1)如图1,在平行四边形ABCD中,E、F分别是AB、DC边上的点,且AE=CF,求证:△ADE≌△CBF.(2)如图2,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为32,求OH的长.22.(9分)甲、乙两地相距360km.新修的高速公路开通后,在甲、乙两地间行驶的长途客车平均速度提高了50%,而从甲地到乙地的时间缩短了2小时.求长途客车原来的平均速度.23.(10分)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.24.(10分)某单位计划在假期组织员工到某地旅游,甲乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?(1)设旅游人数为x人,甲旅行社收费为y甲元,乙旅行社收费为y乙元,分别用关系式表示两家旅行社的收费情况.(2)当旅游人数是多少时,两家旅行社的收费一样?(3)就旅游人x讨论,哪家旅行社更优惠?25.(12分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6.①求△ADE的周长;②在直线BE上有一点P,当△PDE为等腰三角形时直接写出线段PE的长.26.(12分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C 顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.2016-2017学年山东省济南市天桥区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(4分)如果a>b,那么下列各式中正确的是()A.a>﹣b B.a<﹣b C.﹣2a>﹣2b D.﹣2a<﹣2b【解答】解:当a=1,b=﹣5时,a>b,而a<﹣b,故选项A错误,当a=3,b=1时,a>b,而a>﹣b,故选项B错误,∵a>b,∴﹣2a<﹣2b,故选项C错误,选项D正确,故选:D.2.(4分)下列图形中,中心对称图形有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选:C.3.(4分)若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【解答】解:∵分式的值为0,∴,解得x=1.故选:C.4.(4分)如图,D,E分别是△ABC的边AC和BC的中点,已知DE=2,则AB=()A.1 B.2 C.3 D.4【解答】解:∵D,E分别是△ABC的边AC和BC的中点,∴DE是△ABC的中位线,∵DE=2,∴AB=2DE=4.故选:D.5.(4分)下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y【解答】解:A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C、右边不是积的形式,错误;D、左边是单项式,不是因式分解,错误.故选:B.6.(4分)一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是()A.x<3 B.x≥﹣1 C.﹣1<x≤3 D.﹣1≤x<3【解答】解;由得﹣1≤x<3,故选:D.7.(4分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选:B.8.(4分)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分且相等的四边形是矩形D.一组对边相等,另一组对边平行的四边形是平行四边形【解答】解:A、对角线相等的平行四边形是矩形,A是假命题;B、对角线互相垂直的平行四边形是菱形,B是假命题;C、对角线互相平分且相等的四边形是矩形,C是真命题;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,D是假命题,故选:C.9.(4分)若x2﹣4x+p=(x+q)2,那么p、q的值分别是()A.p=4,q=2 B.p=4,q=﹣2 C.p=﹣4,q=2 D.p=﹣4,q=﹣2【解答】解:∵x2﹣4x+p=(x+q)2=x2+2qx+q2∴2q=﹣4,p=q2,∴q=﹣2,p=4,故选:B.10.(4分)某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8% B.18% C.20% D.25%【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选:C.11.(4分)若(+)•y=1(其中x≠±2),则y等于()A.x﹣2 B.x+2 C.﹣x﹣2 D.﹣x+2【解答】解:(+)•y=(﹣)•y=•y=﹣•y=1,∴y=﹣x﹣2,故选:C.12.(4分)如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①②B.①④C.①②④D.①③④【解答】解:如图,∵P为正方形ABCD的对角线BD上任一点,∴PA=PC,∠C=90°,∵过点P作PE⊥BC于点E,PF⊥CD,∴∠PEC=∠DFP=∠PFC=∠C=90°,∴四边形PECF是矩形,∴PC=EF,∴PA=EF,故②正确,∵BD是正方形ABCD的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠C=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD是等腰直角三角形,故①正确,在△PAB和△PCB中,,∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确,∵点P是正方形对角线BD上任意一点,∴AD不一定等于PD,只有∠BAP=22.5°时,AD=PD,故③错误,故选:C.二、填空题(本大题共个小题.每小题4分,共24分.)13.(4分)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).14.(4分)七边形的内角和是900°.【解答】解:七边形的内角和是:180°×(7﹣2)=900°.故答案为:900°.15.(4分)化简﹣的结果是﹣.【解答】解:原式=﹣=﹣=﹣.故答案为:﹣.16.(4分)不等式4x﹣6≥7x﹣15的正整数解的个数是3.【解答】解:不等式的解集是x≤3,故不等式4x﹣6≥7x﹣15的正整数解为1,2,3三个.故答案为:3.17.(4分)平行四边形ABCD中,AE⊥BC,AF⊥CD,BA⊥AF,EC=3,CF=1,∠ECF=120°,平行四边形ABCD的面积是.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠B+∠ECF=180°,AB=CD,AD=BC,∵∠ECF=120°,∴∠B=∠D=60°,∵AE⊥BC,AF⊥CD,EA⊥AF,∵∠BAE=∠DAF=30°,∴AB=2BE,AD=2DF,设BE=x,DF=y,则AB=2x,AD=2y,∵CE=3,CF=1,∴,解得,∴AB=2x=,∴AE==,且BC=BE+EC=,=BC•AE=×=,∴S平行四边形ABCD故答案为:.18.(4分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1)(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2017的坐标为 (2,0) .【解答】解:观察,发现规律:P 0(0,0),P 1(2,0),P 2(﹣2,2),P 3(0,﹣2),P 4(2,2),P 5(﹣2,0),P 6(0,0),P 7(2,0),…,∴P 6n (0,0),P 6n +1(2,0),P 6n +2(﹣2,2),P 6n +3(0,﹣2),P 6n +4(2,2),P 6n +5(﹣2,0)(n 为自然数).当n=5时,P 5(﹣2,0);∵2017÷6=336…1,∴P 2017与P 1相同,为(2,0).故答案为:(2,0).三、解答题(共8小题;共78分).19.(8分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++. 【解答】解:(1)解不等式2x <5,得:x <,解不等式3(x +2)≥x +4,得:x ≥﹣1,∴不等式组的解集为:﹣1≤x <,将不等式解集表示在数轴上如图:,(2)++=﹣+==.20.(8分)解方程.(1)=(2)x2+4x+3=0.【解答】解:(1)去分母:2(x+1)=3x,去括号得:2x+2=3x,移项得:2x﹣3x=﹣2,合并同类项得:﹣x=﹣2,系数化为1得:x=2,检验:把x=2代入x(x+1)≠0,x=2时是原分式方程的解;(2)(x+3)(x+1)=0,则x+3=0,x+1=0,解得:x1=﹣3,x2=﹣1.21.(9分)(1)如图1,在平行四边形ABCD中,E、F分别是AB、DC边上的点,且AE=CF,求证:△ADE≌△CBF.(2)如图2,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为32,求OH的长.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)在菱形ABCD中,AB=AD=BC=DC,AO=OC,∵菱形的周长为32,∴AB=8,∵H为AD边的中点,∴OH为△ABD的中位线,∴OH=AB=×8=4.22.(9分)甲、乙两地相距360km.新修的高速公路开通后,在甲、乙两地间行驶的长途客车平均速度提高了50%,而从甲地到乙地的时间缩短了2小时.求长途客车原来的平均速度.【解答】解:设长途客车原来的平均速度为xkm/h,由题意得:﹣=2,解得:x=60.经检验:x=60是原方程的解.答:长途客车原来的平均速度为60km/h.23.(10分)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.【解答】解:(1)如图,△A1B1C1为所作,(2)四边形AB1A1B的面积=×6×4=12.24.(10分)某单位计划在假期组织员工到某地旅游,甲乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?(1)设旅游人数为x人,甲旅行社收费为y甲元,乙旅行社收费为y乙元,分别用关系式表示两家旅行社的收费情况.(2)当旅游人数是多少时,两家旅行社的收费一样?(3)就旅游人x讨论,哪家旅行社更优惠?【解答】解:(1)设有x人旅游.甲旅行社的费用为y甲,乙旅行社的费用为y乙,则甲社总费用:y甲=0.75×200x=150x,乙社总费用:y乙=0.8×200(x﹣1)=160(x﹣1),(2)若y甲=y乙则150x=160(x﹣1),解得:x=16,16个人时,两家费用一样.(2)①若y甲>y乙则150x>160(x﹣1),解得:x<16,②当10<x<16时甲旅行社的费用较少,若y甲<y乙则150x<160(x﹣1),解得:x>16,当16<x<25时乙旅行社的费用较少,答:16个人时,两家费用一样,当10<x<16时甲旅行社的费用较少,当16<x <25时乙旅行社的费用较少.25.(12分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6.①求△ADE的周长;②在直线BE上有一点P,当△PDE为等腰三角形时直接写出线段PE的长.【解答】解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)①∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18;②当DE=PE时,PE=DE=AC=8;当PD=PE时,点P与A重合,PE=5;当DE=PD时,PE=.26.(12分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C 顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为或.【解答】解:(1)证明:如图a,∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∵∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②如图c,∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又∵CP=CD,∴∠CPD=∠CDP=75°,又∵∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形;(3)如图b,由∠CBF=∠EDF,∠DEF=∠BCF,可得△DEF∽△BCF,∴=,即=,设DF=x,则BF=5x,CF=10﹣x,∵Rt△BCF中,BF2=BC2+CF2,∴(5x)2=102+(10﹣x)2,解得x1=,x2=﹣(舍去),∴BF=5x=,∵PB=PC,∴∠PBC=∠PCB,又∵∠PBC+∠PFC=∠PCB+∠PCF=90°,∴∠PFC=∠PCF,∴PF=PC,∴BP=PF=BF=;如图d,延长BE、CD,交于点F,由∠CBF=∠CDQ=∠EDF,∠DEF=∠BCF,可得△DEF∽△BCF,∴=,即=,设DF=x,则BF=5x,CF=10+x,∵Rt△BCF中,BF2=BC2+CF2,∴(5x)2=102+(10+x)2,解得x1=﹣(舍去),x2=,∴BF=5x=,∵PB=PC,∴∠PBC=∠PCB,又∵∠PBC+∠PFC=∠PCB+∠PCF=90°,∴∠PFC=∠PCF,∴PF=PC,∴BP=PF=BF=.故答案为:或.。
2015-2016学年山东省济南市历下区八年级(下)期末数学复习试卷一、选择题(每小题3分,满分30分,每小题只有一个答案符合题意)1.(3分)在下列交通标志中,是中心对称图形的是()A.B.C.D.2.(3分)若代数式有意义,则x应满足()A.x=0B.x≠1C.x≥﹣5D.x≥﹣5且x≠1 3.(3分)一个多边形的每个内角均为108°,则这个多边形是()边形.A.4B.5C.6D.74.(3分)下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,65.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=()A.30°B.40°C.45°D.60°6.(3分)平行四边形、矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直平分且相等7.(3分)将一张长方形纸片ABCD按如图所示折叠,使顶点C落在点F处,已知AB=2,∠DEF=30°,则折痕DE的长度为()A.1B.2C.3D.48.(3分)以下图形既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.平行四边形C.矩形D.等腰梯形9.(3分)如图,等腰△ABC的周长为19,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.9B.10C.11D.1210.(3分)如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,AB=1,则EF的长是()A.1.5B.C.D.2二、填空题(共5小题,每小题3分,满分15分)11.(3分)已知a+b=2,则a2+ab+b2=.12.(3分)如果一个多边形的内角和是其外角和的一半,那么这个多边形是边形.13.(3分)点(﹣2,﹣1)在平面坐标系中所在的象限是.14.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是.15.(3分)平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是.三、解答题(共8小题,满分55分)16.(6分)解不等式组,并把解集在数轴上表示出来..17.(6分)解方程:.18.(6分)先化简,再求值:÷(﹣x﹣2),其中x=﹣2.19.(7分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.20.(7分)如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.21.(7分)如图所示,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.22.(8分)在创建全国森林城市的活动中,我区一“青年突击队”决定义务整修一条1000米长的绿化带,开工后,附近居民主动参加到义务劳动中,使整修的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时整修多少米长的绿化带?23.(8分)在平面直角坐标系中,△ABO的三个顶点坐标分别为:A(2,3)、B(3,1)、O(0,0).(1)将△ABO向左平移4个单位,画出平移后的△A1B1O1.(2)将△ABO绕点O顺时针旋转180°,画出旋转后得到的△A2B2O.此时四边形ABA2B2的形状是.(3)在平面上是否存在点D,使得以A、B、O、D为顶点的四边形是平行四边形,若存在请直接写出符合条件的所有点的坐标;若不存在,请说明理由.2015-2016学年山东省济南市历下区八年级(下)期末数学复习试卷参考答案与试题解析一、选择题(每小题3分,满分30分,每小题只有一个答案符合题意)1.【解答】解:A、不是中心对称图形,B、不是中心对称图形,C、是中心对称图形,D、不是中心对称图形,故选:C.2.【解答】解:根据题意得:x+5≥0,x﹣1≠0解得x≥﹣5且x≠1.故选:D.3.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选:B.4.【解答】解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:A.5.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=20°,∴∠BDC=∠A+∠DCA=20°+20°=40°.故选:B.6.【解答】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选:A.7.【解答】解:∵四边形ABCD为矩形,∴AB=CD=2.由翻折的性质可知:DF=DC=2,∠F=∠C=90°.∵在Rt△EFD中,∠F=90°,∠DEF=30°,DF=2,∴DE=2DF=2×2=4.故选:D.8.【解答】解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、不是中心对称图形,是轴对称图形.故选:C.9.【解答】解:∵等腰△ABC的周长为19,底边BC=5,∴AC=×(19﹣5)=7,∵DE垂直平分AB,∴AE=BE,∴△BEC的周长=BE+CE+BC,=AE+CE+BC,=AC+BC,=7+5,=12.故选:D.10.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=45°,∵AB=1,∴CE=2,∴EF=CE=,故选:B.二、填空题(共5小题,每小题3分,满分15分)11.【解答】解:∵a+b=2,∴=(a2+2ab+b2)=(a+b)2=×22=2.故答案为:2.12.【解答】解:∵一个多边形的内角和是其外角和的一半,由任意多边形外角和为360°,∴此多边形内角和为180°,故这个多边形为三角形,故答案为:三.13.【解答】解:点(﹣2,﹣1)在第三象限.故答案为:第三象限.14.【解答】解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=2,AC⊥BD,在Rt△AOD中,AD==,∴菱形ABCD的周长为4.故答案为:4.15.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵∠ABC的平分线分对边AD为2和3两部分,如果AE=2,则四边形周长为14;如果AE=3,则AB=AC=3,AD=BC=5,∴▱ABCD的周长为16;∴▱ABCD的周长为14或16.故答案为:14或16.三、解答题(共8小题,满分55分)16.【解答】解:解不等式①,得:x≤7,解不等式②,得:x>2,在数轴上表示出不等式的解集如下:∴不等式组的解集为:2<x≤7.17.【解答】解:方程两边同乘(x﹣1)(x+1),得x(x+1)﹣3(x﹣1)=(x﹣1)(x+1),化简,得x﹣3x+3=﹣1,解得x=2,检验:当x=2时,(x﹣1)(x+1)≠0,∴x=2是原分式方程的解.18.【解答】解:÷(﹣x﹣2)===﹣,当x=﹣2时,原式=﹣=﹣2.19.【解答】解:如图,过点P作PE⊥AO于E,∵OP是∠AOB的平分线,PD⊥OB,∴PE=PD=2,∵CP∥OB,∠AOB=30°,∴∠ECP=∠AOB=30°,在Rt△ECP中,PC=2PE=2×2=4.20.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM=CN,∴OM=ON,在△BOM和△DON中,,∴△BOM≌△DON(SAS),∴∠OBM=∠ODN,∴BM∥DN.21.【解答】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN==25°.22.【解答】解:设原计划每小时整修x米长的绿化带,根据题意得:﹣=4,解得:x=125,经检验:x=125是原方程的解,∴x=125答:原计划每小时整修125米长的绿化带.23.【解答】解:(1)如图,△A1B1O1为所作;(2)如图,△A2B2O为所作,此时四边形ABA2B2的形状是平行四边形.故答案为平行四边形;(3)存在.满足条件的点D的坐标为(5,4)或(1,﹣2)或(﹣1,2)。
山东省济南市八年级(下)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)若a>b,则下列不等式正确的是()A.a﹣b<0 B.a+8<b﹣8 C.﹣5a<﹣5b D.2.(4分)下列从左到右的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣zy)+z D.﹣8x2+8x﹣2=﹣2(2x﹣1)2¥3.(4分)式子,,x+y,,中是分式的有()A.1个B.2个C.3个D.4个4.(4分)已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.九边形C.十边形D.十二边形5.(4分)四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AC⊥BD6.(4分)下列分解因式正确的是()A.a2﹣9=(a﹣3)2B.﹣4a+a2=﹣a(4+a)^C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+17.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.248.(4分)如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤89.(4分)如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在边B ′C 上,则∠B ′的大小为( )《A .42°B .48°C .52°D .58°10.(4分)若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ) A .矩形 B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形11.(4分)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD 的对角线相交于点O ,过点O 作EF 垂直于BD 交AB ,CD 分别于点F ,E ,连接DF ,BE .请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下: 小青:OE =OF ;小何:四边形DFBE 是正方形; 小夏:S 四边形AFED =S 四边形FBCE ;小雨:∠ACE =∠CAF . 这四位同学写出的结论中不正确的是( )~A .小青B .小何C .小夏D .小雨12.(4分)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④一、填空题(本大题共6个小题,每题4分,共24分.把答案填在题中的横线上)13.(4分)分解因式﹣a2+4b2=.14.(4分)化简:=.:15.(4分)如图,平行四边形ABCD中,∠B=30°,AB=4,BC=5,则平行四边形ABCD的面积为.16.(4分)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.17.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.18.(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…记正方形ABCD的边为a1=1,按上述方法所作的正方形的边长依次为a2、a3、a4、…a n,根据以上规律写出的表达式.!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(6分)a2(x﹣y)+b2(y﹣x).20.(6分)解方程:﹣=8.21.(6分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.22.(8分)解不等式组23.(8分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.24.(10分)暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费.请你帮他们选择一下,选哪家旅行社比较合算.&25.(10分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.26.(12分)在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花27.(12分)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.$参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:A、不等式两边同时减去b,不等号的方向不变,故本选项错误;B、不等式的两边应该加(或减去)同一个数8,不等号是方向才会不改变;故本选项错误;C、不等式两边都乘以﹣5,不等号的方向不变,故本选项正确;D、不等式两边都除以4,不等号的方向不变,故本选项错误;故选:C.【解答】解:A、(3﹣x)(3+x)=9﹣x2,是整式的乘法运算,故此选项错误;!B、(y+1)(y﹣3)≠(3﹣y)(y+1),不符合因式分解的定义,故此选项错误;C、4yz﹣2y2z+z=2y(2z﹣zy)+z,不符合因式分解的定义,故此选项错误;D、﹣8x2+8x﹣2=﹣2(2x﹣1)2,正确.故选:D.3.【解答】解:,是分式,故选:B.4.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,…解得n=10,∴这个多边形的边数是10.故选:C.5.【解答】解:需要添加的条件是AC=BD;理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形(对角线相等的平行四边形是矩形);·故选:B.6.【解答】解:A、原式=(a+3)(a﹣3),错误;B、原式=﹣a(4﹣a),错误;C、原式=(a+3)2,正确;D、原式=(a﹣1)2,错误,故选:C.7.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,.∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.8.【解答】解:∵不等式组有解,∴m<5.故选:C.9.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,【∴∠B′=90°﹣∠ACA′=42°.故选:A.10.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.*11.【解答】解:∵四边形ABCD 是平行四边形, ∴OA =OC ,CD ∥AB ,∴∠ECO =∠FAO ,(故小雨的结论正确), 在△EOC 和△FOA 中,,∴△EOC ≌△FOA ,∴OE =OF (故小青的结论正确),~∴S △EOC =S △AOF ,∴S 四边形AFED =S △ADC =S 平行四边形ABCD , ∴S 四边形AFED =S 四边形FBCE 故小夏的结论正确, ∵△EOC ≌△FOA , ∴EC =AF ,∵CD =AB , ∴DE =FB ,DE ∥FB ,∴四边形DFBE 是平行四边形, ∵OD =OB ,EO ⊥DB ,.∴ED =EB ,∴四边形DFBE 是菱形,无法判断是正方形,故小何的结论错误, 故选:B .12.【解答】解:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,|∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;"由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,\∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.一、填空题(本大题共6个小题,每题4分,共24分.把答案填在题中的横线上)13.【解答】解:﹣a2+4b2=4b2﹣a2=(2b+a)(2b﹣a).故答案为:(2b+a)(2b﹣a).14.【解答】解:原式==a+1.—故答案为:a+1.15.【解答】解:作AE⊥BC于E,如图所示:∵在▱ABCD中,AB=4,AD=BC=5,∵∠B=30°,∴AE=AB=2,∴▱ABCD的面积为:2×5=10,故答案为10.*16.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.17.【解答】解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.18.【解答】解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,。
初二下学期数学练习题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形 B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠34.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.247.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>18.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A .﹣1B .1C .52015D .﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是( )A .①B .②C .③D .④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( )①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A .①③B .②③C .③④D .②④11.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A. 2cm B. 4cmC. 6 cmD. 8cm12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少?( )A .1.5B .2C .2.5D .313.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )A .梯形B .矩形C .菱形D .正方形 14.已知xy >0,化简二次根式x的正确结果为( )A .B .C .﹣D .﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打( )A .六折B .七折C .八折D .九折16.已知2+的整数部分是a ,小数部分是b ,则a 2+b 2=( )A .13﹣2B .9+2C .11+D .7+4ABCD第11题图E17.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣119.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2420.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年山东省泰安市新泰市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解: =2,是有理数,﹣ =﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠B=∠B′,然后利用三角形内角和定理列式求出∠ACB,再根据对应边AC、A′C 的夹角为旋转角求出∠ACA′,然后根据∠BCA′=∠ACB+∠ACA′计算即可得解.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠B=∠B′=110°,∠ACA′=50°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BCBD=4×(3+3)=24,故选:D.【点评】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥m+1,求出即可.【解答】解:,由①得:x>2,由②得:x>m+1,∵不等式组的解集是 x>2,∴2≥m+1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.8.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a2+b2﹣c2)=0,进而得到a2+b2=c2,或a=b,根据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a2+b2﹣c2)=0,∴a2+b2﹣c2,或a﹣b=0,解得:a2+b2=c2,或a=b,∴△ABC的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3【考点】一次函数的应用.【分析】设价钱y与重量x之间的函数关系式为y=kx+b,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令y=0求出x值,即可得出空蓝的重量.【解答】解:设价钱y与重量x之间的函数关系式为y=kx+b,将(15,26)、(15.5,27)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x﹣4.令y=0,则2x﹣4=0,解得:x=2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y与重量x之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1【考点】一次函数与一元一次不等式.【分析】解不等式x+3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣x+m>x+3的解集,结合二者即可得出结论.【解答】解:∵x+3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线y=﹣x+m的图象在y=x+3的图象的上方,∴不等式﹣x+m>x+3的解为x<﹣2.综上可知:不等式﹣x+m>x+3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣x+m>x+3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴a=3,b=﹣1.∴a2+b2=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=ABDH=ACBD,即5DH=×8×6,解得DH=.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,③正确;设EC=x,由勾股定理和三角函数就可以表示出BE与EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF..设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=AB﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△AEC=CEAB,S△ABC=BCAB,CE<BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12++×3﹣3×=3﹣1++﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】全等三角形的判定与性质;矩形的判定.【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD 的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AF与BD平行且相等,得到四边形AFBD为平行四边形,再由AB=AC,BD=CD,利用三线合一得到AD垂直于BC,即∠ADB为直角,即可得证.【解答】解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE,在△AFE和△DCE中,,∴△AFE≌△DCE(AAS),∴AF=CD,∵AF=BD,∴CD=BD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴四边形AFBD是矩形.【点评】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,。
山东省济南市八年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016九上·无锡开学考) 下列二次根式中属于最简二次根式的是()A .B .C .D .2. (2分)估计的运算结果应在()A . 5到6之间B . 6到7之间C . 7到8之间D . 8到9之间3. (2分)(2020·南通模拟) 如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为()A . 1:2B . 1:3C . 1:4D . 1:54. (2分) (2015八上·宜昌期中) 若一个多边形的每个外角都为30°,则这个多边形是()A . 十二边形B . 十边形C . 八边形D . 六边形5. (2分)(2014·钦州) 体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的()B . 中位数C . 众数D . 方差6. (2分)命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A . 1个B . 2个C . 3个D . 4个7. (2分)如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB 有交点,则k的值不可能是()A . -5B . -2C . 3D . 58. (2分)下列函数的图象,经过原点的是()A . y=5x2-3xB . y=x2-1C . y=D . y=-3x+79. (2分)有一根长60cm的铁丝,用它围成一个矩形,写出矩形面积S()与它的一边长之间的函数关系式为()B .C .D .10. (2分)(2018·龙岩模拟) 如图, , ,,如果,则的长是().A .B .C .D .二、填空题 (共6题;共6分)11. (1分)已知a、b、c是△ABC的三边,则的值为________.12. (1分)小明在一次考试中七科总分为638分,其中有两科的平均分是89分,那么另外五科的平均分是________ 分.13. (1分)(2017·全椒模拟) 如图1,将1张菱形纸片ABC的(∠ADC>90°)沿对角线BD剪开,得到△ABD 和△BCD.再将△BCD以D为旋转中心,按逆时针方向旋转角α,使α=∠ADB,得到如图2所示的△DB′C,连接AC、BB′,∠DAB=45°,有以下结论:①AC=BB′;②AC⊥AB;③∠CDA=90°;④BB′= AB,其中正确结论的序号是________.(把所有正确结论的序号都填在横线上)14. (1分)如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是________.15. (1分) (2017八下·盐城开学考) 已知一次函数y=kx+b的图象如图所示.当x<2时,y的取值范围是________.16. (1分) (2018八上·郑州期中) 一次函数y=ax+b在直角坐标系中的图像如图所示,则化简得结果是________。
2016-2017学年山东省济南市市中区八年级(下)期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)25.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+47.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=09.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣211.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18 B.14 C.12 D.612.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.13.(3分)如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>215.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为.17.(3分)若m=2,则m2﹣4m+4的值是.18.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,=.其延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC中正确结论的是(只填序号).三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO 沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.2016-2017学年山东省济南市市中区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b【解答】解:(A)a+2>b+2,故A错误;(B)a﹣2>b﹣2,故B错误;(D)﹣2a<﹣2b,故D错误;故选:C.2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)【解答】解:A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意;故选:B.3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.5.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:A.6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+4【解答】解:A、m2﹣mn+n2不符合能用完全平方公式分解因式的式子的特点;B、x2+4x﹣4不符合能用完全平方公式分解因式的式子的特点;C、x2﹣4x+4能用完全平方公式分解因式;D、4x2﹣4x+4不符合能用完全平方公式分解因式的式子的特点.故选:C.7.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=0【解答】解:A、=x4,所以A选项计算正确;B、为最简分式,所以B选项的计算错误;C、为最简分式,所以C选项的计算错误;D、=1,所以D选项的计算错误;故选:A.9.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣2【解答】解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.11.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18 B.14 C.12 D.6【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=18.故选:A.12.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【解答】解:根据图象得,当x<﹣1时,x+m<kx﹣1.故选:D.13.(3分)如图,在菱形ABCD中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.【解答】解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>2【解答】解:当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>﹣2,∴﹣2<x<1;当3<x+2,即x>1时,3(x+2)﹣(x+2)>0,解得:x>﹣2,∴x>1,综上,﹣2<x<1或x>1,故选:C.15.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2017÷4=503…1,∴点B2017与B2同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2017(22017,﹣22017).故选:A.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为x≠1.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.17.(3分)若m=2,则m2﹣4m+4的值是0.【解答】解:当m=2时,原式=4﹣8+4=0,故答案为:018.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于2.【解答】解:作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是m<4.【解答】解:不等式组的解集是x>4,得m≤4(m≠4),∴m<4,故答案为:m<4.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为4.【解答】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC﹣BE=6﹣2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故答案为:4.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,=.其延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC中正确结论的是①②③④(只填序号).【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2∴(6﹣x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG∴AG∥CF,∴③正确;∵==,=ו3×4=,∴④正确,∴S△EFC故答案为①②③④.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.【解答】解:(1)原式=a(x2﹣y2)=a(x+y)(x﹣y);(2)由①解得x<2,由②解得x≥﹣2,不等式组的解集在数轴上表示如图;不等式组的解集为﹣2≤x<2.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,∴DE=BF.(2)解:原式=×(a﹣2)=﹣,当a=6时,原式=﹣1.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求;(3)由以上作图知,A2的坐标为(1,1)、C2的坐标为(1,﹣3).25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?【解答】解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=70.答:每件乙种商品的价格为60元,每件甲种商品的价格为70元.(2)设购买y件甲种商品,则购买(50﹣y)件乙种商品,根据题意得:70y+60(50﹣y)≤3200,解得:x≤20.答:最多可购买20件甲种商品.26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=﹣,=﹣;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.【解答】解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.【解答】解:(1)在正方形ABCD中,AE=B E,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO 沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣6,8).∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,∴BO==10;(2)由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,∴OE=BO﹣BE=10﹣6=4,∠OED=90°,设D(0,a),则OD=a,DE=AD=OA﹣OD=8﹣a,在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(0,5);(3)存在,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0);理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M 的坐标为(4,0)或(﹣4,0);②当OM 为菱形的边,OE 为对角线时,MN 垂直平分OE ,垂足为G ,如图1所示:则OG=OE=2,则cos ∠MOG=cos ∠BOC ,∴,即,解得:OM=,∴M (﹣,0);③当OM 为菱形的对角线,OE 为边时,如图2所示:同②得:M (﹣,0);综上所述,在x 轴上存在点M ,使以M 、N 、E 、O 为顶点的四边形是菱形,点M 的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).。
(3)如图2,在AB 上取一点H ,且BH=CF ,若以BC 为x 轴,AB 为y 轴建立直角坐标系,问在直线BD 上是否存在点P ,使得以B 、H 、P 为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P 点坐标;若不存在,说明理由.选做题(本大题共三小题,共20分,不计入期末总成绩)1. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的 面积分别为S 1,S 2,则S 1+S 2的值为( ) A .16 B .17 C .18 D .192.分解因式:2244423x xy y x y ++---2. 如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满足b=++16.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒) (1)求B 、C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.解得:n=8,. ..............4分∵这个多边形的每个内角都相等,∴它每一个外内角的度数为360°÷8=45°................5分答:这个多边形的每个外角是45度................6分24.解:∵AE=AD,∠ADE=75°∴∠AED=∠ADE=75°∴∠DAE=30° ...............2分在正方形ABCD中,∵AB=AD.∴AB=AE ..............3分∵∠BAD=90°∴∠BAE=120° ...............5分∴∠AEB=30° ...............7分25.解:设列车提速前的速度为x千米/时,则提速后的速度为3.2x千米/时,.....1分根据题意,得.....3分解这个方程,得x=80,. ..............5分经检验,x=80是所列方程的根,...............6分∴80×3.2=256(千米),. ..............7分所以,列车提速后的速度为256千米/时。
2015-2016学年山东省济南市天桥区八年级(下)期末数学试卷一、选择题(共15小题,每小题3分,满分45分,每小题只有一个正确选项)1.(3分)若x>y,则下列变形正确的是()A.x+3>y+3 B.x﹣3<y﹣3 C.﹣3x>﹣3y D.﹣2.(3分)下列从左到右的变形属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣9=(x+3)(x﹣3)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.(x+2)(x﹣2)=x2﹣43.(3分)下列电视台的台标,是中心对称图形的是()A. B.C.D.4.(3分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠1 C.x=2 D.x=15.(3分)一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形6.(3分)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.77.(3分)已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.288.(3分)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米9.(3分)下列条件中,不能判断四边形ABCD是平行四边形的为()A.AB∥CD,AD∥BC B.AB=CD,AD=BC C.AB∥CD,AD=BC D.AB∥CD,AB=CD10.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.11.(3分)用配方法解下列方程时,配方正确的是()A.方程x2﹣6x﹣5=0,可化为(x﹣3)2=4B.方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015C.方程a2+8a+9=0,可化为(a+4)2=25D.方程2x2﹣6x﹣7=0,可化为12.(3分)如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F 为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③D.①②③④13.(3分)如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2 B.3 C.4 D.414.(3分)如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.15.(3分)如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2017个小正三角形时,则最小正三角形的面积等于()A.B.()671 C.D.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分解因式:a2﹣2a+1=.17.(3分)要使分式的值是0,则x的值是.18.(3分)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=.19.(3分)如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE=度.20.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解集为.21.(3分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF ⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.三、解答题(共8小题,满分57分)22.(7分)完成下列各题(1)计算:+(2)解不等式组.23.(3分)解分式方程:=.24.(4分)如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试说明四边形AECF是平行四边形.25.(8分)如图,是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图内阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么花园各角处的正方形观光休息亭的周长为多少米?26.(8分)如图,在△ABC中.AB=AC.(l)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=.(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=.(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:.(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,井说明理由.27.(9分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?28.(9分)如图,在在平面直角坐标系中,四边形ABCD是梯形,AD∥BC,E 是BC的中点,BC=12,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,点P是BC边上一个动点,(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)在(1)的条件下,点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.29.(9分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED 交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.2015-2016学年山东省济南市天桥区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分,每小题只有一个正确选项)1.(3分)若x>y,则下列变形正确的是()A.x+3>y+3 B.x﹣3<y﹣3 C.﹣3x>﹣3y D.﹣【解答】解:A、两边都加3,不等号的方向不变,故A正确;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘以﹣3,不等号的方向改变,故C错误;D、两边都除以﹣3,不等号的方向改变,故D错误;故选:A.2.(3分)下列从左到右的变形属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣9=(x+3)(x﹣3)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.(x+2)(x﹣2)=x2﹣4【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.3.(3分)下列电视台的台标,是中心对称图形的是()A. B.C.D.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选:D.4.(3分)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠1 C.x=2 D.x=1【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.5.(3分)一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形【解答】解:360÷36=10.故选:D.6.(3分)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.7【解答】解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选:A.7.(3分)已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4 B.12 C.24 D.28【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选:B.8.(3分)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米【解答】解:∵点E,F分别是边AB,AC的中点,EF=5米,∴BC=2EF=10米,∵△ABC是等边三角形,∴AB=BC=AC,∴BE=CF=BC=5米,∴篱笆的长=BE+BC+CF+EF=5+10+5+5=25米.故选:C.9.(3分)下列条件中,不能判断四边形ABCD是平行四边形的为()A.AB∥CD,AD∥BC B.AB=CD,AD=BC C.AB∥CD,AD=BC D.AB∥CD,AB=CD【解答】解:A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.故选:C.10.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.11.(3分)用配方法解下列方程时,配方正确的是()A.方程x2﹣6x﹣5=0,可化为(x﹣3)2=4B.方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015C.方程a2+8a+9=0,可化为(a+4)2=25D.方程2x2﹣6x﹣7=0,可化为【解答】解:A、由原方程得到:方程x2﹣6x+32=5+32,可化为(x﹣3)2=14,故本选项错误;B、由原方程得到:方程y2﹣2y+12=2015+12,可化为(y﹣1)2=2016,故本选项错误;C、由原方程得到:方程a2+8a+42=﹣9+42,可化为(a+4)2=7,故本选项错误;D、由原方程得到:方程x2﹣3x+()2=+()2,可化为,故本选项正确;故选:D.12.(3分)如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F 为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③D.①②③④【解答】解:∵AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,∴DE=DF,且AD上任一点到AB、AC的距离相等;又AB=AC,根据三线合一的性质,可得AD垂直平分BC∴BD=CD,AD上任一点到B、C的距离相等.故选:D.13.(3分)如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2 B.3 C.4 D.4【解答】解:∵DE是AC的垂直的平分线,F是AB的中点,∴DF∥BC,∴∠C=90°,∴四边形BCDE是矩形.∵∠A=30°,∠C=90°,BC=2,∴AB=4,∴AC==2.∴BE=CD=.∴四边形BCDE的面积为:2×=2.故选:A.14.(3分)如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.【解答】解:连接BP,过C作CM⊥BD,=S△BPE+S△BPC∵S△BCE=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1且正方形对角线BD==,又BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:A.15.(3分)如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2017个小正三角形时,则最小正三角形的面积等于()A.B.()671 C.D.【解答】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第m次操作后,总的正三角形的个数为3m+1.则:2017=3m+1,解得:m=671,故若要得到2017个小正三角形,则需要操作的次数为672次,∵第一次操作后小正三角形面积为:×2×2sin60°=,第二次操作后小正三角形面积为:×1×sin60°=,第三次操作后小正三角形面积为:××sin60°=,∴第672次操作后最小正三角形的面积为:故选:B.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分解因式:a2﹣2a+1=(a﹣1)2.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.17.(3分)要使分式的值是0,则x的值是﹣2.【解答】解:依题意,得x2﹣4=0,且x﹣2≠0,解得x=﹣2.故答案是:﹣2.18.(3分)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=3.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根分别为x 1和x2,根据韦达定理,∴x1+x2=3,故答案为:3.19.(3分)如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE=50度.【解答】解:∵在▱ABCD中,∠B=80°,∴AD∥BC,AB=CD,∴∠ADE=∠CED,∵DE是∠ADC的角平分线,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD,∵BE=CE,∴AB=BE,∴∠AEB=∠BAE=50°,∴∠DAE=∠AEB=50°.故答案为:50.20.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解集为x<﹣1.【解答】能使函数y=k1x+b的图象在函数y=k2x的上边时的自变量的取值范围是x<﹣1.故关于x的不等式k1x+b>k2x的解集为:x<﹣1.故答案为:x<﹣1.21.(3分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴△BFE∽△CHE,∴====1,∴EF=EH=,CH=BF=1,=DH•FH=×(1+3)×2=4,∵S△DHF∴S=S△DHF=2,△DEF故答案为:2.三、解答题(共8小题,满分57分)22.(7分)完成下列各题(1)计算:+(2)解不等式组.【解答】解:(1)原式=﹣==1;(2),由①得,x<4,由②得,x≥2,故不等式组的解集为:2≤x<4.23.(3分)解分式方程:=.【解答】解:去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.24.(4分)如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试说明四边形AECF是平行四边形.【解答】证明:∵四边形ABCD为平行四边形,∴AD=CB,AD∥CB,∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,AE∥CF.在△AED和△CFB中,,∴△AED≌△CFB(AAS),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形.25.(8分)如图,是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图内阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么花园各角处的正方形观光休息亭的周长为多少米?【解答】解:设矩形花园各角处的正方形观光休息亭的边长为x米,根据题意得:(100﹣2x)(50﹣2x)=3600,解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的周长为20米.26.(8分)如图,在△ABC中.AB=AC.(l)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=15°.(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=20°.(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:∠EDC=∠BAD.(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,井说明理由.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∠ADC=90°.∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=15°.故答案为15°;(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∠ADC=90°.∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=∠ADC﹣∠ADE=20°.故答案为20°;(3)∠BAD=2∠EDC(或∠EDC=∠BAD).故答案为∠EDC=∠BAD;(4)仍成立,理由如下:∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C,又∵AB=AC,∴∠B=∠C,∴∠BAD=2∠EDC,∴∠EDC=∠BAD.27.(9分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【解答】解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).28.(9分)如图,在在平面直角坐标系中,四边形ABCD是梯形,AD∥BC,E 是BC的中点,BC=12,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,点P是BC边上一个动点,(1)当PB=1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(2)在(1)的条件下,点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.【解答】解:(1)∵AD∥BC,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,∴OC=9,D点的纵坐标为4,D点的横坐标为5,作DN⊥BC交于N,如图1所示:则四边形OADN为矩形,∴CN=OC﹣ON=OC﹣AD=9﹣5=4,DF=4,∴△DFC为等腰直角三角形,∴CD==4,若以点P、A、D、E为顶点的四边形为平行四边形,则AD=PE=5,有两种情况:①当P在E的左边,∵E是BC的中点,∴BE=6,∴BP=BE﹣PE=6﹣5=1;②当P在E的右边,BP=BE+PE=6+5=11;故当BP=1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(2)①当BP=1时,此时CN=DN=4,NE=6﹣4=2,∴DE===2≠AD,故不能构成菱形.②当BP′=11时,以点P′、A、D、E为顶点的四边形是平行四边形∴EP′=AD=5,过D作DN⊥BC于N,如图2所示:由(1)得:DN=CN=4,∴NP′=BP′﹣BN=BP′﹣(BC﹣CN)=11﹣(12﹣4)=3.∴DP′===5,∴EP′=DP′,故此时平行四边形P′DAE是菱形,即以点P、A、D、E为顶点的四边形能构成菱形.29.(9分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED 交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.【解答】(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF∴CD=CB,∠CDG=∠CBG=90°在Rt△CDG和Rt△CBG中∴△CDG≌△CBG(HL),(2)解:∵△CDG≌△CBG∴∠DCG=∠BCG,DG=BG在Rt△CHO和Rt△CHD中∴△CHO≌△CHD(HL)∴∠OCH=∠DCH,OH=DH∴HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形如图,连接BD、DA、AE、EB因为四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.因为DG=BG,所以此时同时满足DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形.所以当G点为AB中点时,四边形AEBD为矩形.∵四边形DAEB为矩形∴AG=EG=BG=DG∵AB=6∴AG=BG=3设H点的坐标为(x,0)则HO=x∵OH=DH,BG=DG∴HD=x,DG=3在Rt△HGA中∵HG=x+3,GA=3,HA=6﹣x∴(x+3)2=32+(6﹣x)2∴x=2∴H点的坐标为(2,0).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。