经典非参数假设检验的方法全共96页
- 格式:ppt
- 大小:17.19 MB
- 文档页数:96
⾮参数检验⽅法⾮参数检验的推断⽅法不涉及样本所属总体的分布形式,也不会使⽤均值、⽅差等统计量,⾮参数检验是通过研究样本数据的顺序和分布的性质来构成理论基础,下⾯介绍⼀些⾮参数检验经常使⽤的样本数据信息:1.顺序:将样本数据按照升序排列,可以得到X1≤X2≤X3≤Xi....≤Xn,其中Xi为第i个顺序量。
2.秩将样本数据按照升序排列,可以得到X1≤X2≤X3≤Xi....≤Xn,Ri为Xi在这⼀列数据中的位置,称为秩,R1,R2,R3...Rn为样本数据的秩统计量3.结如果样本数据中存在相同的值,那么在排序时就会出现秩相同的情况,这样的情况称为结,结的取值是对应的秩的均值。
注意是秩的均值⽽不是数据本⾝的均值。
⾮参数检验的统计理论都是根据上述概念计算⽽来,此外,和参数检验⼀样,当我们得到分析数据的时候,最先做的⼯作还是先通过图表和⼀些描述性统计量对数据整体进⾏探索性分析,掌握数据⼤致分布情况、有⽆极端值等,为后续正确选择分析⽅法打下基础。
================================================ ====⾮参数检验主要应⽤在以下场合:1.不满⾜参数检验的条件,且⽆适当的变换⽅法进⾏变换2.分布类型⽆法获知的⼩样本数据3.⼀端或两端存在不确定值,如>10004.有序分类变量求各等级之间的强度差别更进⼀步来讲,⾮参数检验可以做以下分析:⼀、单样本总体分布检验⼆、两独⽴样本差异性检验三、两配对样本差异性检验四、多个独⽴样本差异性检验五、多个相关样本差异性检验可以看出,以上应⽤除了第⼀点之外,其他都有对应的参数检验⽅法,这就要根据样本数据的实际情况来进⾏选择了:适合使⽤参数检验的优先使⽤参数检验,否则使⽤⾮参数检验。
================================================ =下⾯我们分别介绍⼀下上述应⽤对应的⾮参数检验⽅法⼀、单样本总体分布检验单样本总体分布检验主要⽤来检验某样本所在总体分布和某⼀理论分布是否存在显著差异,主要涉及的⾮参数检验⽅法有:1.卡⽅检验卡⽅检验可以检验样本数据是否符合某⼀期望分布或理论分布,这在卡⽅检验中有所介绍,在此不再多说2.⼆项分布检验⼆项分布检验主要⽤来检验样本数据是否符合某个指定的⼆项分布,该检验只适合⼆分类变量样本。
非参数假设检验方法
非参数假设检验方法,那可真是个超棒的统计利器!咱先说说它的步骤吧。
嘿,你想想看,就像搭积木一样,第一步得先明确问题,确定咱要检验啥。
然后收集数据,这数据就像是建筑材料,得好好收集。
接着计算检验统计量,这就如同给积木搭出形状。
最后根据统计量判断是否拒绝原假设。
这步骤简单易懂吧?
注意事项也不少呢!数据得有代表性,不然就像盖房子用了劣质材料,那可不行。
样本量也不能太小,不然就像小娃娃搭的积木城堡,风一吹就倒啦。
说到安全性和稳定性,那可是杠杠的!它不像有些方法那么娇气,对数据的分布要求不高。
就好比一辆越野车,能在各种路况下行驶,不用担心路况不好就抛锚。
应用场景那可多了去啦!当数据不满足参数检验的条件时,非参数假设检验方法就大显身手啦。
比如研究不同年龄段的人对某种产品的喜好,数据可能乱七八糟的,这时候非参数检验就像救星一样。
它的优势也很明显啊,操作简单,容易理解,不需要太多高深的数学知识。
就像玩游戏,不需要看厚厚的说明书就能上手。
给你举个实际案例吧。
有个公司想知道新推出的广告有没有效果,就用了非参数假设检验方法。
结果发现广告确实提高了产品的知名度。
这效果,哇塞,杠杠的!
非参数假设检验方法就是这么牛!它简单易用,安全稳定,应用场景广泛,优势明显。
赶紧用起来吧!。
统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。
在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。
非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。
本文将介绍一些常见的非参数检验方法。
一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。
它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。
然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。
二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。
三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。
它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。
它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。
§4.3 非参数假设检验方法前面介绍的各种统计假设的检验方法,几乎都假定了总体服从正态分布,然后再由样本对分布参数进行检验。
但在实际问题中,有时不能预知总体服从什么分布,从而就需要根据样本来检验关于总体分布的各种假设,这就是分布的假设检验问题,也称为非参数假设检验。
本节主要介绍2χ拟合优度检验,柯尔莫哥洛夫—斯米尔诺夫(Kolmogrov-Smirnov )检验和独立性检验。
一、2χ拟合优度检验1. 多项分布的2χ检验法设总体X 是仅取m 个可能值的离散型随机变量,不失一般性,设X 的可能值是1,2,,,m " 且(),1,2,,i P X i p i m ===" 且1 1.mi i p ==∑设12(,,)T n X X X "是从总体X 中抽得的简单随机样本,12(,,)T n x x x "是样本观察值。
用i N 表示样本12(,,)T n X X X "中取值为i 的个数,即样本中出现事件{}X i =的频数,则i N 是样本的函数,所以12(,,,)T m N N N "是随机向量,且有1.mi i N n ==∑可证明12(,,,)T m N N N "服从多项分布,其概率分布为1211221212!(,,,),,!!!m n n n m m m m n P N n N n N n p p p n n n ===="""(4.21)需要检验假设0010::(1,2,,),i i i i H p p H p p i m =↔≠=" 其中0i p 是已知数。
检验的统计量?我们知道,频数是概率的反映。
如果总体的概率分布的确是10200(,,,)m p p p ",那么当观察个数n 愈来愈大时,频率i N n 与0i p 之间的差异将越来越小,因此频率i Nn与0i p 之间的差异程度可以反映出10200(,,,)m p p p "是不是总体的真分布。