鸡西市新课标人教版七年级下期末数学试卷含试卷分析详解
- 格式:doc
- 大小:272.00 KB
- 文档页数:21
人教版七年级数学下册期末考试试卷分析七年级数学下册期末考试试卷分析本次考试的成绩令我感到不满意。
只有少数学生发挥了正常水平,半数学生通过强化复有所进步,但中间段学生的成绩有待加强。
下面,我对考试中出现的具体情况作如下分析:一、试卷分析本次考试的命题范围完全根据新课改的要求,考察了教学重点和难点。
试卷难度适中,有一定梯度。
二、学生答题情况及存在问题1、有些学生凭简单的记忆,忽略细节,粗心大意,不认真审题,造成失误。
平时缺乏良好的研究惯。
2、基础知识不扎实,主要表现在:1)选择题错误主要集中在题6、题7、题8、题9上,主要原因是知识点掌握不到位,如思考不够全面,或计算不过关。
2)填空题错误主要集中在题14、题20、题21、题24上。
题21准确率较低的原因是学生对于单项式的系数的理解不透,20题错误主要是因为代入不清楚,题24学生做不好的主要是由于这题题目需要用到分情况讨论,有些同学就自动放弃了,另外一个原因是无法解读题意。
题30、34题意较新颖,学生必须理解才能解决好。
因此,我们应该以课本为主,抓好“三基”教学的同时,加强数学思维能力的培养,实行探究性研究,激发学生思考,培养学生的创新意识和创新能力。
三、教学反思及改进优化课堂教学过程,加强对概念和基础知识的教学,备课细致,切实提高课堂效率。
2、现在学生的数学研究水平存在明显的两极分化,对于那些研究有困难的同学,我们应该及时给予关注和帮助,鼓励他们积极参与数学研究活动,尝试用自己的方式解决问题,发表自己的看法。
同时,我们也要及时肯定他们的进步,引导他们分析错误的原因,并鼓励他们自己去改正,以增强他们研究数学的兴趣和信心。
对于学有余力并对数学有浓厚兴趣的学生,我们要提供足够的材料,指导他们阅读,发展他们的数学才能。
同时,加强师生交流,做好培优、扶中、补差工作。
3、我们要指导学生认真审题,具体问题具体分析,尽量让学生独立去揭示结论的产生与形成过程,不要急于抛出结论,要给学生一定的思维空间和时间。
人教版七年级数学下册期末试卷及解析一、选择题(每小题3分,共30分)1.(3分)在1、、、、0.313113111中,无理数共有()A.2个B.3个C.4个D.5个2.(3分)的值是()A.4B.±4C.8D.±83.(3分)在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)点P在第二象限,且到x轴的距离为2,到y轴的距离为3.点P坐标是()A.(﹣2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,2)5.(3分)下列四种调查适合做抽样调查的个数是()①调查某批汽车抗撞击能力;②调查某池塘中现有鱼的数量;③调查春节联欢晚会的收视率;④某校运动队中选出短跑最快的学生参加全市比赛.A.1个B.2个C.3个D.4个6.(3分)如图,直线c截两平行直线a、b,则下列式子中不一定成立的是()A.∠1=∠5B.∠1=∠4C.∠2=∠3D.∠1=∠27.(3分)如图,直线AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的大小为()A.35°B.40°C.50°D.65°8.(3分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?设有x只鸡、y只兔,则可用二元一次方程组表示题中的数量关系为()A.B.C.D.9.(3分)若不等式组无解,则k的取值范围是()A.k≤8B.k<8C.k>8D.k≤410.(3分)若关于x的不等式组有两个整数解,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣8<a≤﹣6D.﹣8≤a<﹣6三、填空题(每小题3分,共18分)11.(3分)若=2,则x的值为.12.(3分)在对45个数据进行整理的频数分布表中,各组的频数之和等于.13.(3分)已知在平面直角坐标系中,线段AB=4,AB∥x轴,若点A坐标为(﹣3,2),则点B坐标为.14.(3分)某水果店花费760元购进一种水果40千克,在运输与销售过程中,有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.15.(3分)直线AB与CD交于O,OE⊥CD,OF⊥AB,∠DOF=55°,则∠BOE的度数为.16.(3分)若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为.三、解答题(共8小题,共72分)17.解方程组:.18.解不等式组19.某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.20.如图,在直角坐标系中,△ABC的顶点都在网格点上,其中C点的坐标为(1,2).(1)直接写出点A的坐标为;(2)求△ABC的面积;(3)将△ABC向左平移1个单位,再向上平移2个单位,画出平移后的△A1B1C1,并写出△A1B1C1三个顶点的坐标.21.如图,已知AB∥CD,EF与AB,CD相交于点M,N,∠BMR=∠CNP,试说明MR ∥NP的理由.22.某文具店购进A、B两种文具进行销售.若每个A种文具的进价比每个B种文具的进价少2元,且用900元正好可以购进50个A种文具和50个B种文具,(1)求每个A种文具和B种文具的进价分别为多少元?(2)若该文具店购进A种文具的数量比购进B种文具的数量的3倍还少5个,购进两种文具的总数量不超过95个,每个A种文具的销售价格为12元,每个B种文具的销售价格为15元,则将购进的A、B两种文具全部售出后,可使总利润超过371元,通过计算求出该文具店购进A、B两种文具有哪几种方案?23.如图,已知AB∥CD.(1)如图1,求证:∠B+∠E=∠D;(2)F为AB,CD之间的一点,∠E=30°,∠EFD=140°,DG平分∠CDF交AB于点G,①如图2,若DG∥BE,求∠B的度数;②如图3,若DG与∠EFD的平分线交于点H,∠B=3∠H,直接写出∠CDF的度数.24.如图,C为x轴正半轴上一动点,A(0,a),B(b,0),且a、b满足,AB=10.(1)求△ABO的面积;(2)若∠ACB=60°,G、N为线段BC上的动点,作GF∥AB交AC于F,FP平分∠GFC,FN平分∠AFP交x轴于N,记∠FNB=α,求∠BAC(用α表示);(3)若P(3,6),PC⊥x轴于C,点M从P点出发,在射线P A上运动,同时另一动点N从点B向A点运动,到A停止运动,M、N的速度分别为2个单位/秒、3个单位/秒,当时,求运动的时间.参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据无理数的概念进行逐个分析.【解答】解:,∴1、、0.313113111是有理数,无理数有:、共2个.故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】根据平方根的性质即可求出答案.【解答】解:原式=4,故选:A.【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣5,2)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为﹣3,纵坐标为2,∴点P的坐标为(﹣3,2).故选:C.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.5.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①调查某批汽车抗撞击能力,适合抽样调查;②调查某池塘中现有鱼的数量,适合抽样调查;③调查春节联欢晚会的收视率,适合抽样调查;④某校运动队中选出短跑最快的学生参加全市比赛,适合普查;综上可得①②③适合抽样调查,共3个.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】依据a∥b,即可得到∠1=∠5,∠1=∠4,∠2=∠3,而∠1与∠2不一定相等.【解答】解:∵a∥b,∴∠1=∠5,∠1=∠4,∠2=∠3,而∠1与∠2不一定相等,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.7.【分析】由平行线的性质得到∠ABC=∠1=67°,由BC平分∠ABD,得到∠ABD=2∠ABC,再由平行线的性质求出∠2的度数.【解答】解:∵直线AB∥CD,若∠1=65°,∴∠1=∠ABC=∠DCB=65°,∠2=∠CDB,∵BC平分∠ABD,∴∠ABC=∠CBD,∴在三角形BCD中∠CBD+∠CDB+∠BCD=180°,∴∠CDB=180°﹣∠1﹣∠CBD=180°﹣65°﹣65°=50°,∴∠2=50°,故选:C.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.8.【分析】根据等量关系:上有三十五头,下有九十四足,即可列出方程组.【解答】解:由题意得,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:.故选:D.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.9.【分析】根据已知不等式组无解即可得出选项.【解答】解:由5x+1≤3x﹣5,得:x≤﹣3,由5﹣x<k,得:x>5﹣k,∵不等式组无解,∴5﹣k≥﹣3,解得:k≤8,故选:A.【点评】本题考查了解一元一次不等式组,能根据已知得出k的范围是解此题的关键.10.【分析】先求出不等式组的解集,根据已知得出关于a的不等式组,求出不等式组的解集即可.【解答】解:∵解不等式①得:x<,解不等式②得:x≥﹣5,∴不等式组的解集是﹣5≤x,∵关于x的不等式组有两个整数解,∴﹣4<≤﹣3,解得:﹣8<a≤﹣6,故选:C.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a的不等式组是解此题的关键.三、填空题(每小题3分,共18分)11.【分析】原式利用算术平方根的定义化简即可求出x的值.【解答】解:∵=2,∴x+1=4,即x=3.故答案为:3【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.【分析】根据各小组频数之和等于数据总和可求得结果.【解答】解:∵共45个数距,∴根据频数之和等于数据总数,可得频数之和为45.故答案为:45【点评】本题是对频率与频数灵活运用的综合考查,各小组频数之和等于数据总和,而各小组频率之和为1.13.【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(1,2),当B点在A点右边时,B(﹣7,2).故答案为:(1,2)或(﹣7,2).【点评】本题考查了平行于x轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.14.【分析】设水果店把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设售价应定为x元/千克,根据题意得:x(1﹣5%)≥,解得x≥20.故为避免亏本,售价至少应定为20元/千克.故答案为:20.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.15.【分析】根据题意,分两种情况:(1)∠BOE是锐角时;(2)∠BOE是钝角时;然后根据垂线的性质,分类讨论,求出∠BOE的度数是多少即可.【解答】解:(1)如图1,∵直线OE⊥CD,∴∠EOD=90°,∵∠DOF=55°,∴∠EOF=90°﹣55°=35°,又∵直线OF⊥AB,∴∠BOF=90°,∴∠BOE=90°﹣35°=55°.(2)如图2,∵直线OE⊥CD,∴∠EOD=90°,∵∠DOF=55°,∴∠EOF=90°﹣55°=35°,又∵直线OF⊥AB,∴∠BOF=90°,∴∠BOE=90°+35°=125°.综上,可得∠BOE的度数是55°或125°.故答案为:55°或125°.【点评】(1)此题主要考查了垂线的性质和应用,要熟练掌握,解答此题的关键是要明确:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)此题还考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②补角互补,即和为180°.16.【分析】先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【解答】解:,解①得:x≤4k﹣1,解②得:x≥5k+2,∴不等式组的解集为:5k+2≤x≤4k﹣1,5k+2≤4k﹣1,k≤﹣3,解关于x的方程kx=2(x﹣2)﹣(3x+2)得,x=﹣,因为关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,当k=﹣3时,x=3,当k=﹣4时,x=2,当k=﹣7时,x=1,∴﹣7﹣4﹣3=﹣14;故答案为﹣14.【点评】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.三、解答题(共8小题,共72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:①﹣②得:4y=20,即y=5,把y=5代入①得:x=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.【解答】解:解①得x≥﹣1;解②得x<3;所以,原不等式的解集为﹣1≤x<3.【点评】此题考查了不等式组的解法,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)用“诚信”的人数除以所占的百分比求出总人数;(2)用总人数减去“爱国”“敬业”“诚信”“的人数,求出“友善”的人数,从而补全统计图;(3)选择“爱国”主题所对应的百分比为20÷50=40%,即可得到选择“爱国”主题所对应的圆心角;(4)用样本估计总体的思想解决问题即可.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.【点评】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【分析】(1)直接利用平面直角坐标系得出A点坐标;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出对应点位置进而得出答案.【解答】解:(1)点A的坐标为(2,﹣1);故答案为:(2,﹣1);(2)△ABC的面积为:3×4﹣×1×3﹣×2×4﹣×1×3=5;(3)如图所示:△A1B1C1,即为所求;A1(1,1)、B1(3,5)、C1(0,4).【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.【分析】根据平行线的性质得出∠BMF=∠CNE,求出∠RMN=∠PNM,根据平行线的判定得出即可.【解答】解:理由是:∵AB∥CD,∴∠BMF=∠CNE,∵∠BMR=∠CNP,∴∠BMF+∠BMR=∠CNE+∠CNP,即∠RMN=∠PNM,∴MR∥NP.【点评】本题考查了平行线的性质和判定定理,能求出∠RMN=∠PNM是解此题的关键.22.【分析】(1)设每个A种文具的进价为x元,每个B种文具的进价为y元,根据“每个A种文具的进价比每个B种文具的进价少2元,且用900元正好可以购进50个A种文具和50个B种文具”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进B种文具m个,则购进A种文具(3m﹣5)个,根据购进两种文具的总数量不超过95个且全部销售后获得的总利润超过371元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各进货方案.【解答】解:(1)设每个A种文具的进价为x元,每个B种文具的进价为y元,依题意,得:,解得:.答:每个A种文具的进价为8元,每个B种文具的进价为10元.(2)设购进B种文具m个,则购进A种文具(3m﹣5)个,依题意,得:,解得:23<m≤25.∵m为整数,∴m=24或25,3m﹣5=67或70,∴该文具店有两种进货方案:①购进A种文具67个,B种文具24个;②购进A种文具70个,B种文具25个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.【分析】(1)如图1,作EF∥AB.利用平行线的性质即可证明.(2)①如图2,作FH∥BE.利用平行线的性质以及角平分线的定义解决问题即可.②如图3中,设∠H=y,∠CDH=∠FDH=x,则∠B=3y.构建方程组即可解决问题.【解答】(1)证明:如图1,作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠B=∠BEF,∠D=∠DEF∵∠DEF=∠BED+∠BEF,∴∠B+∠BED=∠D(2)解:①如图2,作FH∥BE.∵BE∥DG,∴BE∥FH∥DG,∴∠E=∠EFH=30°∵∠DFE=140°,∴∠HFD=110°,∴∠GDF=180°﹣∠HFD=70°∵DG平分∠CDF,∴∠CDG=∠GDF=70°∵AB∥CD,∴∠BGD=∠CDG=70°∵BE∥DG,∴∠B=∠BGD=70°②如图3中,设∠H=y,∠CDH=∠FDH=x,则∠B=3y.则有,解得∴∠CDF=2x=160°.【点评】本题考查平行线的性质,角平分线的定义,三角形内角和定理三角形的外角的性质等知识,解题的关键是学会添加常用辅助线构造平行线解决问题,学会利用参数构建方程组解决问题.24.【分析】(1)根据非负数的性质分别求出a、b,根据三角形的面积公式求出△ABO的面积;(2)设∠PFC=x、∠AFN=y,根据角平分线的定义、三角形的外角性质列出二元一次方程组,解方程组求出x、y,根据平行线的性质解答即可;(3)过O作OG⊥AB于G,根据三角形的面积公式求出OG,根据题意得到BN=3t,AM=|3﹣2t|,根据三角形的面积公式列式计算即可.【解答】解:(1)∵+|b+8|=0,∴a﹣6=0,b+8=0,解得,a=6,b=﹣8,∴OA=6、OB=8,则S△AOB=×OA×OB=×6×8=24;(2)设∠PFC=x、∠AFN=y,∵FP平分∠GFC,FN平分∠AFP,∴∠AFN=∠PFN=y,∠CFP=∠GFP=x,∠AFP=2y,∠GFC=2x,∠AFP+∠GFC=180°+∠GFP、∠FNB=∠NFP+∠PFC+∠ACB,则,解得:,则∠GFC=2x=4α﹣600°,∵GF∥AB,∴∠BAC=∠GFC=4α﹣600°;(3)过O作OG⊥AB于G,×OA×OB=×AB×OG,即×6×8=×10×OG,解得,OG=,设运动时间为t秒,则PM=2t,BN=3t,∴AM=|3﹣2t|,∴S△MAC=×|3﹣2t|×6=|9﹣6t|,S△BON=×3t×=t,由题意得,|9﹣6t|=t×,解得,t1=,t2=.【点评】本题考查的是三角形的面积计算、三角形的外角性质、角平分线的定义,掌握三角形的面积公式、坐标与图形性质、灵活运用分情况讨论思想是解题的关键.一、七年级数学易错题1.关于x,y 的方程组2318517ax yx by+=⎧⎨-+=⎩(其中a,b是常数)的解为34xy=⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩ B .71x y =⎧⎨=-⎩ C . 3.50.5x y =⎧⎨=-⎩ D . 3.50.5x y =⎧⎨=⎩ 【答案】C【解析】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩. 故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.2.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )A .10B .9C .8D .7【答案】B【解析】【分析】根据15名工人前期的工作量+12名工人后期的工作量<2160,列出不等式进行解答即可.【详解】设原计划m 天完成,开工x 天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x)<2160,即:ax+4am+8m-8x<720,∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144,∴ax+8m-8x<am ,∴8(m-x)<a(m-x),∵m>x ,∴m-x>0,∴a>8,∴a 至少为9,故选B.【点睛】本题考查了一元一次不等式的应用,有一定的难度,解题的关键在于灵活掌握设而不求的解题技巧.3.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( ) A .2:1:3B .3:2:1C .1:2:3D .3:1:2 【答案】C【解析】【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值.【详解】∵4520430x y z x y z -+=⎧⎨+-=⎩①② ∴由①×3+②×2,得2x y =由①×4+②×5,得3x z =∴:::2:31:2:3x y z x x x ==故选:C .【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.4.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故选D.【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a,求出点P到点A的最大距离即可解决问题,属于中考常考题型.5.若于x的不等式组3428512x xx ax+≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,且关于y的分式方程3111y a y y---=--有非负整数解,则满足条件的所有整数a 的和为( ) A .12 B .14C .18D .24【答案】B 【解析】 【分析】根据已知x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩可解出x 的取值范围,且仅有5个整数解,可确定x可能取的值,即可求得a 的取值范围,再根据关于y 的分式方程3111y a y y---=--有非负整数解,可确定a 的取值范围,综合所有a 的取值范围得出a 最终可取的值,求和得答案. 【详解】解x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩得3284x x -≤-4x ≤2(5)2x a x -+<x >27a- ∵x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,即0、1、2、3、4∴2107a--≤< 29a <≤y 的分式方程3111y a y y---=-- 3)1y a y --=-(31y a y -+=- 22y a =-22a y -=已知关于y 的分式方程3111y a y y---=--有非负整数解 而212a y -=≠ ∴202a -≥且212a -≠ 所以2a ≥且4a ≠又∵ 22a y -=有非负整数解∴a 为偶数综上所述,满足条件的所有整数a 为6、8,它们的和为14 故选:B 【点睛】本题主要考点:不等式组和分式方程的求解,根据已知条件,再通过求解不等式组和分式方程确定a 的取值范围,分式方程中分母不能为0,可作为已知条件,综合所有a 的取值范围,确定最终a 的值6.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )A .70°B .45°C .110°D .135°【答案】C 【解析】 【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a ∥b ,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C.【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.7.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动一个单位,那么第2018秒时,点所在位置的坐标是( ).A.(6,44) B.(38,44) C.(44,38) D.(44,6)【答案】D【解析】【分析】根据质点移动的各点坐标和时间的关系,找出规律即可解答.【详解】根据题意可得点在(1,1)用了2秒,到点(2,2)处用了6秒,到点(3,3)处用了12秒,则在(n,n )用了n(n+1)秒,所以在第1980秒是移动到点(44,44),再根据坐标为奇数时逆时针,偶数时时顺时钟,所以可得1980秒时是顺时钟,2018-1980=38,故44-38=6,所以可得2018秒时,移动到点(44,6),故选D. 【点睛】本题主要考查点的坐标的变化规律,得出运动变化的规律,进而得到1980秒时点的坐标.8.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)【答案】D 【解析】 【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标. 【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2). 【点睛】本题考察点的坐标的变换及平移.9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.10.如图,直线m ⊥n .在平面直角坐标系xOy 中,x 轴∥m ,y 轴∥n .如果以O 1为原点,点A 的坐标为(1,1).将点O 1平移22个单位长度到点O 2,点A 的位置不变,如果以O 2为原点,那么点A 的坐标可能是( )A .(3,﹣1)B .(1,﹣3)C .(﹣2,﹣1)D .(2+1,2+1)【答案】A 【解析】 【分析】根据题意画出图形,利用平移的特征结合图形即可求解. 【详解】如图,由题意,可得O 1M=O 1N=1. ∵将点O 1平移22个单位长度到点O 2, ∴O 1O 2=22,O 1P=O 2P=2, ∴PM=3,∴点A 的坐标是(3,﹣1), 故选A .【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.利用数形结合是解题的关键.11.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<【答案】B 【解析】 【分析】符号[]a 表示不大于a 的最大整数,即[]a 为小于等于a 的最大整数. 【详解】因为[]a 为小于等于a 的最大整数,所以[][]1a a a <+≤, 若[]a =-6,则a 的取值范围是65a -≤-<, 故选B . 【点睛】本题考查了对不等关系的理解,解题的关键是理解符号[]a 的本质是小于或等于a 的最大整数.12.如图所示,A1(1,3),A2(32,32),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(2020,32)C.(2016,0)D.(1010,32)【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,故选:A.【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.13.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为A.30°B.35°C.36°D.45°【答案】C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F,∵BF平分∠ABE∴∠ABE=2∠ABF=4∠F,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36° 故答案选C. 【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.14.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B .15.若不等式组x a x b ≥⎧⎨≤⎩无解,则不等式组33x a x b>-⎧⎨<-⎩的解集是( )A .3x a >-B .3x b <-C .33a x b -<<-D .无解【答案】C 【解析】 【分析】根据不等式组x a x b ≥⎧⎨≤⎩无解,得出a >b ,进一步得出3-a <3-b ,即可求出不等式组33x ax b>-⎧⎨<-⎩的解集. 【详解】 解:∵不等式组x ax b≥⎧⎨≤⎩无解,∴a>b,∴-a<-b,∴3-a<3-b,∴不等式组33x ax b>-⎧⎨<-⎩的解集是33a x b-<<-.故选:C【点睛】本题考查了求不等式组的方法,可以借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求解集.解题的关键是根据已知得到a>b,进而得出3-a<3-b.16.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)【答案】D【解析】【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)。
新人教版七年级下期末数学试卷含答案解析一、选择题1. 3/5 can be written as ___.A. 0.3B. 0.6C. 1.6D. 1.3解析:选择B。
将分数3/5转换为小数形式,即3除以5,结果为0.6。
2. 7 + (-3) is equal to ___.A. 10B. 4C. -4D. -10解析:选择B。
加法中,正数加上负数相当于减去正数的绝对值,即7 + (-3) = 7 - 3 = 4。
3. Simplify: (8x^2)(-2x).A. -16x^3B. -16x^2C. -16xD. -16解析:选择B。
将表达式展开计算,得到-16x^3。
4. What is the perimeter of a rectangle with length 4cm and width 6cm?A. 10cmB. 16cmC. 20cmD. 24cm解析:选择B。
矩形的周长为2倍长度加2倍宽度,即2 × 4cm + 2 × 6cm = 16cm。
5. Solve for x: 2x + 5 = 15.A. x = 5B. x = 6C. x = 7D. x = 8解析:选择C。
将等式中的5移到右边,得到2x = 15 - 5,即2x = 10。
再将2除到x的前面,得到x = 10 ÷ 2 = 5。
二、填空题1. The HCF of 8 and 12 is ___.解析:填写4。
8和12的最大公约数为4。
2. The number of faces of a cube is ___.解析:填写6。
一个立方体有6个面。
3. If a = 2 and b = 3, then 2a + 3b is equal to ___.解析:填写13。
将对应的数值代入表达式,得到2 × 2 + 3 × 3 = 4 + 9 = 13。
4. The product of 9 and 7 is ___.解析:填写63。
人教版七年级数学下试卷分析(★)第一篇:人教版七年级数学下试卷分析玲中16-17学年度七年级上学期数学期末成绩分析一、试题及成绩分析从试卷卷面情况来看,考查的知识面较广,类型比较多样灵活,同时紧扣课本、贴近生活。
既考查了学生对基础知识把握的程度,又考查了学生的实际应用、计算、思维以及解决问题的能力,不仅顾及了各个层次学生的水平,又有所侧重。
这份试题尤其注重对基础知识的检测,以及学生综合运用知识的能力。
总的来讲,该份试题比较浅显,学生对所考的知识点都基本掌握。
本次期末考试七年级参评人数为193人,平均分为53.09,优秀率为13.47%,及格率为47.67%,成绩分析如下:第一题:选择题共10个小题,其中8、9、10三道题错误率较高,反应出学生对方程和平面几何知识掌握不牢,其他的题目完成的很好。
第二题:填空题共8个小题,该题13小题第二空,14、17、18题错误率较高,这反映学生的计算能力还有待提高,仍反映出学生对列方程存在一定问题。
找规律大多数学生理解不了题意,找不到规律,说明平时教学中对数学观察、理解、分析、建立思维方法培养训练意识仍有缺失。
第三题:解答题19题步骤过于随意;21题作图中射线、直线不分,交点未标出;22题未指出所求并且大部分学生缺少作图痕迹;23题将方程列反;24题所列方程有错。
二、失分原因分析结合本校学生的成绩,失分原因主要为:1、学生灵活运用数学知识解决问题方面还不够,对精确度、角度的计算、尺规作图等知识点理解不牢,从而导致失分。
2、学生不能透彻地理解数量关系,从而导致在列方程解决实际问题时,常常列错方程。
三、教学改进措施在今后的教学中要将培养学生对数学的学习兴趣放在首位,并督促对知识的复习和巩固!要特别注意知识的迁移,教给学生分析题目的方法,让他们懂得变通,将所学的知识灵活运用进行解题,培养他们的分析、推理、逻辑能力。
平时练习的设计多训练发散学生的思维。
此外加强对后进生的辅导,使全班的学生得到均衡发展。
人教版七年级下学期期末数学测试卷及解析一、选择题(本大题有12个小题,每小题3分,共36分;在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡上相应的位置)1.(3分)下列四个图案中,运用了图形的平移进行图案设计的是()A.B.C.D.2.(3分)下列调查中,不能用抽样调查的是()A.了解七年级同学对青春偶像剧的喜欢程度B.机场对每位乘客的安全检查C.了解某校同学对“小组合作学习”的看法D.检测德芙巧克力块的甜度3.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.4.(3分)若a<b,则下列不等式一定成立的是()A.a﹣b>0B.a﹣1>b﹣1C.2a>2b D.5.(3分)“红牛”饮料是由水、白砂糖、香精、赖氨酸等多种物质混合而成,下列四个统计图中,最能直观表示这种饮料各成分含量百分比的是()A.直方图B.条形图C.折线图D.扇形图6.(3分)如图,∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角7.(3分)下列四个实数中的无理数是()A.0.3B.C.﹣2π的绝对值D.2的相反数8.(3分)下列说法不是真命题的是()A.和为直角的两个角互为余角B.相交于同一直线的两条直线也相交C.和为平角的两个角互为补角D.平行于同一条直线的两条直线平行9.(3分)一个不等式组中的两个不等式的解集如图所示,这个不等式组的解集是()A.﹣2≤x<1B.x≤2C.﹣2<x≤1D.x≥110.(3分)学校阅览室有4条腿的椅子和3条腿的凳子共16个,如果椅子腿和凳子腿数加起来共有60个,那么椅子和凳子的个数分别是()A.8,8B.10,6C.12,4D.不能确定11.(3分)如图,台湾一艘渔轮在公海遇险停泊在A处,船长向相距30nmile位于B处的我国的一艘巡洋舰报警求助,舰长当即决定前往救援,这艘渔轮相对于巡洋舰的位置可以用方向和距离表示为()A.北偏东47°,30nmile B.北偏东43°,15nmileC.南偏西53°,15nmile D.南偏西47°,30nmile12.(3分)把10块相同的长方形拼接成如下一个大长方形(尺寸如图所示),这个大长方形的面积等于()A.4320cm2B.4200cm2C.4080cm2D.3900cm2二、填空题(本大题有4个小题,每小题3分,共12分)13.(3分)一个容量为80的样本最大值是133,最小值是50,取组距为10,这个样本可以分成组.14.(3分)如果点P(3﹣a,a)在第二象限,那么a的取值范围是.15.(3分)若|m+n﹣6|+(n﹣2)2=0,则=.16.(3分)如图,利用平行线的判定或性质定理,用“如果.…,那么.…”的形式,任意写出一个正确命题,这个命题可以是.三、解答题(本大题共3个小题,每小题6分,共18分)17.(6分)计算:18.(6分)完成下面的证明(在答题卡的相应位置写出对应的结论或理由).如图,AB∥CE,∠A=∠E.求证:AD∥BE.证明:∵AB∥CE,∴∠A=∠ADC(),又∵∠A=∠E,∴(等量代换),∴AD∥BE().19.(6分)解不等式之,把它的解集表示在数轴上.四、解答题(本大题共2个小题,每小题7分,共14分)20.(7分)如图是一条直线AB.(1)在直线AB的上方找一点C,过点C作直线AB的垂线CD,垂足为D,CD=2cm;(2)过线段CD的中点E作直线AB的平行线EF,则直线AB与直线EF的距离为cm;(3)过点D作∠EDB的平分线DG交直线EF于点G,则∠DGF=.21.(7分)如图小方格单位长度为1,四边形ABCD是正方形.(1)建立恰当的平面直角坐标系,写出点B、C的坐标;(2)点A、B、C、D分别向左、向上平移2个单位长度,得到四个新的点A′,B′,C′,D′,写出C′的坐标;(3)同学们在下学期,会学习到“形状、大小相同的图形放在一起能完全重合,这样的两个图形叫做全等形”.依次连接点A′,B′,C′,D′形成的图形与原来的正方形ABCD 是全等形吗?请说明理由.五、解答题(本大题共2个小题,第1小题9分,第2小题11分,共20分)22.(9分)江阳区民政局为贯彻“精准扶贫”精神,第1小组负责了解某拆迁小区440户居民的家庭收入情况.工作人员随机调查了其中40户居民家庭的收入(收入取整数,单位:元),组员小明绘制了如下的频数分布表和频数分布直方图.分组频数百分比1800﹣239920.052400﹣2999a0.103000﹣3599160.403600﹣4199120.304200﹣4799b c4800﹣340020.05合计40 1.00请根据以上信息,解答下列问题:(1)计算a、b、c的值,补全这个频数分布直方图;(2)小明选择的组距是多少?这个组距合适吗?请判断并说明理由;(3)若规定家庭收入“不足2400元”的是需要“精准扶贫”的家庭、“大于2400元不足3000元”的是只需要慰问的家庭,请通过样本估计该小区需要民政局派人看望的家庭大约有多少户.23.(11分)我校为响应“全民阅读”的号召,计划购入A、B两种规格的书柜用于放置所购图书.经市场调查发现,若购买A种书柜3个、B种书柜2个,共需资金1020元;若购买A种书柜5个、B种书柜3个,共需资金1620元.(1)A、B两种规格的书柜,每个的价格分别是多少?(2)若该校计划购买这两种规格的书柜共20个,其中B种书柜的个数不少于A种书柜的个数,学校至多有4320元的资金,请设计几种购买方案供学校选择.参考答案与试题解析一、选择题(本大题有12个小题,每小题3分,共36分;在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡上相应的位置)1.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是A.【解答】解:A、图案形状与大小没有改变,符合平移性质,故正确;B、图案属于相似所得到,故错误;C、图案属于轴对称变换所得到,故错误;D、图案属于轴对称变换和平移所得到,故错误.故选:A.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.2.【分析】在个体数量较多,全面调查难度较大且对结果要求不太精确的情况下,使用抽样调查,否则应全面调查,即普查.【解答】解:“机场对每位乘客的安全检查”不能使用抽样调查,应全面调查,确保安全,故选:B.【点评】考查抽样调查的适用范围和要求,在个体数量较多,全面调查难度较大且对结果要求不太精确的情况下,使用抽样调查.3.【分析】根据二元一次方程组的定义进行判断即可.【解答】解:A、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误;B、该方程组中含有3个未知数,属于三元一次方程组,故本选项错误;C、该方程组符合二元一次方程组的定义,故本选项正确;D、该方程组中第一个方程是分式方程,故本选项错误;故选:C.【点评】本题考查了二元一次方程组的定义,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.4.【分析】根据不等式的性质,逐项判断即可.【解答】解:∵a<b,∴a﹣b<0,∴选项A不符合题意;∵a<b,∴a﹣1<b﹣1,∴选项B不符合题意;∵a<b,∴2a<2b,∴选项C不符合题意;∵a<b,∴﹣>﹣,∴选项D符合题意.故选:D.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.【分析】要表示各部分占总体的百分比,根据扇形统计图表示的是部分在总体中所占的百分比,即可进行选择.【解答】解:根据题意,得最能直观表示这种饮料各成分含量百分比的是扇形统计图;故选:D.【点评】此题主要考查了统计图的选择.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.6.【分析】根据同位角,内错角,同旁内角的定义解答即可.【解答】解:∠1与∠2是同位角,故选:B.【点评】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.7.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0.3是有理数,故A错误;B、=3是有理数,故B错误;C、﹣2π的绝对值是2π,是无理数,故C正确;D、2的相反数是﹣2,是有理数,故D错误;故选:C.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8.【分析】利用互余、互补的定义、平行公理等知识分别判断后即可确定正确的选项.【解答】解:A、和为直角的两个角互为余角,正确,是真命题;B、相交于同一直线的两条直线可以相交,也可以平行,故原命题错误,是假命题;C、和为平角的两个角互为补角,正确,是真命题;D、平行于同一直线的两条直线平行,正确,是真命题,故选:B.【点评】考查了命题与定理的知识,解题的关键是了解互余、互补的定义、平行公理等知识,难度不大.9.【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.据此可得答案.【解答】解:由图知,这个不等式组的解集为﹣2≤x<1,故选:A.【点评】本题考查的是解一元一次不等式组,解题的关键是掌握用数轴表示不等式的解集时的“两定”.10.【分析】设椅子的个数为x,凳子的个数为y,根据椅子和凳子共16个且共有60个腿,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设椅子的个数为x,凳子的个数为y,依题意,得:,解得:.故选:C.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.【分析】根据方向角的表示方法,图示的表示,可得答案.【解答】解:A在B的南偏西47°,30nmile处,故选:D.【点评】本题考查了方向角,观察图示是解题关键.12.【分析】设一个小长方形的长为xcm,宽为ycm,由题意列出方程组,解方程组,即可得出答案.【解答】解:设一个小长方形的长为xcm,宽为ycm,由题意得:,解得:,∴大长方形的面积=10×36×12=4320(cm2);故选:A.【点评】此题主要考查了二元一次方程组应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.二、填空题(本大题有4个小题,每小题3分,共12分)13.【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【解答】解:∵极差为133﹣50=83,∴83÷10=8.3,则这个样本可以分成9组,故答案为:9.【点评】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.14.【分析】根据第二象限内点的横、纵坐标符号特点列出关于a的不等式组,解之可得.【解答】解:由题意知,解得a>3,故答案为:a>3.【点评】本题主要考查解一元一次不等式组,解题的关键是根据第二象限内点的横、纵坐标符号特点列出关于a的不等式组.15.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:∵|m+n﹣6|+(n﹣2)2=0,∴m+n﹣6=0,n﹣2=0,∴m=4,n=2,∴故答案为:2【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【分析】利用平行四边形的性质及判定定理直接写出一个命题的逆命题即可.【解答】解:命题可以是:如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形,故答案为:如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形(答案不唯一).【点评】本题主要考查命题的“如果…,那么…”的书写,是基础题,难度不大.三、解答题(本大题共3个小题,每小题6分,共18分)17.【分析】直接利用立方根以及二次根式的性质化简得出答案.【解答】解:原式=2﹣9×+1=2﹣3+1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】由平行线的性质得出∠A=∠ADC,由已知得出∠ADC=∠E,即可证出AD∥BE.【解答】解::∵AB∥CE,∴∠A=∠ADC(两直线平行,内错角相等),又∵∠A=∠E,∴∠ADC=∠E(等量代换),∴AD∥BE(同位角相等,两直线平行).故答案为:两直线平行,内错角相等;∠ADC=∠E;同位角相等,两直线平行.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.19.【分析】去分母、去括号、移项、合并同类项、系数化为1,可得不等式的解集.【解答】解:去分母得2(2x+1)﹣6>3(1﹣x),去括号,得4x+2﹣6>3﹣3x,移项、合并同类项,得7x>7.解得x>1,把不等式的解集在数轴上表示出来为:.【点评】本题考查了解一元一次不等式,能正确根据不等式的基本性质进行变形是解此题的关键.四、解答题(本大题共2个小题,每小题7分,共14分)20.【分析】(1)依据作图要求进行作图即可;(2)依据DE=CD=1,DE⊥EF,即可得到直线AB与直线EF的距离为1cm;(3)依据角平分线的定义以及平行线的性质,即可得到∠DGF的度数.【解答】解:(1)如图所示,(2)∵DE=CD=1,DE⊥EF,∴直线AB与直线EF的距离为1cm,故答案为:1;(3)∵DG平分∠BDC,∴∠BDG=∠BDC=45°,∵EF∥AB,∴∠DGF=180°﹣∠BDG=135°,故答案为:135°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.21.【分析】(1)建立适当的坐标系,并写出点B、C的坐标,(2)向左、向上平移2个单位长度,其对应点的横坐标减2,纵坐标加2,由点C(2,2)可得对应点C′坐标,(3)根据平移的性质,对应线段相等,对应角相等,依据全等的意义判断即可.【解答】解:(1)建立如图所示的坐标系,点B(2,﹣2),C(2,2),(2)向左、向上平移2个单位长度,其对应点的横坐标减2,纵坐标加2,点C(2,2),因此点C′(0,4),(3)点A′,B′,C′,D′是由A、B、C、D分别向左、向上平移2个单位长度得到的,由平移性质得,AB=A′B′=4,BC=B′C′=4,CD=C′D′=4,DA=D′A′=4,因此,依次连接点A′,B′,C′,D′形成的图形与原来的正方形ABCD是全等形.【点评】考查正方形的性质、平移引起坐标变化规律,全等形等知识,建立合适的坐标系,掌握平移前后坐标的变化规律是解决问题的关键.五、解答题(本大题共2个小题,第1小题9分,第2小题11分,共20分)22.【分析】(1)根据频数、频率和总数之间的关系分别求出a,b,c的值,从而补全统计图;(2)每一组的最大值减去最小值就是组距,再根据题意说明理由即可;(3)先求得样本中不足3000元所占的百分比,然后乘以拆迁小区的总户数即可.【解答】解:(1)a=40×0.10=4(户),c=1.00﹣0.05﹣0.10﹣0.40﹣0.30﹣0.05=0.10;b=40×0.10=4(户),补图如下:(2)组距=2400﹣1800=600.理由:这个组距选择比较合适,确保了数据的不重不漏,且没有数据为空组;(3)根据题意得:(2+4)÷40×440=66(户),答:该小区需要民政局派人看望的家庭大约有66户.【点评】本题主要考查的是频数分布直方图和频数部分表的认识,掌握频数、频数、数据总数之间的关系是解题的关键.23.【分析】(1)设A种书柜的单价为x元,B种书柜的单价为y元,根据“购买A种书柜3个、B种书柜2个,共需资金1020元;购买A种书柜5个、B种书柜3个,共需资金1620元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买m个A种书柜,则购买(20﹣m)个B种书柜,根据B种书柜的个数不少于A种书柜的个数及总价不超过4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【解答】解:(1)设A种书柜的单价为x元,B种书柜的单价为y元,依题意,得:,解得:.答:A种书柜的单价为180元,B种书柜的单价为240元.(2)设学校购买m个A种书柜,则购买(20﹣m)个B种书柜,依题意,得:,解得:8≤m≤10.∵m为整数,∴m=8,9,10.∴该学校有3种购买方案,方案1:购买8个A种书柜,12个B种书柜;方案2:购买9个A种书柜,11个B种书柜;方案3:购买10个A种书柜,10个B种书柜.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.一、七年级数学易错题1.已知点A(1,2a+1),B(-a,a-3),若线段AB//x轴,则三角形AOB的面积为() A.21 B.28 C.14 D.10.5【答案】D【解析】【分析】根据线段AB∥x轴求得a的值后即可确定点A和点B的坐标,从而求得线段AB的长,利用三角形的面积公式求得三角形的面积即可.【详解】∵AB∥x轴,∴2a+1=a-3.解得a=-4.∴A(1,-7),B(4,-7).∴AB=3.过点O作OC⊥AB交BA的延长线于点C,则OC=7.∴△ABC的面积为:1•3710.5212AB OC=⨯⨯=.故答案为:D.【点睛】本题目考查了点与坐标的对应关系,根据AB∥x轴求得a的值是解题的关键.2.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.7【答案】B【解析】【分析】根据15名工人前期的工作量+12名工人后期的工作量<2160,列出不等式进行解答即可.【详解】设原计划m天完成,开工x天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x)<2160,即:ax+4am+8m-8x<720,∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144,∴ax+8m-8x<am,∴8(m-x)<a(m-x),∵m>x,∴m-x>0,∴a>8,∴a至少为9,故选B.【点睛】本题考查了一元一次不等式的应用,有一定的难度,解题的关键在于灵活掌握设而不求的解题技巧.3.某学校准备为七年级学生开设,,,,,A B C D E F共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).选修课A B C D E F 人数4060100下列说法不正确的是()A.这次被调查的学生人数为400人B.E对应扇形的圆心角为80︒C.喜欢选修课F的人数为72人D.喜欢选修课A的人数最少【答案】B【解析】【分析】根据表格和扇形图,通过计算,对每个选项分别进行判断,即可得到答案.【详解】解:这次被调查的学生人数为:60÷15%=400(人),故A正确;∵D所占的百分比为:100100%=25%400⨯,A所占的百分比为:40100%=10%400⨯,∴E对应的圆心角为:360(118%10%15%12%25%)36020%72︒⨯-----=︒⨯=︒;故B错误;∵喜欢选修课F 的人数为:40018%=72⨯(人),故C 正确;∵喜欢选修课C 有:40012%=48⨯(人),喜欢选修课E 有:40020%=80⨯(人), ∴喜欢选修课A 的人数为40人,是人数最少的选修课;故D 正确; 故选:B. 【点睛】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°【答案】B 【解析】因为AB ∥DF ,所以∠D+∠DEB=180°,因为∠DEB 与∠AEC 是对顶角, 所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B .5.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:2【答案】C 【解析】 【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】∵4520430x y z x y z -+=⎧⎨+-=⎩①②∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z =∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.6.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-1【答案】B 【解析】 解方程组22{23x y mx y +=++=得43{123m x m y -=+=,∵x 、y 满足x-y>0, ∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.7.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒【解析】【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.8.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【答案】C【解析】【分析】【详解】解:①∵∠B+∠BCD=180°,②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.9.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为()A.3项B.4项C.5项D.6项【答案】C【解析】【分析】获奖人次共计17+3+1+5+2+1+12+2+1=44人次,减去只获两项奖的13人计13×2=26人次,则剩下44-13×2=18人次,27-13=14人,这14人中有只获一次奖的,有获三次以上奖的.【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的14人中的一人获奖最多,其余14-1=13人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-13=5项.故选C.【点睛】本题主要考查从统计表中获取信息的能力,解决本题的关键是要熟练掌握从统计表中获取信息的方法.10.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:n ≤(舍去),或n ≥.∵142113<<, 故选:C . 【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.11.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<【答案】B 【解析】 【分析】符号[]a 表示不大于a 的最大整数,即[]a 为小于等于a 的最大整数. 【详解】因为[]a 为小于等于a 的最大整数,所以[][]1a a a <+≤, 若[]a =-6,则a 的取值范围是65a -≤-<, 故选B . 【点睛】本题考查了对不等关系的理解,解题的关键是理解符号[]a 的本质是小于或等于a 的最大整数.12.为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,某学校初二(8)班举办了“乐知杯古诗词”大赛.现有小璟、小桦、小花三位同学进入了最后冠军的角逐.决赛共分为六轮,规定:每轮分别决出第1,2,3名(不并列),对应名次的得分都分别为a ,b ,c(a>b>c 且a ,b ,c 均为正整数);选手最后得分为各轮得分之和,得分最高者为冠军.下表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,下列说法正确的是()A.小璟可能有一轮比赛获得第二名B.小桦有三轮比赛获得第三名C.小花可能有一轮比赛获得第一名D.每轮比赛第一名得分a为5【答案】D【解析】【分析】先根据三人总得分共26+11+11=48,可得每一轮的得分a+b+c=8,再根据小桦的等分能够得出c=1,进而可得到第一二两轮的具体排名,然后在对a、b的值分情况讨论,然后再逐个排除即可求得a,b的值,从而求解即可【详解】解:∵三人总得分共26+11+11=48,∴每一轮的得分a+b+c=48÷6=8,则对于小桦来说,小桦剩余的第一、三、四轮的总分是11-8=3分,又∵a>b>c且a,b,c均为正整数,∴c≥1,∴小桦第一、三、四轮的得分均为1分,且c=1,∴小花第一、二、四轮的得分均为b,∵a+b+c=8,c=1,∴a+b =7,又∵a>b>c且a,b,c均为正整数,∴b=2时,a=5,或b=3时a=4,当b=2,a=5时,则小花剩余第三、五、六轮的总分是:11-2×3=5(分)结合小桦这几轮的得分情况可知,小花这三轮的得分分别是2,1,2, 此时小璟这三轮的得分分别是5,5,5,则小璟六轮的具体得分分别是:5,1,5,5,5,5,共26分,符合题意 当b =3,a =4时,则小花剩余第三、五、六轮的总分是:11-3×3=2(分)<3分,不符合 综上所述,a =5,b =2,c =1,(D 正确) 小璟有五轮得第一名,一轮得第三名;(A 错误)小桦有一轮得第一名,一轮得第二名,四轮得第三名;(B 错误) 小花有五轮得第二名,一轮得第三名(C 错误) 故选:D 【点睛】本题考查了合情推理的问题,考查了推理论证能力,考查了化归与转化思想,审清题意是正确解题的关键,属于中档题.13.如图所示在平面直角坐标系中,一个动点从原点O 出发,按照向上、向右、向下、向右的方向不断重复移动,依次得到点()10,2A ,()21,2A,()31,0A ,()42,0A ,()52,2A ,L 则点2019A 的坐标是( )A .()1009,0B .()1009,2C .()1008,2D .()1008,0【答案】A 【解析】 【分析】根据图形可找出点A 3、A 7、A 11、A 15、…、的坐标,根据点的坐标的变化可找出变化规律“A 4n+3(1+2n ,0)(n 为自然数)”,依此规律即可得出结论. 【详解】解:观察图形可知:A 3(1,0),A 7(3,0),A 11(5,0),A 15(9,1),…,∴A 4n+3(1+2n ,0)(n 为自然数). ∵2019=504×4+3, ∴n=504, ∵1+2×504=1009, ∴A 2018(1009,0). 故选:A . 【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A 4n+3(1+2n ,0)(n 为自然数).”是解题的关键.14.若关于x 的不等式组1(5)320x a x ⎧+⎪⎨⎪->⎩…恰有两个整数解,则a 的取值范围是( )A .23a <≤B .23a <<C .23a ≤<D .23a ≤≤【答案】A 【解析】 【分析】分别解不等式求出解集,得到不等式组的解集,根据整数解的个数列不等式得到答案. 【详解】1(5)320x a x ⎧+⎪⎨⎪->⎩①②…, 解不等式①,得1x ≥, 解不等式②,得x<a , ∵不等式组有解,∴原不等式组的解集为1x a <≤,∵不等式组1(5)320x a x ⎧+⎪⎨⎪->⎩…恰有两个整数解,∴23a <≤, 故选:A. 【点睛】此题考查解不等式组,由不等式组的整数解的个数求未知数的取值范围.。
B ′C ′D ′O ′A ′ODC BA(第8题图)人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
七年级下学期期末考试数学试题(考试时间:90分钟 满分:120分 )一、选择题(每小题3分,共24分) 1.使分式24xx -有意义的x 的取值范围是 (A )2x = (B )2x ≠ (C )2x =- (D )2x ≠-2.5的算术平方根是 (A )5-.(B )5±.(C )5.(D )5±.3.下列各数中,在1与2之间的数是 (A )-1.(B )3.(C )37. (D )3.4.一次函数2+=x y 的图象不经过...(A )第一象限 (B ) 第二象限 (C ) 第三象限 (D ) 第四象限5.如图,△ABC 的两直角边AC =6 cm 、BC =8 cm ,现将该直角三角形折叠,使点B 与点A 重合,折痕为DE .则BE 的长为 (A )4 cm .(B )5 cm . (C )6 cm . (D )10 cm .6.如图,将AOB △绕点O 逆时针旋转90,得到A OB ''△.若点A 的坐标为()a b ,,则点A '的坐标为(A )),(a b - (B )),(b a - (C )),(a b - (D )),(b a -7. 已知点A (1,m )B (2,n )是一次函数22--=x y 图象上的两点,则m 与n 的大小关系是 (A )m > n . (B )m < n . (C )m = n . (D )以上都不对8. 如图,在平面直角坐标系中,点P (12-,a )在直线22y x =+与直线24y x =+之间,则a24ABCDE(第5题) (第6题) (第8题)的取值范围为(A )1<a <3. (B )2<a <4. (C )1<a <2. (D )0<a <2. 二、填空题(每小题3分,共18分) 9.计算:23-= .10.若分式13x x -+的值为0,则x 的值为 . 11.已知正比例函数y kx =的图象经过点(2,6)-,则这个正比例函数的表达式为 .12.将函数6y x =-的图象向上平移5个单位得到的函数关系式为___________. 13.在平面直角坐标系中,点(2,-1)关于x 轴的对称点的坐标是___________.14.直线b x y +=2与x 轴的交点坐标是(2,0),则关于x 的方程02=+b x 的解是x = . 三、解答题(本大题共9小题,共78分)16. (6分)计算:2731321418-+-17.(6分)计算: abb a ab b a 22)()(--+18.(7分)解方程: 12312+=-x x19.(7分)先化简,再求值:21(1)11aa a +÷--,其中3a =-.20.(7分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.21.(8分)今年入夏以来,我省发生了旱灾,为抗旱救灾,某村新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 求原计划每天修水渠多少米.22.(9分)为表彰学习进步的同学,某班生活委员到文具店买文具作为奖品.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元. (1)求每个笔记本和每支钢笔的售价.y xO M11(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买(0)x x >支钢笔需要花y 元,求y 与x 的函数关系式.23.(10分)某仓库有甲、乙两辆运货车,在满载的情况下,甲车每小时可运货6吨,乙车每小时可运货10吨.某天乙车只负责进货,甲车只负责出货.下图是从早晨上班开始库存量y (吨)与时间x (时)之间的函数图象,OA 段表示甲、乙两车一起工作,AB 段表示甲车单独工作,且在工作期间,每辆车都是满载的. (1)求m 的值. (2)求n 的值.(3)求AB 段中库存量y 与时间x 之间的函数关系式.24.(12分)如图,在平面直角坐标系中,一次函数42+-=x y 与x 轴交于点A ,与y 轴交于点B .点P 从A 点出发,沿折线AO -OB 以每秒1个单位长度的速度运动,当点P 运动到点B 时停止.设点P 运动的时间为t 秒,△APB 的面积为S . (1)请直接写出点B 的坐标 . (2)求线段AO 的长.(3)当点P 不与点A 和点B 重合时,求S 与t 之间的函数关系式,并直接写出对应的自变量t的取值范围.(4)当直线AP 把△OAB 分成的两个三角形中有一个是等腰三角形时,直接写出t 的值.七年级期末数学答案一、选择题1.B . 2.C . 3.B . 4.D . 5.B .6.A 7.A .8.A . 二、填空题 9.9110.1 11.x y 3-= 12. 56+-=x y 13.(2,1) 14. 2 三、解答题15.(6分)解:原式=2+1+2……4分=5……6分16.(6分)解:原式=3332223-+-……4分=322- ……6分17. ( 6分) 解:原式=ab b ab a ab b ab a 222222+--++ 2分=abb ab a b ab a 222222-+-++ 4分=4 6分18.(7分) )x ()x (13122-=+ 2分 3324-=+x x 4分 5-=x 6分 经检验5-=x 是原方程的根. 7分19.(7分)解:原式21(1)(1)a a a a a-=⨯+-……3分1aa =+.……5分 当3a =-时,原式33312-==-+. ……7分20. (7分)解:由图象可知,点(21)M -,在直线3y kx =-上,231k ∴--=.解得2k =-.………… 2分 ∴直线的解析式为23y x =--.……3分令0y =,可得32x =-.∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,.………… 6分 令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,.……… 8分根据题意得:……4分 36003600201.8x x-=解得:x = 80 ………6分经检验:x = 80是原分式方程的解 且符合题意 ………………7分 答:原计划每天修水渠80米. ……………8分22(10分)(1)解:设每个笔记本x 元,每支钢笔y 元.………………1分4286357.x y x y +=⎧⎨+=⎩, ………………3分 解得1415.x y =⎧⎨=⎩,…………5分 答:每个笔记本14元,每支钢笔15元.………………6分 (2)15(010)1230(10)xx y x x <⎧=⎨+>⎩≤(自变量取值范围1分,每段函数关系式各1分)23.(10分)解:(1)5(106)20m =⨯-=. ……………………3分(2)206(75)8n =-⨯-=. ……………………6分 (3)设y kx b =+,由于图象经过(5,20),(7,8).20587k b k b =+⎧⎨=+⎩ 解得6,50.k b =-⎧⎨=⎩∴650y x =-+.…………10分24.(12分)解:(1)B (0,4) …………………2分 (2)042=+-x ,2=x ……………4分∴AO 的长为2 ……………………5分(3)当20≤<t 时, t S 2= 当62<<t 时, 6+-=t S∴ (自变量取值范围1分,每段函数关系式各1分)…9分(4)4 或 3.5 ……………12分(答对4得1分,答对3.5得2分)………………8分 ………………10分。
黑龙江省鸡西市2019-2020学年七年级第二学期期末综合测试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题只有一个答案正确)1.不等式3x-2>-1的解集是()A.x>B.x<C.x>-1 D.x<-1【答案】A【解析】【分析】由移项、合并同类项、系数化为1即可解答.【详解】移项得,3x>-1+2,合并同类项得,3x>1,把x的系数化为1得,x>.故选A.【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.2.下列说法中,正确的是()A.腰对应相等的两个等腰三角形全等;B.等腰三角形角平分线与中线重合;C.底边和顶角分别对应相等的两个等腰三角形全等;D.形状相同的两个三角形全等.【答案】C【解析】【分析】根据全等三角形和等腰三角形的性质对各项进行判断即可.【详解】A. 腰对应相等的两个等腰三角形不一定全等,错误;B. 等腰三角形顶角的角平分线与底边中线重合,底角的角平分线与腰上的中线不一定重合,错误;C. 底边和顶角分别对应相等的两个等腰三角形全等,正确;D. 形状相同的两个三角形不一定全等,错误;故答案为:C.【点睛】本题考查了全等三角形和等腰三角形的问题,掌握全等三角形和等腰三角形的性质是解题的关键.3.下列说法正确的个数有()(1)过一点,有且只有一条直线与已知直线平行;(2)一条直线有且只有一条垂线;(3)不相交的两条直线叫做平行线;(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离;(5)在同一平面内,垂直于同一条直线的两条直线互相平行;(6)两条直线被第三条直线所截,同位角相等.A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据平行公理,垂线的性质,平行线的定义,点到直线的距离,平行线的判定与性质对各项进行一一判段.【详解】(1)过直线外一点,有且只有一条直线与已知直线平行,错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;(3)在同一平面内,不相交的两条直线叫做平行线,错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,错误;(5)在同一平面内,垂直于同一条直线的两条直线互相平行,正确;(6)两条直线被第三条直线所截,两直线平行,同位角相等,错误.共1个正确,故选B.【点睛】本题考查平行公理,垂线的性质,平行线的定义,点到直线的距离,平行线的判定与性质,熟练掌握其定义与性质是解题的关键.4.将点向右平移3个单位长度得到点,则点所在的象限是( )A.第四象限B.第三象限C.第二象限D.第一象限【答案】B【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得B点坐标,进而可得所在象限.【详解】解:点A(-5,-2)向右平移3个单位长度得到点B(-5+3,-2),即(-2,-2),在第三象限,故选:B.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.5.依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150≤x<175范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:身高情况分组表组别身高(cm)A 150≤x<155B 155≤x<160C 160≤x<165D 165≤x<170E 170≤x<175•根据统计图表提供的信息,下列说法中•①抽取男生的样本中,身高在155≤x<165之间的学生有18人;•②初一学生中女生的身高的中位数在B组;•③抽取的样本中,抽取女生的样本容量是38;•④初一学生身高在160≤x<170之间的学生约有800人.•其中合理的是()A.①②B.①④C.②④D.③④【答案】B【解析】【分析】根据频数分布直方图和中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;分别计算男、女生身高的样本中160cm至170cm所占比例,然后分别乘以男、女生总人数,可分别求出男、女生身高中160cm至170cm的人数再相加即可判断④.【详解】解:由直方图可知,抽取男生的样本中,身高在155≤x<165之间的学生有8+10=18人,故①正确;由A与B的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C组,故②错误;∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵男生身高在160cm至170cm(不含170cm)的学生有840×2242=440人,女生身高在160cm至170cm(不含170cm)的学生有800×(30%+15%)=360人∴身高在160cm至170cm(不含170cm)的学生有440+360=800(人),故④正确;故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.注意④千万不能这样计算(840+800)×2218 4240++.6.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为()A.2.6×10﹣6B.2.6×10﹣5C.26×10﹣8D.0.26x10﹣7【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0021=2.1×10﹣1.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cmC.5cm,6cm,12cm D.2cm,3cm,5cm【答案】B【解析】【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】A. 1+2<4,故不能组成三角形,错误;B. 4+6>8,故能组成三角形,正确;C. 5+6<12,故不能组成三角形,错误;D. 2+3=5,故不能组成三角形,错误.故选B.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形三边关系.8.以下列各组数为边长,不能构成直角三角形的是( )A.5,12,13 B.1,2,5C.1,3,2 D.4,5,6【答案】D【解析】【分析】根据勾股定理逆定理进行判断即可.【详解】因为,A. 52+122=132B. 12+22=(5)2C. 12+()23?=22D. 42+52≠62所以,只有选项D不能构成直角三角形.故选:D【点睛】本题考核知识点:勾股定理逆定理.解题关键点:能运用勾股定理逆定理.9.如图,△ABC沿BC方向平移得到△DEF,已知BC=7,EC=4,那么平移的距离为( )A.2 B.3 C.5 D.7【答案】B【解析】【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=BC-EC=3,进而可得答案.【详解】解:由题意平移的距离为:BE=BC-EC=7-4=3,故选:B.【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.10.若三角形两条边的长分别是3,5,第三条边的长是整数,则第三条边的长的最大值是()A.2 B.3 C.7 D.8【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【详解】解:5﹣3<第三边<3+5,即:2<第三边<8;所以最大整数是7,故选:C.【点睛】考查了三角形的三边关系,解答此题的关键是根据三角形的特性进行分析、解答.二、填空题11.在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n很大时,摸到白球的概率将会接近_____ (精确到0.01),假如你摸一次,你摸到白球的概率为______;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为35,需要往盒子里再放入多少个白球?【答案】(1)0.50;0.5;(2)20个、20个;(3)10.【解析】分析:(1)根据所给“频率折线图”进行分析判断即可;(2)根据(1)中所得概率进行计算即可;(3)设需再放入x 个白球,结合(2)中结果列出方程203405x x +=+,解此方程即可得到所求答案. 详解:(1)根据题意可得:当n 足够大时,摸到白球的概率会接近0.50;假如你摸一次,你摸到白球的概率为0.5;(2)∵40×0.5=20,40-20=20,∴盒子里白、黑两种颜色的球各有20个;(3)设需要往盒子里再放入x 个白球,根据题意得: 203405x x +=+, 解得x=10,经检验,x=10是所列方程的根,故需要往盒子里再放入10个白球.点睛:熟悉某事件发生的概率与频率间的关系:“在大次数的实验中,当某事件发生的频率逐渐稳定下来,在某个常数周围作小幅波动时,我们就说这个常数是该事件发生的概率”是解答本题的关键.12.计算:(﹣2a 5)÷(﹣a )2=__.【答案】﹣2a 1【解析】根据单项式的除法法则,同底数幂相除,底数不变指数相减计算即可.解:(﹣2a 5)÷(﹣a )2=﹣2a 5÷a 2=﹣2a 5﹣2=﹣2a 1.13.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a ﹣b=______. 【答案】74【解析】【分析】把x 、y 的值代入方程组,再将两式相加即可求出a ﹣b 的值.【详解】将x a y b =⎧⎨=⎩代入方程组3354x y x y +=⎧⎨-=⎩,得:3354a b a b +=⎧⎨-=⎩①②, ①+②,得:4a ﹣4b=7,则a ﹣b=74, 故答案为74. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a ﹣b 的值.14.对于有理数x ,y 定义新运算:x*y=ax+by ﹣5,其中a ,b 为常数,已知1*2=﹣9,(﹣3)*3=﹣2,则2a ﹣b=_____.【答案】﹣3【解析】试题解析:根据题意得,, 化简得,,①-②得,3b =-3,解得b =-1,把b =-1代入②得,a -(-1)=-1,解得a =-2,∴a -b =-2-(-1)=-1.【点睛】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,根据题目信息列出方程组是解题的关键.15.在ABC ∆中,AB AC =,将ABC ∆沿AC 翻折得到AB C '∆,射线BA 与射线CB '相交于点E ,若AEB '∆是等腰三角形,则B 的度数为__________.【答案】°1807或36°或°3607【解析】【分析】分三种情形:①当B′E=B′A时,如图1所示.②当EB′=AE时,如图2所示.③如图3中,当B′A=B′E 时,分别构建方程求解即可.【详解】解:①当B′E=B′A时,如图1所示:∵AB=AC,∴∠B=∠BCA,由折叠得:∠B=∠B′,∠BCA=∠B′CA,设∠B=x,则∠B′=∠BCA=∠B′CA=x,∴∠B′AE=∠B′EA=3x,在△AEB′中,由内角和定理得:3x+3x+x=180°,∴x=°1807,即:∠B=°1807.②当EB′=AE时,如图2所示:∵AB=AC,∴∠B=∠BCA,由折叠得:∠B=∠B′,∠BCA=∠B′CA,设∠B=x,则∠B′=∠BCA=∠B′CA=x,∠AEB′=3x,在△AEB′中,由内角和定理得:x+x+3x=180°,∴x=36°,即∠B=36°.③如图3中,当B′A=B′E时,∵AB=AC ,∴∠B=∠BCA ,由折叠得:∠B=∠AB ′C ,∠BCA=∠B ′CA ,设∠B=x ,则∠B ′=∠BCA=∠B ′CA=x ,∠AEB ′=12x ,∠EAC=2x , 在△AEC 中,由内角和定理得:x+2x+12x=180°, ∴x=°3607,即∠B=°3607. 综上所述,满足条件的∠B 的度数为°1807或36°或°3607. 故答案为°1807或36°或°3607. 【点睛】本题考查翻折变换,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.16.如图,在平面直角坐标系中,()()()()1,11,11,21,2A B C D ----、、、.把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A的规律紧绕在四边ABCD 的边上,则细线另一端所在位置的点的坐标是 _________ .【答案】(0,-2)【解析】∵A(1,1),B(−1,1),C(−1,−2),D(1,−2),∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2016÷10=201余6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD 中间的位置,∴细线另一端所在位置的点的坐标为(0,−2),故答案为(0,-2).17.已知点()A 3,5,()B a,2,()C 4,6b -,且BC //x 轴,AB //y 轴,则a b -=______.【答案】-1【解析】【分析】利用平行于x 轴以及平行于y 轴的直线关系得出a ,b 的值进而得出答案.【详解】(),2B a ,()4,6C b -,且//BC x 轴,26b ∴=-,解得:4b =,点()3,5A ,(),2B a ,且//AB y 轴,3a ∴=,故341a b -=-=-.故答案为:1-.【点睛】本题主要考查了坐标与图形的性质.根据//BC x 轴正确得出a ,b 的值是解题关键.三、解答题18.解不等式组:()3x 2x 8{x x 143+>+-≥并把它的解集在数轴上表示出来.【答案】1<x≤1,数轴见解析【解析】【分析】【详解】解:()3x2x8 {x x143+>+-≥①②,由①得:x>1,由②得:x≤1.∴这个不等式的解集是1<x≤1.在数轴上表示为:【点睛】本题考查解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示.19.观察下列等式:221401-⨯=①;223415-⨯=②;225429-⨯=③……根据上述规律解决下列问题:(1)完成第四个等式:;(2)猜想第n个等式(用含n的式子表示),并证明其正确性.【答案】(1)2274313-⨯=;(2)第n个等式()()()222141411n n n---=-+,证明见解析.【解析】【分析】(1)根据题目中的几个等式可以写出第四个等式;(2)根据题目中等式的规律可得第n个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【详解】解:(1)由题目中的几个例子可得,第四个等式是:72-4×32=13,故答案为72-4×32=13;(2)第n个等式是:(2n-1)2-4×(n-1)2=()411-+n,证明:∵(2n-1)2-4×(n-1)2=4n 2-4n+1-4(n 2-2n+1)=4n 2-4n+1-4n 2+8n-4=4n-3=()411-+n ,∴(2n-1)2-4×(n-1)2=()411-+n 成立.【点睛】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.20.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱,求有多少人,物品的价格是多少”.【答案】有7人,物品的价格是53钱.【解析】【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,解出可以解答本题.【详解】设有x 人,物品价格为y 钱,由题意可得,8374x y x y-=⎧⎨+=⎩, 解得:7{53x y ==, 答:有7人,物品的价格是53钱.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.21.解不等式组243(1)17252x x x x -≤+⎧⎪⎨+->⎪⎩,并写出不等式组的最大整数解. 【答案】-4【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】 解:解不等式243(1)x x -+得:7x -,解不等式17252xx+->得:113x<-,∴不等式组的解集是1173x-<-,∴该不等式组的最大整数解为4-.【点睛】本题考查了解一元一次不等式(组),不等式组的整数解的应用,解此题的关键是求出不等式组的解集.22.计算与解方程(组)(12(2)解方程组25 342x yx y-=⎧⎨+=⎩①②【答案】(1)(2)21 xy-⎧⎨⎩==.【解析】【分析】(1)直接利用二次根式以及立方根的性质、绝对值的性质分别化简,进而得出答案.(2)利用①×4+②加减消元法求出方程组的解即可.【详解】解:(1)原式(2)①×4+②得:11x=22,解得:x=2,把x=2代入①得:4-y=5,解得:y=-1,所以原方程组的解为:21 xy⎧⎨-⎩==.【点睛】此题(1)主要考查了实数运算,正确化简各数是解题关键.此题(2)考查了二元一次方程组的解法,熟练掌握代入消元法和加减消元法解题是关键.23.某校为了解学生参加“经典诵读”的活动情况.该校随机选取部分学生,对他们在三、四月份的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.四月份日人均诵读时间的统计表00.5x ≤< 60.51x ≤<30 1 1.5x ≤< b50% 1.52x ≤< 10 10%2 2.5x ≤< cd根据以上信息,解答下列问题:(1)本次调查的学生人数为______;(2)图表中的a ,b ,c ,d 的值分别为______,______,______,______;(3)在被调查的学生中,四月份日人均诵读时间在1 1.5x ≤<范围内的人数比三月份在此范围的人数多______人.【答案】(1)100;(2)5,50,4,4%;(3)1.【解析】【分析】(1)由四月份日人均朗诵时间在1.5≤x <2的人数及其所占百分比可得总人数;(2)总人数减去条形图中其它各组人数可得a 的值,总人数乘以统计表中第3组百分比可得b 的值,由各组人数之和等于总人数可得c 的值,再用c 的值除以总人数可得d ;(3)将四月份人数减去三月份对应的人数可得答案.【详解】解:(1)本次调查的学生人数为10÷10%=100(人),故答案为:100人;(2)a=100-(60+30+4+1)=5,b=100×50%=50,c=100-(6+30+50+10)=4,则d=4100×100%=4%,故答案为:5、50、4、4%;(3)四月份日人均诵读时间在1≤x<1.5范围内的人数比三月份在此范围的人数多50-5=1(人).故答案为:1.【点睛】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24.如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.(2)老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?【答案】(1)116,18,14;(2)716,老李摇奖共有四种结果,一等奖、二等奖、三等奖、不中奖【解析】【分析】(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率;找到黄色区域和蓝色区域的份数占总份数的多少即为获得二等奖、三等奖的概率.(2)用有颜色的区域数除以所有扇形的个数即可求得获奖的概率.【详解】解:(1)整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:1 16;整个圆周被分成了16份,黄色为2份,∴获得二等奖的概率为:216=18;整个圆周被分成了16份,蓝色为4份,∴获得三等奖的概率为416=14;(2)∵共分成了16份,其中有奖的有1+2+4=7份,∴P(获奖)=7 16;老李摇奖共有四种结果,一等奖、二等奖、三等奖、不中奖.【点睛】本题考查了概率公式的应用,用到的知识点是如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率为P(A)=mn.25.解方程:(1)27(3x+7)=2﹣32x;(2)11123353x yx y⎧+=⎪⎨⎪+=-⎩【答案】(1)x=0;(2)43 xy=⎧⎨=-⎩.【解析】【分析】(1)去分母,去括号,移项,合并同类项,系数化为1;(2)先整理再用代入法. 【详解】解:(1)去分母得:4(3x+7)=28﹣21x,12x+28=28﹣21x,12x﹣21x=28﹣28,﹣9x=0,x=0;(2)整理得:326(1) 353(2) x yx y+=⎧⎨+=-⎩②﹣①得:3y=﹣9,解得:y=﹣3,把y=﹣3代入①得:3x﹣6=6,解得:x=4,所以原方程组的解为:43 xy=⎧⎨=-⎩.【点睛】考核知识点:解方程,解方程组.。
黑龙江省鸡西市2023-2024学年七年级下学期期末数学试题一、单选题1.下列所示的图案分别是奔驰、奥迪、长安、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是( )A .B .C .D .2.下列调查中,最适合全面调查的是( )A .调查我市七年级学生每周体育锻炼的时长B .调查一批新型节能灯的使用寿命C .乘坐飞机安检员调查乘客随身物品的安全性D .了解现代大学生的主要娱乐方式3.已知实数a 与b ,若a b >,则下列结论错误的是( )A .33a b -<-B .22a b >C .11a b ->-D .am bm > 4.已知点()121M m m --,在第一象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D . 5.数据共40个,分为6组,第1到第四组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为 ( )A .4B .10C .6D .86.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种7.如图,AB CD EF GH ∥∥∥,AE DG ∥,点C 在AE 上,点F 在DG 上,设与α∠相等的角(不含α∠)的个数为m ,与∠β互补的角的个数为n ,若αβ≠,则m n +的值是( )A .8B .9C .10D .118.如图是路政工程车的工作示意图,工作篮底部与支撑平台平行,若130∠=︒,260∠=︒,则3∠的度数为( )A .130︒B .140︒C .150︒D .160︒9.如图,数轴上A ,B 两点对应的实数分别是2若AB BC =,则C 表示的实数为( )A .2B 2C .2D .410.如图,AB BC ⊥,AE 平分BAD ∠交BC 于点E ,AE DE ⊥,1290∠+∠=︒,M ,N 分别是BA ,CD 延长线上的点,EAM ∠和EDN ∠的平分线交于点F .下列结论:①AB CD P ;②180AEB ADC ∠+∠=︒;③DE 平分ADC ∠;④F ∠为定值.其中结论正确的有( )A .①③④B .①②④C .①②③D .①②③④二、填空题11.719的算术平方根为.12.当x13.如图,直线,a b 被直线c 所截,添加一个条件,使a b ∥.14.如图,一条公路的两侧铺设了AB ,CD 两条平行的横向管道,并有纵向管道AC 连通,若1120∠=︒,则2∠的度数是.15.将点A (m +2,m ﹣3)向左平移三个单位后刚好落在y 轴上,则平移前点A 的坐标是 .16.若关于x 、y 的方程组2315x y m x y +=-⎧⎨+=⎩的解满足2319x y +=,则m 的值为. 17.若关于x 的不等式组()340x m x --<⎧⎨-≤⎩恰有3个整数解,则m 取值范围是. 18.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批书有本.19.今年3月,“烂漫樱花地,最美英雄城”长江主题灯光秀在武汉展演,有两条笔直且平行的景观道AB 、CD 上放置P 、Q 两盏激光灯(如图所示),若光线PB 按顺时针方向以每秒3︒的速度旋转至PA 便立即回转,并不断往返旋转;光线QC 按顺时针方向每秒1︒的速度旋转至QD 边就停止旋转,若光线QC 先转20秒,光线PB 才开始转动,当光线PB 旋转时间为秒时,11PB QC ∥.20.小颖同学观看台球比赛,从中受到启发,把它抽象成数学问题:如图,小球起始时位于()3,0处,沿所示的方向击球,若不考虑阻力,小球运动的轨迹如图所示,小球第一次碰到球桌边时,小球的位置是()0,3,那么小球第2024次碰到球桌边时,小球所在的位置用坐标表示是.三、解答题21.(1)29321x y x y +=⎧⎨-=-⎩; (2)()132435y x x y ⎧-=⎪⎨⎪-+=⎩.22.(1)解不等式:211132x x +--<,并把解集在数轴上表示出来. (2)解不等式组:213112x x x x -<-⎧⎪⎨+>-⎪⎩. 23.劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观,某学校为了解学生参加家务劳动的情况,随机抽取了m 名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表、直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)m =______,=a ______;C 组人数在扇形统计图中所对应的圆心角是______度;(2)请将频数分布直方图补充完整,并在图中标明相应数据;(3)若该校学生有1500人,试估计劳动时间在13t ≤<范围的学生有多少人.24.图1是一种网红弹弓的实物图,在两边系上皮筋,拉动皮筋可形成如图2的平面示意图,弹弓的两边可看成是平行的,即AB CD P ,现测得140A ∠=︒,70∠=︒APD .过点P 作PE AB ∥,如图3.(1)求EPD ∠的度数;(2)根据下面的信息窗.判断此次瞄准是否最准确.25.如图,直线AE BC ∥,BAD BCD ∠=∠.(1)补全下列说理过程;∵AE BC ∥(已知),∴BAD ∠+_______180=︒(___________).∵BAD BCD ∠=∠(已知),∴BCD ∠+_______180=︒(等量代换),∴AB CD P (__________);(2)若AC 平分BAD ∠,且12115∠+∠=︒,求EDF ∠的度数.26.某中学为落实《教育部办公厅关于进一步加强中小学生体质健康管理工作的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球,已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元.(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5460元,那么有哪几种购买方案?27.如图1,在平面直角坐标系中,已知(0,),(,0)A a B b ,其中a 上,b 表示的数在原点的左侧,离原点的距离是2个单位长度.(1)填空:=a ________,b =________;(2)在(1)条件下,如果在第三象限内有一点(1,)P m -,请用含m 的式子表示四边形AOPB 的面积;(3)如图2,点A 的坐标为(1,0)-,点B 的坐标为(5,0),点M 的坐标为(2,2)--,动点P 从原点O 出发以每秒4个单位长度的速度沿y 轴负方向移动,同时点B 以每秒1个单位长度的速度沿x 轴正方向移动,连接AP MP 、,设运动时间为(0)t t >秒.是否存在这样的t ,使AMP ABM S S ∆∆=若存在,请求出t 的值;若不存在,请说明理由.。
人教版七年级下学期期末考试数学试卷(一)一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与 B.﹣2与 C.﹣2与﹣ D.|﹣2|与2 2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线 B.邻补角的角平分线C.同位角的角平分线 D.同旁内角的角平分线3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.45.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.① B.② C.③ D.④6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B. C.﹣2 D.﹣2二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= cm.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 度.14.(3分)已知(x﹣y+3)2+=0,则x+y= .15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为.三、解答题16.(8分)解下列方程组::(1)(2).17.(9分)解不等式组,并写出它的所有非负整数解.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为人;(2)图①中,a= ,C等级所占的圆心角的度数为度;(3)请直接在答题卡中补全条形统计图.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?参考答案与试题解析一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线B.邻补角的角平分线C.同位角的角平分线D.同旁内角的角平分线【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、对顶角的角平分线AC、AD共线,故错误;B、∵,,∠PAM+∠MAB=180°,∴∠CAM+∠MAE=90°,∴邻补角的角平分线相互垂直,故错误;C、同位角的角平分线AC、BF互相平行,∵AM∥BN,∴∠PAM=∠PBN;∵AC、BF是∠PAM和∠PBN的角平分线,∴∠1=∠PAM=∠PBN=∠2;∴AC∥BF.故正确.D、同旁内角的角平分线AE、BF互相垂直,∵AM∥BN,∴∠MAB+∠PBN=180°;∵AE、BF是∠MAB和∠PBN的角平分线,∴∠3+∠2=∠MAB+∠PBN=90°;∴AE⊥BF.故错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【解答】解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.【点评】此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.4【分析】把x与y的值代入方程组计算求出m与n的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,解得:,则m﹣n=7﹣3=4,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.①B.②C.③D.④【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:①调查某批汽车的抗撞击能力,采用抽样调查,故①错误;②调查某城市的空气质量,由于工作量大,不便于检测,采用抽样调查,故②错误;③调查某风景区全年的游客流量,由于人数多,工作量大,采用抽样调查,故③错误;④调查某班学生的身高情况,应当采用全面调查,故④正确.故选:D.【点评】本题主要考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,难度适中.6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°【分析】先过点A作AB∥a,由a∥b,即可得AB∥a∥b,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.【解答】解:如图,过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=100°,∠2=140°,∴∠4=80°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=60°.故选:C.【点评】此题考查了平行线的性质.解题的关键是掌握两直线平行,同旁内角互补定理的应用,注意辅助线的作法.7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先解方程组得到x和y的值,然后依据各象限内点的坐标特点求解即可.【解答】解:解方程组,得,所以点(,)在第一象限.故选A.【点评】本题考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了各象限内点的坐标特点.正确求出方程组的解是解题的关键.8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y 轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【分析】根据横坐标,右移加,左移减得到点M(m+2+1,2m+4),再根据y轴上的点横坐标为0可得m+3=0,算出m的值,可得点M的坐标.【解答】解:∵将点P(m+2,2m+4)向右平移1个单位长度得到点M,∴M(m+2+1,2m+4),即(m+3,2m+4),∵点M在y轴上,∴m+3=0,解得:m=﹣3,∴点M的坐标为(0,﹣2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y轴上的点横坐标为0的特征.9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种【分析】设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x 张+20y张=100元,根据等量关系列出方程求整数解即可.【解答】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:,,,,,,因此兑换方案有6种,故选:A.【点评】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B.C.﹣2D.﹣2【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【解答】解:由≥x﹣3,得x≤11,由2x+2<3(x+a),得x>2﹣3a,由上可得2﹣3a<x≤11,∵不等式组恰好只有四个整数解,即11,10,9,8;∴7≤2﹣3a<8,解得﹣2<a≤﹣.故选C.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= 11 cm.【分析】根据平移的性质可得BC′=BC+a,然后代入即可求得.【解答】解:∵△ABC沿水平向右平移了acm后,得到△A'B'C',BC=6cm,B C'=17cm,∴a=CC′=17﹣6=11cm,故答案为11.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是±6 .【分析】根据同类项的概念即可求出m与n的值,从而可求出答案.【解答】解:由题意可知:m﹣2=42=2m+n∴m=6,n=﹣10∴m﹣3n=6+30=36,∴36的平方根为:±6故答案为:±6【点评】本题考查平方根的概念,解题的关键是正确理解平方根与同类项的概念,本题属于基础题型.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 130 度.【分析】由AB∥CD,根据两直线平行,同位角相等,即可求得∠BOM的度数,又由OM是∠BOF的平分线,即可求得∠BOF的度数,然后根据两直线平行,内错角相等,即可求得∠1的度数.【解答】解:∵AB∥CD,∠2=65°,∴∠BOM=∠2=65°,∵OM是∠BOF的平分线,∴∠BOF=2∠BOM=130°,∵AB∥CD,∴∠1=∠BOF=130°.故答案为:130.【点评】此题考查了平行线的性质与角平分线的定义.解题的关键是注意掌握两直线平行,同位角相等与两直线平行,内错角相等定理的应用.14.(3分)已知(x﹣y+3)2+=0,则x+y= 1 .【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为2cm或6cm .【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.故答案为6cm或2cm.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题16.(8分)解下列方程组::(1)(2).【分析】(1)把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.(2)用5去乘方程①的两边,使某一个未知数y的系数互为相反数.把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.【解答】解:(1)由①+②,可得3x=9,解得x=3,把x=3代入①,可得3+y=4,解得y=1,∴方程组的解为;(2)由①×5+②,可得13x=26,解得x=2,把x=2代入①,可得4+y=3,解得y=﹣1,∴方程组的解为.【点评】本题主要考查了解二元一次方程组,用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解.17.(9分)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.【分析】(1)根据x轴上点的纵坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标与横坐标的关系列方程求出m的值,再求解即可;(3)根据平行于y轴的直线上的点的横坐标相同列方程求出m的值,再求解即可.【解答】解:(1)∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴2m+4=2×1+4=6,m﹣1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m﹣1)的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得m=﹣8,∴2m+4=2×(﹣8)+4=﹣12,m﹣1=﹣8﹣1=﹣9,∴点P的坐标为(﹣12,﹣9);(3)∵点P(2m+4,m﹣1)在过点A(2,﹣4)且与y轴平行的直线上,∴2m+4=2,解得m=﹣1,∴m﹣1=﹣1﹣1=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征以及平行于坐标轴的直线上的点的坐标特征是解题的关键.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.【分析】把甲的结果代入第二个方程,乙的结果代入第一个方程,联立求出m 与n的值,即可确定出原方程组的解.【解答】解:把代入得:7+2n=13,把代入得:3m﹣7=5,解得:n=3,m=4,∴原方程组为,解得:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.【分析】先根据平行线的性质,得出∠A=∠CBE,再根据∠1=∠2,得到DC∥AE,进而得出∠CBE=∠C,等量代换即可得出结论.【解答】证明:∵AD∥BC,∴∠A=∠CBE,又∵∠1=∠2,∴DC∥AE,∴∠CBE=∠C,∴∠A=∠C.【点评】本题主要考查了平行线的性质以及判定的运用,解题时注意:两直线平行,同位角相等,内错角相等.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为200 人;(2)图①中,a= 35 ,C等级所占的圆心角的度数为126 度;(3)请直接在答题卡中补全条形统计图.【分析】(1)用A的人数与所占的百分比列式计算即可得解;(2)先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;(3)根据计算补全统计图即可.【解答】解:(1)20÷10%=200人;(2)C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:(1)200;(2)35,126.(3)补全统计图如图所示.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.【分析】(1)根据x与y互为相反数,得到y=﹣x,代入方程组计算即可求出k 的值;(2)将k看做已知数表示出x与y,根据题意列出不等式组,求出不等式组的解集即可确定出k的范围.【解答】解:,解得:,(1)根据题意得:x+y=0,即+=0,解得:k=﹣4;(2)根据题意得:,解得:k>8.【点评】此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【分析】(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.【解答】解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)16的算术平方根是()A.4 B.±4 C.8 D.±82.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量3.(3分)若a<b,那么下列结论中正确的是()A.a﹣3>b﹣3 B.3a>3b C.>D.﹣3a>﹣3b4.(3分)平面直角坐标系中,点A在第四象限,点A到x轴的距离为2,到y 轴的距离为3,则点A的坐标为()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)5.(3分)如图,AD∥BC,AC⊥AB,∠C=62°,则∠DAB的度数为()A.28°B.30°C.38°D.48°6.(3分)关于x,y的方程组的解为,则=()A.﹣3 B.3 C.81 D.﹣817.(3分)不等式﹣2x+3≥5的解集在数轴上表示为()A. B.C.D.8.(3分)如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元9.(3分)在平面直角坐标系中,将点A先向左平移3个单位,再向下平移2个单位,得到点B(﹣2,1),则点A的坐标为()A.(﹣5,3)B.(﹣5,﹣1)C.(1,3)D.(1,﹣3)(3分)把一张面值10元的人民币兑换成1元或2元的零钱,兑换方案有()10.A.9种B.8种C.7种D.6种二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)不等式2x+7>4x+1的正整数解是.12.(3分)如图,将一张长方形纸条折叠,则∠1= 度.13.(3分)光明学校在七年级的一次数学测试中,随机抽取40名学生的成绩进行分析,其中有10名学生成绩达到90分以上,以此估计该校七年级900名学生中,这次测试成绩达到90分以上的约有个.14.(3分)点A(m﹣1,5﹣2m)在第一象限,则整数m的值为.15.(3分)如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D (1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2017秒时,点P的坐标为.三、解答题(本大题共8小题,共75分)16.(8分)计算:|﹣3|+﹣.17.(8分)已知和是关于x,y的二元一次方程:ax+by=1的两个解,求﹣的值.18.(9分)解不等式组:,并把不等式组的解集在数轴上表示出来.19.(9分)请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.20.(10分)某市教育局为了解七年级学生参加综合实践活动的情况,随机抽取了阳光学校七年级学生一个学期参加综合实践活动的天数.并用得到的数据绘制了下面两幅不完整的统计图.请您根据图中提供的信息,按要求回答下列问题:(1)扇形统计图中a 的值是 ;阳光学校七年级共有 人; (2)在这次抽样调查中,活动时间为5天的学生有 人,并补全条形统计图;(4)如果该市七年级的学生共有23000人,根据以上数据,试估计全市七年级学生“活动时间不少于4天”的学生有多少人?21.(10分)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民阶梯式计费价格表的部分信息:自来水销售价格 污水处理价格 每户每月用水量 单价:元/立方米 单价:元/立方米 17立方米及以下a0.8 超过17立方米但不超过30立方米的部分b 0.8超过30立方米的部分60.8该市居民王老师家2017年3月份用水30立方米,交水费66元;4月份用水25立方米,交水费91元.(1)求a、b的值.(2)若王老师家5月份交水费150元,则他家5月份用水多少吨?(说明:每户产生的污水量等于自来水量,所交水费包含自来水费和污水处理费)22.(10分)甲、乙两厂家生产的课桌和座椅的质量、价格一致,每张课桌300元,每张椅子80元,甲、乙两个厂家推出各自销售的优惠方案,甲:买一张课桌送1张椅子;乙:课桌和椅子全部按原价的9折优惠.现某学校要购买100张课桌和x(x≥100)张椅子.(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家所需金额;购买乙厂家所需金额.(2)该学校到哪家工厂购买更合算?23.(11分)如图,已知CD⊥AB于D,E是射线AC上一动点,EF⊥AB于F,EF 交直线BC于G,若∠AEF=∠CGE.(1)求证:CD平分∠ACB,下面给出了部分证明过程和理由,请你补充完善:证明:∵CD⊥AB,EF⊥AB(已知)∴∠ADC=∠AFE=90°()∴CD∥()∴∠ACD= (两直线平行,同位角相等)∠BCD= ()∵∠AEF=∠CGE(已知)∴∠ACD=∠BCD即CD平分∠ACB()(2)将EF向右平移,使点E在AC的延长线上,(1)中的结论是否还成立?若成立,请画出图形;若不成立,请画出图形,写出正确结论.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分) 16的算术平方根是()A.4 B.±4 C.8 D.±8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
2015-2016学年黑龙江省鸡西七年级(下)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分.将正确答案的字母填入方框中)1. |﹣2|等于()A.﹣2 B.﹣C.2 D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.下列问题中不适合于全面调查的是()A.了解全班同学的身高情况B.了解全校教师的年龄C.了解某单位的家庭收入情况D.了解全国中学生的视力情况4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与15.下列各组单项式中,为同类项的是()A.a3与a2B.a2与2a2C.2xy与2x D.﹣3与a6.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0 B.ab=0 C.﹣<0 D. +>07.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.8.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AB=BC,则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线;⑥直线l经过点A,那么点A在直线l上.A.2个B.3个C.4个D.5个二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)11.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为.12.单项式﹣xy2的系数是.13.一个角是70°39′,则它的余角的度数是.14.比﹣3大而比2小的所有整数的和为.15.如图,把一张长方形纸折叠后,B、C两点分别落在B′、C′处,如果∠AEB′=70°,则∠B′EF=°.16.一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.17.已知线段AB=6cm,AB所在直线上有一点C,若AC=2BC,则线段AC的长为cm.18.已知单项式3a m+2b4与﹣a5b n﹣1是同类项,则m+n=.19.如果|x+3|+(2y﹣5)2=0,则x+2y=.20.如图所示,由一些点组成的三角形图案,每条边(包括两个顶点)有n(n>1)个点,每个图形中总的点数为s,当n=9时,s=.三、解答题(本大题共8个小题;共60分)21.计算:(1)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);(2)(﹣1)3﹣×[2﹣(﹣3)2].22.一个角的余角比这个角的少30°,求这个角的大小.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.24.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,﹣3,+2,﹣2.5,﹣3,+1,﹣2,﹣2(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?25.如图,∠AOB=∠COD=90°,OC 平分∠AOB ,∠BOD=3∠DOE .试求∠COE 的度数.26.如图,已知线段AB 和CD 的公共部分BD=AB=CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长.27.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.2015-2016学年黑龙江省鸡西年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分.将正确答案的字母填入方框中)1.|﹣2|等于()A.﹣2 B.﹣C.2 D.【考点】15:绝对值.【专题】2B :探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】IB:直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列问题中不适合于全面调查的是()A.了解全班同学的身高情况B.了解全校教师的年龄C.了解某单位的家庭收入情况D.了解全国中学生的视力情况【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解全班同学的身高情况适合全面调查,故A错误;B、了解全校教师的年龄适合全面调查,故B错误;C、了解某单位的家庭收入情况适合全面调查,故C错误;D、了解全国中学生的视力情况适合抽样调查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1【考点】14:相反数;15:绝对值;1E:有理数的乘方.【专题】11 :计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.下列各组单项式中,为同类项的是()A.a3与a2B.a2与2a2C.2xy与2x D.﹣3与a【考点】35:合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.【点评】本题考查了同类项,利用了同类项的定义.6.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0 B.ab=0 C.﹣<0 D. +>0【考点】29:实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<0<a,∴ab<0,故选项B错误;C、∵b<0<a,∴﹣>0,故选项C错误;D、∵b<﹣1<0<a<1,∴ +>0,故选项D正确.故选:D.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.7.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.【考点】I6:几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°【考点】IK:角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°.故选D.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】IH:方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.10.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AB=BC,则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线;⑥直线l经过点A,那么点A在直线l上.A.2个B.3个C.4个D.5个【考点】IJ:角平分线的定义;IB:直线的性质:两点确定一条直线;IC:线段的性质:两点之间线段最短;ID:两点间的距离.【分析】根据角平分线定义,点和直线的位置关系,直线的性质,线段的性质,两点之间的距离的定义逐个判断即可.【解答】解:∵过两点有且只有一条直线,∴①正确;∵连接两点的线段的长度叫两点的距离,∴②错误;∵两点之间,线段最短,∴③正确;当B在直线AC外时,AB=BC,则点B不是AC的中点,∴④错误;∵从角的顶点出发,把一个角分成两相等的角的射线叫角的平分线,∴⑤错误;∵直线l经过点A,那么点A在直线l上,∴⑥正确,即正确的有3个,故选B.【点评】本题考查了角平分线定义,点和直线的位置关系,直线的性质,线段的性质,两点之间的距离的定义的应用,能熟记知识点是解此题的关键.二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)11.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为 2.5×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2 500 000=2.5×106,故答案为:2.5×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.单项式﹣xy2的系数是﹣.【考点】42:单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.13.一个角是70°39′,则它的余角的度数是19°21′.【考点】IL:余角和补角;II:度分秒的换算.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.比﹣3大而比2小的所有整数的和为﹣3.【考点】19:有理数的加法.【分析】首先找出比﹣3大而比2小的所有整数,在进行加法计算即可.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.【点评】此题主要考查了有理数的加法,关键是找出符合条件的整数,掌握计算法则.15.如图,把一张长方形纸折叠后,B、C两点分别落在B′、C′处,如果∠AEB′=70°,则∠B′EF=55°.【考点】JA:平行线的性质.【分析】根据翻折的性质得到∠B′EF=∠BEF,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸折叠后,B、C两点分别落在B′、C′处,∴∠B′EF=∠BEF,∵∠AEB′=70°,∴∠B′EF==55°,故答案为:55.【点评】本题考查了翻折的性质,平角的定义,熟练掌握翻折的性质是解题的关键.16.一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是33.3%.【考点】VB:扇形统计图.【分析】圆心角的度数=百分比×360°,则该部分在总体中所占有的百分比=120°÷360°=33.3%.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.【点评】扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.17.已知线段AB=6cm,AB所在直线上有一点C,若AC=2BC,则线段AC的长为4或12cm.【考点】ID:两点间的距离.【分析】有两种情况:当C在AB的延长线上时,当C在线段AB上时,根据已知求出即可.【解答】解:如图,有两种情况:当C在AB的延长线上时,如图①,∵AB=6cm,AC=2BC,∴AB=BC=6cm,∴AC=12cm;当C在线段AB上时,如图②∵AB=6cm,AC=2BC,∴AC=4cm;故答案为:4或12.【点评】本题考查了求两点之间的距离的应用,能求出符合的所有情况是解此题的关键.18.已知单项式3a m+2b4与﹣a5b n﹣1是同类项,则m+n=8.【考点】34:同类项.【分析】本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:由同类项的定义可知m+2=5,n﹣1=4,解得m=3,n=5,则m+n=8.故答案为:8.【点评】同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.19.如果|x+3|+(2y﹣5)2=0,则x+2y=2.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+3=0,2y﹣5=0,解得x=﹣3,y=,所以,x+2y═﹣3+2×=﹣3+5=2.故答案为:2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图所示,由一些点组成的三角形图案,每条边(包括两个顶点)有n(n>1)个点,每个图形中总的点数为s,当n=9时,s=24.【考点】38:规律型:图形的变化类.【分析】根据已知图形可以发现,前几个图形中的点数分别为:3,6,9,12,所以可得规律为:第n个图形中的点数为3(n﹣1)..【解答】解:根据题意分析可得:n=2时,S=3.此后,n每增加1,S就增加3个.故当n=9时,S=(9﹣1)×3=24,故答案为:24.【点评】此题主要考查了图形的变化规律,可以培养学生的观察能力和分析、归纳能力,属于规律性题目.注意由特殊到一般的归纳方法,此题的规律为:第n个图形中的点数为3(n﹣1).三、解答题(本大题共8个小题;共60分)21.(2016春•鸡西校级期末)计算:(1)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);(2)(﹣1)3﹣×[2﹣(﹣3)2].【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10+2﹣12=﹣20;(2)原式=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.一个角的余角比这个角的少30°,求这个角的大小.【考点】IL:余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.【考点】45:整式的加减—化简求值.【分析】先去括号,然后合并同类项使整式化为最简,再将x的值代入即可得出答案.【解答】解:原式=﹣x2+x﹣2﹣x+1=﹣x2﹣1,将x=代入得:﹣x2﹣1=﹣.故原式的值为:﹣.【点评】化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.24.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,﹣3,+2,﹣2.5,﹣3,+1,﹣2,﹣2(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?【考点】11:正数和负数.【专题】11 :计算题;511:实数.【分析】(1)求出记录数字之和,确定出总重即可;(2)设蔬菜商店在销售过程中白菜的单价应定为每千克x元,根据售价﹣进价=利润列出方程,求出方程的解即可得到结果.【解答】解:(1)根据题意得:25×8+(+1.5﹣3+2﹣2.5﹣3+1﹣2﹣2)=200﹣8=192(千克),则这8筐白菜一共重192千克;(2)设蔬菜商店在销售过程中白菜的单价应定为每千克x元,根据题意得:192x﹣10×8=10×8×20%,解得:x=0.5,则蔬菜商店在销售过程中白菜的单价应定为每千克0.5元.【点评】此题考查了正数与负数,弄清题意是解本题的关键.25.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【考点】IJ:角平分线的定义.【专题】11 :计算题.【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°故答案为75°.【点评】本题主要考查角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.26.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【考点】ID:两点间的距离.【专题】34 :方程思想.【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.27.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.【考点】V8:频数(率)分布直方图;VB:扇形统计图.【专题】27 :图表型.【分析】(1)由两个统计图可以看出:该校学生报名总人数有160÷40%=400人;(2)羽毛球的学生有400×25%=100人;因为选排球的人数是100人,即可求得占报名总人数的百分比;(3)因为选篮球的人数是40人,除以总人数即可求解.【解答】解:(1)由两个统计图可知该校报名总人数是(人);(2)选羽毛球的人数是400×25%=100(人),因为选排球的人数是100人,所以,因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.(3)如图:【点评】本题是考查频数的计算以及动手操作能力.。