第二十七章圆章末测试
- 格式:docx
- 大小:178.19 KB
- 文档页数:6
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。
2020年华师大新版数学下册九年级《第27章圆》单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.52.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=3,则⊙O的直径为()A.8B.10C.15D.203.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm4.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个5.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°6.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=100°,则∠DCE 的大小是()A.115°B.105°C.100°D.95°7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.8.已知⊙O的半径r=3,PO=,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定9.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦10.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2D.11.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1B.﹣≤x≤C.0≤x≤D.x>12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=50°,则∠ABC的度数为()A.20°B.25°C.40°D.50°二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为cm.15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.17.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为.18.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB =.19.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是.20.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.三.解答题(共8小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?22.⊙O的直径AB和弦CD相交于点E,已知AE=1,EB=5,∠DEB=60°,求CD的长.23.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB 与车轮内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.24.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.25.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.26.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.27.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.28.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.2020年华师大新版数学下册九年级《第27章圆》单元测试卷参考答案与试题解析一.选择题(共12小题)1.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.5【分析】弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、E、C是⊙O上的点,图中的弦有AB、BC、CE,一共3条.故选:B.【点评】本题考查了圆的认识,熟记连接圆上任意两点的线段叫弦是解题的关键.2.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=3,则⊙O的直径为()A.8B.10C.15D.20【分析】连结OC,设⊙O的半径为R,则OE=OB﹣BE=R﹣3,先根据垂径定理得到CE=CD=6,然后在Rt△OCE中,利用勾股定理可计算出R,从而得到⊙O的直径.【解答】解:连结OC,如图,设⊙O的半径为R,则OE=OB﹣BE=R﹣3,∵CD⊥AB,∴CE=DE=CD=×12=6,在Rt△OCE中,OE=R﹣3,OC=R,∴OE2+CE2=OC2,∴(R﹣3)2+62=R2,解得R=,∴⊙O的直径为15.故选:C.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.4.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个【分析】①和④、没有前提;②、注意不是直径的弦;③、注意对称轴是直线.【解答】解:①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过圆心的直线才是它的对称轴.故选D.【点评】在叙述命题时注意要强调命题成立的条件.5.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°【分析】连结CD,如图,根据半圆(或直径)所对的圆周角是直角得到∠BCD=90°,则利用互余可计算出∠D=57°,然后根据圆周角定理即可得到∠A的度数.【解答】解:连结CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=100°,则∠DCE 的大小是()A.115°B.105°C.100°D.95°【分析】由圆的内接四边形的性质,可得∠BAD+∠BCD=180°,又由邻补角的定义可得:∠BCD+∠DCE=180°,可得∠DCE=∠BAD.【解答】解:∵∠BAD=100°,∴∠BCD=180°﹣∠BAD=80°,∴∠DCE=180°﹣∠BCD=100°.故选:C.【点评】此题考查了圆的内接四边形的性质.此题比较简单,注意掌握数形结合思想的应用.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.8.已知⊙O的半径r=3,PO=,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=>3,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】本题考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.9.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦【分析】利用圆的有关定义分别判断后即可确定正确的选项.【解答】解:A、半圆是弧,但弧不一定是半圆,故本选项错误;B、不在同一直线上的三点确定一个圆,故本选项错误;C、当被平分的弦为直径时,两直径不一定垂直,故本选项错误;D、直径是同一圆中最长的弦,故本选项正确,故选:D.【点评】本题考查了圆的认识,了解圆中有关的概念是解答本题的关键,难道不大.10.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2D.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.【解答】解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是:.故选:A.【点评】此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.11.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1B.﹣≤x≤C.0≤x≤D.x>【分析】首先作出圆的切线,求出直线与圆相切时的P的取值,再结合图象可得出P的取值范围,即可得出答案.【解答】解:∵半径为1的圆,∠AOB=45°,过点P且与OA平行的直线与⊙O有公共点,∴当P′C与圆相切时,切点为C,∴OC⊥P′C,CO=1,∠P′OC=45°,OP′=,∴过点P且与OA平行的直线与⊙O有公共点,即0≤x≤,同理点P在点O左侧时,0∴0≤x≤.故选:C.【点评】此题主要考查了直线与圆的位置关系,作出切线找出直线与圆有交点的分界点是解决问题的关键.12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=50°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【分析】先利用切线的性质得到∠OAP=90°,则利用互余和计算出∠AOP=40°,再利用等腰三角形的性质和三角形外角性质可计算出∠B的度数.【解答】解:∵直线PA与⊙O相切于点A,∴OA⊥PA,∴∠OAP=90°,∴∠AOPP=90°﹣∠P=40°,∵∠AOP=∠B+∠OCB,而OB=OC,∴∠B=∠AOP=20°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB =90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.14.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为8cm.【分析】连接OA,由OC垂直于弦AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由OA与OC的长,利用勾股定理求出AC的长,即可得出AB的长.【解答】解:连接OA,∵OC⊥AB,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC===4cm,∴AB=2AC=8cm.故答案为:8.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10cm.【分析】先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【解答】解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点评】此题主要考查了垂径定理的应用,勾股定理,构造出直角三角形是解本题的关键.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是5cm.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN的长.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.所对的圆心角为:×360°=120°,所以圆柱上M,N两点间的距离为:2×5×sin60°=5cm.故答案为:5.【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.17.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为50°.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,∠ACB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,求得∠ABD的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=40°,∴∠ACD=90°﹣∠BCD=50°,∴∠ABD=∠ACD=50°.故答案为:50°.【点评】此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.18.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB =30°.【分析】根据圆内接三角形的性质得到∠ADC+∠ABC=180°,根据平行四边形的性质的∠AOC=∠ABC,根据圆周角定理得到∠ADC=∠AOC,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠ADC+∠ABC=180°,∵四边形ABCO为平行四边形,∴∠AOC=∠ABC,由圆周角定理得,∠ADC=∠AOC,∴∠ADC+2∠ADC=180°,∴∠ADC=60°,∵OA=OC,∴平行四边形ABCO为菱形,∴BA=BC,∴=,∴∠ADB=∠ADC=30°,故答案为:30°.【点评】本题考查的是圆内接三角形的性质、平行四边形的性质、菱形的判定,掌握相关的性质定理和判定定理是解题的关键.19.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是 6.5cm或2.5cm.【分析】本题应分为两种情况来讨论,关键是得出:当点P在⊙O内时,直径=最近点的距离+最远点的距离;当点P在⊙O外时,直径=最远点的距离﹣最近点的距离.【解答】解:点P应分为位于圆的内部与外部两种情况讨论:①当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是4+9=13cm,因而半径是6.5cm;②当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是9﹣4=5cm,因而半径是2.5cm.故答案为6.5cm或2.5cm.【点评】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P 在圆内⇔d<r.注意到分两种情况进行讨论是解决本题的关键.20.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.三.解答题(共8小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB 得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴=,∴AC=BD.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质.22.⊙O的直径AB和弦CD相交于点E,已知AE=1,EB=5,∠DEB=60°,求CD的长.【分析】作OF⊥CD于点F,连接OD,直角△OEF中利用三角函数即可求得OF的长,然后在直角△ODF中利用勾股定理即可求得DF的长,然后根据垂径定理可以得到CD =2DF,从而求解.【解答】解:作OF⊥CD于点F,连接OD.∵AE=1,EB=5,∴AB=AE+BE=6,半径长是3.∵在直角△OEF中,OE=OA﹣AE=3﹣1=2,sin∠DEB=,∴OF=OE•sin∠DEB=2×=.在直角△ODF中,DF===,∴CD=2DF=2.【点评】本题考查了垂径定理、三角函数以及勾股定理,正确作出辅助线是关键.23.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB 与车轮内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.24.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.【分析】(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.【解答】(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.【点评】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.26.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.【分析】先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC =100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.【点评】本题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数.27.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.【分析】设OA交⊙O于C,连结B′C,如图2,根据新定义计算出OA′=2,OB′=4,则点A′为OC的中点,点B和B′重合,再证明△OBC为等边三角形,则B′A′⊥OC,然后在Rt△OA′B′中,利用正弦的定义可求A′B′的长.【解答】解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了阅读理解能力.28.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.【分析】(1)根据题意画出图形,再作出辅助线构成等腰三角形,利用等腰三角形的性质进行证明;(2)注意要分二种情况讨论:即B、D在AC两侧和B、D在AC同侧.【解答】解:(1)线段MN与BD垂直.连接MB与MD,由直角三角形斜边上的中线等于斜边长的一半,可以知道MB=,MD=,所以MB=MD.三角形MBD中,N是底边上的中点,等腰三角形的性质可以说明:MN垂直BD.(2)如图一:连接BM、MD,延长DM,过B作DM延长线的垂线段BE,∵M是AC的中点,∴MD⊥AC,△BCM是等边三角形,∴在Rt△BEM中,∠EMB=30°,∵AC=4,∴BM=2,∴BE=1,EM=,MD=2,从而可知BD==2∴BN=.由Rt△BMN可得:MN==.如图二:连接BM、MD,延长AD,过B作垂线段BE,∵M、N分别是AC,BD中点,∴MD=AC,MB AC,∴MD=MB,∵∠BAC=30°,∠CAD=45°,∴∠BMC=60°,∠DMC=90°,∴∠BMD=30°,∴∠BDM==75°,∵∠MDA=45°∴∠EDB=180°﹣∠BDM﹣∠MDA=60°,令ED=x,则BE=x,AD=2,AB=2,∴由Rt△ABE可得:(2)2=(x)2+(x+2)2,解得x=,则BD=2,∵M、N分别是AC,BD中点,∴MD=2 DN=.由Rt△MND可得:MN==.【点评】本题综合考查了等腰三角形的性质和解直角三角形的方法,同时考查了分类讨论思想.。
九年级(上)第二十七章圆(一)章节检测题(B )一、选择题(本大题共10小题,每小题2分,共计20分。
在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在题后括号内。
)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) (A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是( )(A )平分弦的直线垂直于弦(B )平分弦的直线也必平分弦所对的两条弧(C )弦的垂直平分线必平分弦所对的两条弧(D )平分一条弧的直线必平分这条弧所对的弦 3.(08山东枣庄)如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( )A .2.5 B.5.54.(08山东潍坊)如图,ABC △内接于圆O ,50A = ∠,60ABC =∠,BD 是圆O 的直径,BD 交AC 于点E ,连结DC ,则AEB ∠等于( )A .70B .110C .90D .1205、(08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( )A 、2个B 、3个C 、4个D 、5个BA6.(08湖南益阳)如图所示,一个扇形铁皮OAB. 已知OA =60cm ,∠AOB =120°,小华将OA 、OB 合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为( ) A. 10cm B. 20cm C. 24cm D. 30cm 7、半径为1的⊙O 中,120°的圆心角所对的弧长是( )第3题图 120°O AB(第5题图)(第6题图)A 、π31B 、π32C 、πD 、π238.(08湖南永州)一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( )A .38cmB .316cm C .3cmD .34cm9.(08广东肇庆)如图,AB 是⊙O 的直径,∠ABC =30°,则∠BAC =( ) A .90° B .60° C .45° D .30°10、(08山东烟台)如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π(第10题图)二、填空题(本大题共8个小题;每小题3分,共24分。
华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB 于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,,,则为()(取)A. B. C. D.2、AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A.40°B.140°或40°C.20°D.20°或160°3、⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定4、在中,,,,将绕边所在直线旋转一周得到一个圆锥,该圆锥的侧面积()A. B. C. D.5、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A. B. C.1 D.26、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°7、如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O 交于点D,则的长是()A.πcmB.3πcmC.4πcmD.5πcm8、若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。
如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)那么下面四个结论:①∠AOB=∠ A1O1B1;②△AOB∽△ A1O1B1;③A 1B1=k;④扇形AOB与扇形 A1O1B1的面积之比为。
成立的个数为:()A.1个B.2个C.3个D.4个9、如图,△ABC是⊙O的内接三角形,半径OB=3,sinA= ,则弦BC的长为()A.3B.4C.5D.3.7510、如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为( )A. B. C. D.11、如图,AB为⊙O的直径,点C为⊙O上一点,连接CO,作AD OC,若CO =,AC=2,则AD=()A.3B.C.D.12、如图,⊙O的弦AB垂直于直径MN,C为垂足.若OA=5 cm,下面四个结论中可能成立的是()A.AB=12 cmB.OC=6 cmC.AC=3 cmD.MN=9 cm13、如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=1,则图中阴影部分的面积为A. B. C. D.14、如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:① =2 ;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是()A.1B.2C.3D.415、如图,是⊙O的直径,的平分线交⊙O于点,连接,,给出下列四个结论:① ;② 是等腰直角三角形;③ ;④ .其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=3,∠BAC=120°,以点A为圆心,1为半径作圆弧,分别交AB,AC于点D,E,以点C为圆心,3为半径作圆弧,分别交AC,BC于点A,F.若图中阴影部分的面积分别为S1, S2,则S1﹣S2的值为________.17、如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为________.18、已知等腰内接于半径为5的,已知圆心O到的距离为3,则这个等腰中底边上的高可能是________.19、如图,在半径为3的⊙O中,随意向圆内投掷一个小球,经过大量重复投掷后发现,小球落在阴影部分的概率稳定在,则的长约为________.(结果保留)20、蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB 边如图所示,则△ABC是直角三角形的个数有________ .21、已知扇形的半径为3cm,圆心角为120°,则此扇形的弧长为________ cm,扇形的面积是________ cm2.(结果保留π)22、已知正六边形的边心距为,则这个正六边形的边长为________23、如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为________.24、如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为________.25、已知的三边a、b、c满足,则的内切圆半径=________.三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,若,求证:AB=AC28、已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明.29、已知如图:为测量一个圆的半径,采用了下面的方法:将圆平放在一个平面上,用一个含有30°角的三角板和一把无刻度的直尺,按图示的方式测量(此时,⊙O与三角板和直尺分别相切,切点分别为点C、点B),若量得AB=5cm,试求圆的半径以及的弧长.30、如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、C5、B6、D7、B8、D9、B10、A11、D12、C13、A14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
第27章达标测试卷一、选择题(每题3分,共30分)1.⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是( )A .5B .6C .7D .82.如图,在平面直角坐标系中,O 为原点,点A 的坐标为(3,0),点B的坐标为(0,4),⊙D 过A ,B ,O 三点,点C 为ABO ︵上一点(不与O ,A 两点重合),则cos C 的值为( ) A.34B.35C.43D.45(第2题) (第3题) (第5题)3.如图,一圆弧过方格的格点A ,B ,C ,若在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),点B 的坐标为(-4,2),则该圆弧所在圆的圆心坐标是( ) A .(1,1)B .(-1,1)C .(2,1)D .(1,-1)4.已知圆锥的母线长为6 cm ,底面圆的半径为3 cm ,则此圆锥侧面展开图(扇形)的圆心角是( ) A .30°B .60°C .90°D .180°5.如图,AB ,AC 与⊙O 分别相切于B ,C 两点,∠A =50°,若点P 是圆上异于B ,C 的一动点,则∠BPC 的度数是( )A .65°B .115°C .65°或115°D .130°或50°6.如图,点O 是△ABC 的外心,连结OA ,AD ⊥BC 于点D ,若AB =48,AO=25,则sin ∠CAD 的值为( ) A.1225B.724C.725D.2425(第6题) (第7题) (第8题) (第9题)7.如图,在四边形ABCD 中,连结AC ,BD ,点O 为AB 的中点,若∠ADB=∠ACB =90°,则下面结论不一定正确的是( ) A .DC =CBB .∠DAC =∠DBCC .∠BCD +∠BAD =180°D .点A ,C ,D 到点O 的距离相等8.如图,半圆O 的直径AB =7,弦AC ,BD 相交于点E ,弦CD =72,且BD=5,则DE 等于( ) A .2 2B .4 2C.53D.529.如图,等腰三角形ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB =AC =5,BC =6,则DE 的长是( ) A.3 1010B.3 105C.3 55D.6 5510.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为( ) A.π4B.π2C.π6D.π3(第10题) (第12题) (第13题) 二、填空题(每题3分,共18分)11. 已知⊙O 的半径是3 cm ,点O 到直线l 的距离为4 cm ,则⊙O 与直线l 的位置关系是__________.12.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若∠CAB =55°,则∠ADC 的大小为__________度. 13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式:弧田面积=12(弦×矢+矢2).弧田由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理可以求解.现已知弦AB =8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为________平方米.14.如图,⊙O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角∠BOD 的大小为________度.(第14题) (第15题) (第16题)15. 如图,在扇形BOC 中,OB =2,∠BOC =60°,点D 是BC ︵的中点,点E ,F 分别为半径OC ,OB 上的动点,当△DEF 的周长最小时,图中阴影部分的面积为________.16.如图,已知AB 为⊙O 的直径,AB =2,AD 是⊙O 的切线,切点为A ,过圆上一点C 作⊙O 的切线CF ,交AD 于点M ,连结AC ,CB.若∠ABC =30°,则AM =__________.三、解答题(17~20题每题8分,21~22题每题10分,共52分) 17.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E.(第17题)(1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,连结AC ,D 是BC ︵上的一点,CD =BD ,连结BC 、AD 、OD ,BC 与AD 、OD 分别交于点E 、F.(第18题)(1)求证:∠CAB =∠DOB ; (2)求证:DA DC =DBDE;(3)若CE =34AC ,求sin ∠CDA 的值.19. 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,作EG ⊥AB 于H ,交BC于F ,延长GE 交直线MC 于D ,且∠MCA =∠B ,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.(第19题)20.如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11的延长线于点P.(1)通过计算比较直径和劣弧A7A11长度哪个更长;(2)连结A7A11,则A7A11和PA1有什么特殊的位置关系?请简要说明理由;(3)求PA7的长.(第20题)21. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连结AC ,过 BD ︵上一点E 作EG ∥AC 交CD 的延长线于点G ,连结AE 交CD 于点F ,且EG =FG.(第21题)(1)求证:EG 是⊙O 的切线;(2)延长AB 交GE 的延长线于点M ,若tanG =12,AH =2,求EM 的长.22.如图①,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O 与内心I 之间的距离OI =d ,则有d 2=R 2-2Rr.(第22题)下面是上述结论的证明过程(部分):连结AI ,并延长交⊙O 于点D ,过点I 作⊙O 的直径MN ,连结DM ,AN.∵∠D =∠N ,∠DMI =∠NAI ,∴△MDI ∽△ANI.∴IM IA =IDIN ,∴IA·ID=IM ·IN,①如图②,在图①(隐去MD ,AN)的基础上作⊙O 的直径DE ,连结BE ,BD ,BI ,IF.∵DE 是⊙O 的直径,∴∠DBE =90°.∵⊙I 与AB 相切于点F ,∴∠AFI =90°,∴∠DBE =∠IFA.∵∠BAD =∠E ,∴△AIF ∽△EDB ,∴IA DE =IFBD .∴IA·BD=DE·IF.②任务:(1)观察发现:IM =R +d ,IN =________(用含R ,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则△ABC的外心与内心之间的距离为________cm.答案一、1.A 2.A 3.B 4.D 5.C :连结OC ,OB ,∵AB ,AC 与⊙O 分别相切于B ,C 两点, ∴∠ACO =90°,∠ABO =90°,∴∠BOC =360°-90°-90°-50°=130°.当点P 在优弧BC 上时,∠BPC =12∠BOC =65°;当点P 在劣弧BC 上时,∠BPC =180°-65°=115°. 6.C 7.A 8.A9.D :连结OA ,OE ,OB ,OD ,OB 交DE 于H ,如图.∵等腰三角形ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F , ∴AO 平分∠BAC ,OE ⊥BC ,OD ⊥AB , BE =BD. ∵AB =AC , ∴AO ⊥BC ,∴点A 、O 、E 共线,即AE ⊥BC , ∴BE =CE =3.在Rt △ABE 中,AE =AB 2-BE 2=52-32=4. ∵BD =BE =3, ∴AD =2.设⊙O 的半径为r ,则OD =OE =r ,AO =4-r ,在Rt △AOD 中,r 2+22=(4-r)2,解得r =32. 在Rt △BOE 中,OB =32+⎝ ⎛⎭⎪⎫322=3 52. ∵AB ,BC 为⊙O 的切线,∴BO 平分∠DBE ,BD =BE ,∴OB 垂直平分DE ,∴DH =EH.∵12HE·OB=12OE·BE, ∴HE =OE·BE OB =32×33 52=3 55, ∴DE =2EH =6 55.故选D.(第9题)10.A二、11.相离 12.3513.10 14.144 15.2π-33 16.33:由题意易得∠MAC =30°,AM =CM , ∴∠MCA =∠MAC =30°,∴∠AMC =120°.连结OM ,则∠AMO =12∠AMC =60°. ∴在Rt △AOM 中,tan 60°=OA AM, ∴AM =OA tan 60°=12AB 3=33. 三、17.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°,∴∠AOD =180°-∠OAD -∠D =40°.∵AB 是半圆O 的直径,∴∠C =90°.∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC.∴AD ︵=CD ︵,∴∠CAD =12∠AOD =20°. (2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4. 设OA =x ,则OE =OD -DE =x -2.在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5.∴AB =2OA =10.18.(1)证明:∵CD = BD ,∴CD ︵=BD ︵,∴∠CAD =∠BAD ,∴∠CAB =2∠BAD ,∵∠DOB =2∠BAD ,∴∠CAB =∠DOB.(2)证明:由(1)知CD ︵=BD ︵,∴∠CAD =∠DCB.又∵∠CDA =∠CDE ,∴△DAC ∽△DCE ,∴DA DC =DC DE. 又∵CD =BD ,∴DA DC =DB DE. (3)解:∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∵CE =34AC , ∴设CE =3k ,AC =4k(k≠0),∴AE =AC 2+CE 2=5k ,∵△DAC ∽△DCE ,∴DA DC =DC DE =AC CE =43, ∴DA =43DC ,DE =34DC , ∵AE =DA -DE =43DC -34DC =5k , ∴DC =607k , ∴DE =457k , ∵∠CAE =∠DBE ,∠ACE =∠BDE ,∴△ACE ∽△BDE ,∴AE BE =CE DE, ∴5k BE =3k 45k 7 ,∴BE =75k 7, ∴BC =3k +75k 7=967k , ∴AB =AC 2+BC 2= 16k 2+⎝ ⎛⎭⎪⎫96k 72=1007k , ∴sin ∠CDA =sin ∠ABC =AC AB =4k 1007k =725. 19. 证明:(1)连结OC ,如图,∵AB 是⊙O 的直径,∴∠ACB =90°,即∠2+∠3=90°.∵OB =OC ,∴∠B =∠3.∵∠1=∠B ,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM =90°.∴OC ⊥CM ,∴MC 是⊙O 的切线.(2)∵EG ⊥AB ,∴∠B +∠BFH =90°.∵∠BFH =∠4,∴∠4+∠B =90°.∵OC ⊥CM ,∴∠5+∠3=90°.∵∠3=∠B ,∴∠5+∠B =90°,∴∠4=∠5,∴DC =DF ,∴△DCF 是等腰三角形.(第19题)20.解:(1)连结A 11O ,A 7O.由题意易得∠A 7OA 11=120°,直径的长为12,∴劣弧A 7A 11的长=120π·6180=4π, ∵4π>12,∴劣弧A 7A 11的长比直径长.(2)PA 1⊥A 7A 11.理由:连结OA 1.由题易知点A 1,O ,A 7三点共线,即A 1A 7是⊙O 的直径,∴∠A7A11A1=90°,∴PA1⊥A7A11.(3)∵PA7是⊙O的切线,∴PA7⊥A1A7,∴∠PA7A1=90°,由题意易得∠PA1A7=60°,A1A7=12,∴PA7=A1A7·tan60°=12 3.21. (1)证明:连结OE,如图,∵EG=FG,∴∠GFE=∠GEF.而∠GFE=∠AFC,∴∠GEF=∠AFC.∵OA=OE,∴∠OEA=∠OAE.∵AB⊥CD,∴∠AFC+∠FAH=90°,∴∠GEF+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线.(2)解:∵GE∥AC,∴∠G =∠ACH.在Rt △ACH 中,∵tan ∠ACH =AH CH =12, ∴CH =2AH =2×2=4.连结OC ,如图,设⊙O 的半径为r ,则OH =r -2.在Rt △OCH 中,(r -2)2+42=r 2,解得r =5,∵GE ∥AC ,∴∠M =∠CAH.易得Rt △OEM ∽Rt △CHA ,∴EM AH =OE CH ,即EM 2=54, ∴EM =52.(第21题)22. 解:(1)R -d(2)BD =ID ,理由如下:∵点I 是△ABC 的内心,∴∠BAD =∠CAD ,∠CBI =∠ABI.∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID.(3)由(2)知,BD=ID,∴IA·ID=DE·IF.又∵IA·ID=IM·IN,∴DE·IF=IM·IN,∴2R·r=(R+d)(R-d),∴2Rr=R2-d2,∴d2=R2-2Rr.(4) 5。
华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,PA=,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定2、如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32B.34C.36D.383、已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3, AB=8,则tan∠OPA的值为()A.3B.C. 或D.3或4、如图,是的弦,点在上,已知,则等于()A.40°B.50C.60°D.80°5、如图,在⊙O中,直径AB,弦CD,且AB⊥CD于点E,CD=4,OE=1.5,则⊙O 的半径是()A.2.5B.2C.2.4D.36、如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.7、下列语句中,正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个8、点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A.8B.10.5C.D.129、已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.45°B.40°C.50°D.65°10、如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA,CB分别相交于点P、Q,则线段PQ长度的最小值是()A.2B.C.D.11、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°12、如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为()A.5B.C.D.13、下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等 C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心14、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.45°B.60°C.65°D.70°15、若刻度尺与⊙O按如图位置摆放,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),⊙O的半径是5cm,则圆心O到刻度尺的距离为()A.5cmB.4cmC.3cmD.2cm二、填空题(共10题,共计30分)16、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为________.17、如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为________.18、如图,点P是⊙ 的直径BA的延长线上一点,PC切⊙ 于点C,若,PB=6,则PC等于 ________.19、如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为________20、如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.21、如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为________22、如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.23、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)24、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是________度.25、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移10米,半圆的直径为2米,则圆心O所经过的路线长是________ 米.三、解答题(共5题,共计25分)26、计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= ×底面积×高,π取3)27、阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,①连接OP,作线段OP的垂直平分线MN交OP于点C.②以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.③作直线PA,PB.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________;由此可证明直线PA,PB都是⊙O的切线,写出依据.请写出证明过程.________28、如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.29、如图,A,B是⊙O上两点,∠AOB=120°,C为弧AB的中点,求证:四边形OACB是菱形.30、如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、A5、A6、A8、A9、B10、B11、A12、D13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
华东师大版九年级数学下册第27章 圆章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A .B .C .4D .2、已知O 是正六边形ABCDEF 的外接圆,正六边形ABCDEF 形OAC 围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )A .1B .13 C .23 D .433、ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若20B ∠=︒,则C ∠的大小等于( )A .50︒B .25︒C .40︒D .20︒ 4、如图,AB 是O 的直径,CD 是O 的弦.50CAB ∠=,则∠D =( )度A .30B .40C .50D .605、如图,在33⨯的网格中,A ,B 均为格点,以点A 为圆心,AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则tan BAC ∠的值是( )A .12BCD .236、如图,圆形螺帽的内接正六边形的面积为2,则圆形螺帽的半径是( )A .1cmB .2cmC .D .4cm7、如图,AB 是O 的直径,CD 是O 的弦,且CD AB ∥,12AB =,6CD =,则图中阴影部分的面积为( )A .18πB .12πC .6πD .3π8、如图,在矩形ABCD 中,2AB =,4BC =,以点B 为圆心,BC 为半径画弧,交AD 于点F ,则图中阴影部分面积为( ).(结果保留π).A .4π83- B .4π43-C .π83- D .π43- 9、如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为( )A.10 B.11 C.12 D.1310、如图,AB为O的直径,4AB=,CD=BC的长是劣弧BD长的2倍,则AC的长为()A.B.C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.2、如图,AB为O的直径,C、E为O上的点,连接AC、BC、CE、BE,D为AB延长线上一=.若O的半径为A到CD的距离为________.点,连接CD,且BCD E∠=∠,AB CD3、如图,矩形ABCD 中,1AB =,AD =,以BC 的中点E 为圆心的弧MPN 与AD 相切,则图中阴影部分的面积为__________.4、如图,AB 是半圆O 的直径,AB =4,点C ,D 在半圆上,OC ⊥AB ,2BD CD =,点P 是OC 上的一个动点,则BP +DP 的最小值为______.5、如图,在平行四边形ABCD 中,7AB =,3AD =,120A ︒∠=,以点B 为圆心,BC 为半径的圆弧交AB 于点E ,连接DE ,则图中黑色阴影部分的面积为________.(结果保留π)6、如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点D 为斜边BC 上一点,且BD =3CD ,将△ABD 沿直线AD 翻折,点B 的对应点为B ′,则sin ∠CB ′D =______.7、如图,在⊙O 中,AB 是⊙O 的内接正六边形的一边,BC 是⊙O 的内接正十边形的一边,则∠ABC =______°.8、如图,PA 是⊙O 的切线,A 是切点.若∠APO =25°,则∠AOP =___________°.9、在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1,如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分的面积为_____.10、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.三、解答题(5小题,每小题8分,共计40分)1、如图,已知P是⊙O外一点.用直尺和圆规作图.(1)过点P作一条直线l,使l与⊙O相切;(2)在⊙O上作一点Q,使∠OQP=60°.(要求:保留作图痕迹,不写作法)2、如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD,连结AC.(1)△ACD为等边三角形;(2)请证明:E是OB的中点;(3)若AB=8,求CD的长.3、如图,在⊙O 中,弦AC 与弦BD 交于点P ,AC =BD .(1)求证AP =BP ;(2)连接AB ,若AB =8,BP =5,DP =3,求⊙O 的半径.4、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上(点M ,N 是格点).(1)画出线段AB 绕点N 顺时针旋转90°得到的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)在问题(1)的旋转过程中,求线段AB 扫过的面积.5、如图,在直角坐标系中,将△ABC 绕点A 顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.-参考答案-一、单选题1、A【解析】【分析】连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出AC=【详解】解:连接CD∠=∠∵DAC ABC∴AC=DC又∵AD为O的直径∴∠ACD=90°∴222+=AC DC AD∴22=2AC AD∴8===AC AD故答案为:A.【点睛】本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.2、C【解析】【分析】根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.【详解】如图,过点O作OG⊥AF,垂足为G,∵正六边形ABCDEF∴∠AOG=30°,OG∴OA=2AG,∴22-=,GA GA43解得GA=1,∴OA =2,设圆锥的半径为r ,根据题意,得2πr =1202180π⨯⨯, 解得r =23,故选C .【点睛】本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.3、A【解析】【分析】连接OA ,根据圆周角定理求出AOC ∠,根据切线的性质得到90OAC ∠=︒,根据直角三角形的性质计算,得到答案.【详解】解:连接OA ,20B ︒∠=,240AOC B ∴∠=∠=︒, AC 与圆相切于点A ,90∴∠=︒,OAC∴∠=︒-︒=︒,904050C故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.4、B【解析】【分析】由AB是⊙O的直径,推出∠ACB=90°,再由∠CAB=50°,求出∠B=40°,根据圆周角定理推出∠D=40°.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=50°,∴∠B=40°,∴∠D=40°.故选:B.【点睛】本题主要考查圆周角定理,余角的性质,关键在于推出∠A的度数,正确的运用圆周角定理.5、B【解析】【分析】CD可得利用CD AB∥,得到∠BAC=∠DCA,根据同圆的半径相等,AC=AB=3,再利用勾股定理求解,tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD = 225,CDAC AD在Rt △ACD 中,tan ∠ACD =AD CD∴tan ∠BAC =tan ∠ACD . 故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.6、D【解析】【分析】根据圆内接正六边形的性质可得△AOB 是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB 是正三角形,过O 作OM AB ⊥于,M设半径为r ,即OA =OB =AB =r ,OM =OA •sin∠OAB ,∵圆O 的内接正六边形的面积为cm 2),∴△AOB 的面积为13=436(cm 2), 即1432AB OM, 134322r r ,解得r =4,故选:D .【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.7、C【解析】【分析】如图,连接OC ,OD ,可知COD △是等边三角形,60n COD =∠=︒,6r =,2==360COD n r S S π阴影扇形,计算求解即可.【详解】解:如图连接OC ,OD∵12OC OD AB CD === ∴COD △是等边三角形∴60COD ∠=︒由题意知=ACD COD S S △△,22606==6360360COD n r S S πππ⨯⨯==阴影扇形 故选C .【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.8、A【解析】【分析】连接BE .则阴影部分的面积=S 矩形ABCD -S △ABE -S 扇形BCE ,根据题意知BE =BC =4,则∠AEB =∠EBC =30°,AE =【详解】解:如图,连接BE ,则BE =BC =4,在Rt △ABE 中,AB =2、BE =4,∴∠AEB =∠EBC =30°,AE则阴影部分的面积=S 矩形ABCD -S △ABE -S 扇形BCE=2×4-12×2×2304360π⨯=8-43π, 故选:A .【点睛】本题主要考查了扇形面积求法,本题中能够将不规则图形的面积进行转换成规则图形的面积差是解题的关键.9、A【解析】【分析】作正多边形的外接圆,连接 AO ,BO ,根据圆周角定理得到∠AOB =36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO ,BO ,∴∠AOB =2∠ADB =36°,∴这个正多边形的边数为36036=10. 故选:A .【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.10、D【解析】【分析】连接,,OC OD BC ,根据AB 求得半径,OC OD ,进而根据CD 的长,勾股定理的逆定理证明90COD ∠=︒,根据弧长关系可得60COB ∠=︒,即可证明COB △是等边三角形,求得2BC =,进而由勾股定理即可求得AC【详解】如图,连接,,OC OD BC ,4AB =2OC OD ∴==228OC OD +=,28CD =∴222OC OD CD +=OCD ∴是直角三角形,且90COD ∠=︒2CB DB ∴=23BC CD ∴= 2603BOC COD ∴∠=⨯∠=︒ OC OB =OBC ∴是等边三角形2BC OC ∴== AB 是直径,4AB =90ACB ∴∠=︒AC ∴=故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得BC 的长是解题的关键.二、填空题1、相切或相交【解析】【分析】本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.【详解】设直线AB上与圆心距离为4cm的点为C,当OC⊥AB时,OC=⊙O的半径,所以直线AB与⊙O相切,当OC与AB不垂直时,圆心O到直线AB的距离小于OC,所以圆心O到直线AB的距离小于⊙O的半径,所以直线AB与⊙O相交,综上所述直线AB与⊙O的位置关系为相切或相交,故答案为:相切或相交.【点睛】本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.2、2##2+【解析】【分析】连接OC,证明CD⊥OC;运用勾股定理求出OD=10,过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,在Rt△OCD中运用等积关系求出CD,同理,在△ACD中运用等积关系可求出AF【详解】解:连接OC,∵AB 是圆的直径,∴90ACB ∠=︒∴90ACO BCO ∠+∠=︒ ∵,BCD E A E ∠=∠∠=∠ ∴BCD E ∠=∠∵OA OC =∴OAC OAC ∠=∠∴90OAC OCB ∠+∠=︒∴90BCD BCO ∠+∠=︒,即OC ⊥CD∵O 的半径为∴AB =CD AB ==在Rt △OCD 中,222OC CD OD +=∴10OD∴10AD AO OD =+=过点A 作AF ⊥DC ,交DC 延长线于点F ,过点C 作CG ⊥AD 于点G , ∵1122OD CG OC CD =∴111022CG ⨯⨯=⨯CG 4=同理:1122AD CG AF CD =∴11(10422AF ⨯+⨯=⨯∴2AF =故答案为:2【点睛】 本题考查了切线的判定、三角形面积、勾股定理等知识,解题的关键是作辅助线,构造直角三角形.3、3π##13π 【解析】【分析】如图,连接,PE 证明四边形,ABEP 四边形PECD 都为矩形,可得扇形半径为1,再求解,,,MEB NEC MEN 再利用扇形的面积公式进行计算即可.【详解】解:如图,连接,PE扇形的弧MPN 与AD 相切,,PE AD矩形ABCD ,∴ 四边形,ABEP 四边形PECD 都为矩形,∴扇形半径1ME PE NE AB ====.在矩形ABCD 中,AD =E 为BC 的中点,∴在Rt BME △中,12BE AD ==.cos BE MEB ME ∠==, 30MEB ∴∠=︒,同理:30,NEC∴ 1802120MEN MEB ∠=︒-∠=︒.212013603S ππ⨯∴==阴影. 故答案为:3π 【点睛】 本题考查的是矩形的性质与判定,锐角三角函数的应用,扇形面积的计算,求解扇形的半径为1,及30MEB ∠=︒,30NEC ∠=︒是解本题的关键.4、【解析】【分析】如图,连接AD ,PA ,PD ,OD .首先证明PA =PB ,再根据PD +PB =PD +PA ≥AD ,求出AD 即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵2BD CD,∴∠DOB=23×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD∵PB+PD=PA+PD≥AD,∴PD+PB∴PD+PB的最小值为故答案为:【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.532π 【解析】【分析】过点C 作CH AB ⊥于点H ,根据正弦定义解得CH 的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C 作CH AB ⊥于点H ,在平行四边形ABCD 中,120A ∠=︒18012060B ∴∠=︒-︒=︒=sin sin 603CH BC B AD ∴⋅=⨯︒=平行四边形ABCD 的面积为:7AB CH ⨯= 图中黑色阴影部分的面积为:()2216016037323602360BC AE CH ππ⋅⨯⋅⋅-=⨯-=32π,32π. 【点睛】 本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.6【解析】【分析】先证明A、B′、C、D四点共圆,推出∠CB′D=∠CAD,过点D作DE⊥AC于点E,利用平行线分线段成比例定理得到AE=3CE,由勾股定理得到AD,再由正弦函数即可求解.【详解】解:∵∠CAB=90°,AB=AC,∴∠ACB=∠B=45°,由折叠的性质得∠AB′D=∠B=45°,∴∠AB′D=∠ACD=45°,∴A、B′、C、D四点共圆,∴∠CB′D=∠CAD,过点D作DE⊥AC于点E,∵∠CAB=90°,∴DE∥AB,∵BD=3CD,∴AE=3CE,∵∠ACB=45°,∴△DEC是等腰直角三角形,∴DE =CE ,设DE =CE =a ,则AE =3CE =3a ,在Rt △ADE 中,AD =,∴sin ∠CB ′D = sin ∠CAD =DE AD ==. 【点睛】 本题考查了圆内接四边形的知识,正弦函数,折叠的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.7、132°【解析】【分析】连接AO 、BO 、CO ,根据AB 是⊙O 的内接正六边形的一边,可得360606AOB ︒∠==︒ ,AO BO = ,从而得到∠ABO =60°,再由BC 是⊙O 的内接正十边形的一边,可得3603610BOC ︒︒∠== ,BO =CO ,从而得到72CBO ∠=︒,即可求解.【详解】解:如图,连接AO 、BO 、CO ,∵AB 是⊙O 的内接正六边形的一边,∴360606AOB ︒∠==︒ ,AO BO = , ∴()118060602ABO ∠=︒-︒=︒ , ∵BC 是⊙O 的内接正十边形的一边, ∴3603610BOC ︒︒∠== ,BO =CO , ∴()118036722CBO ∠=︒-︒=︒, ∴∠ABC =∠ABO + ∠CBO =60°+72°=132°.故答案为:132°【点睛】本题主要考查了圆的内接多边形的性质,等腰三角形的性质,熟练掌握圆的内接多边形的性质,等腰三角形的性质是解题的关键.8、65【解析】【分析】根据切线的性质得到OA ⊥AP ,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA 是⊙O 的切线,∴OA ⊥AP ,∴90APO AOP ∠+∠=︒,∵∠APO =25°,∴90902565AOP APO ∠=︒-∠=︒-︒=︒,故答案为:65.本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9、2π【解析】【分析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∵∠ABC =90°,∠BAC =30°,BC =1,∴AC =2BC =2,AB60CAB '∠=︒, ∴阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.10、3【解析】【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)连接OP ,作线段PO 的垂直平分线MN ,MN 交PO 于点B ,以B 为圆心,OB 的长为半径作弧,交O 于点A ,过点,P A 作直线l ,则l 即为所求;(2)构造四点共圆,作120PDO ∠=︒,步骤如下,连接OP ,作OP 垂直平分线MN 与OP 交于点B ,分别以,B O 为圆心,OB 的长为半径作弧,两弧交于点C ,连接PC ,交MN 于点D ,则30CPO ∠=︒,连接OD ,则120PDO ∠=︒,作PDO △的外心,即作PD 的垂直平分线与MN 交于点E ,以EB 为半径作E ,交O 于点Q ,连接,OQ PQ ,则60OQP ∠=︒,点Q 即为所求.(1)连接OP ,作线段PO 的垂直平分线MN ,MN 交PO 于点B ,以B 为圆心,OB 的长为半径作弧,交O 于点A ,过点,P A 作直线l ,则l 即为所求;理由:,,P O A 三点共圆,PO 是直径,则PAO ∠是直角,即OA l ⊥,则l 为所求作的切线(2)如图,连接OP ,作OP 垂直平分线MN 与OP 交于点B ,分别以,B O 为圆心,OB 的长为半径作弧,两弧交于点C ,连接PC ,交MN 于点D ,则30CPO ∠=︒,连接OD ,则120PDO ∠=︒,作PDO △的外心,即作PD 的垂直平分线与MN 交于点E ,以EB 为半径作E ,交O 于点Q ,连接,OQ PQ ,则60OQP ∠=︒,点Q 即为所求,理由是:PQOD 是E 的内接四边形,120PDO ∠=︒,则60OQP ∠=︒【点睛】本题考查了尺规作图,作圆的切线,作圆周角,四点共圆,作特殊角,掌握基本作图是解题的关键.2、 (1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC=AD=CD即可(2)要证明:E是OB的中点,只要求证OE=12OB=12OC,即证明∠OCE=30°即可;(3)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴AC AD,AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=∴∠=∠=30°,ACF DCFOC,在R t△COE中,OE=12OB,∴OE=12∴点E为OB的中点;(3)解:在R t△OCE中,AB=8AB=4,∴OC=12又∵BE=OE,∴OE=2,∴CE∴CD=2CE=【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.3、(1)证明见解析;(2.【解析】【分析】∠=∠,然后根据等腰三角形的判(1)连接AB,先证出AD BC=,再根据圆周角定理可得BAC ABD定即可得证;(2)连接PO ,并延长交AB 于点E ,连接,OA OB ,过O 作OF AC ⊥于点F ,先根据线段垂直平分线的判定与性质可得1,42PE AB AE AB ⊥==,再根据线段的和差、勾股定理可得4,1,3AF AE PF PE ====,然后根据直角三角形全等的判定定理证出Rt AOE Rt AOF ≅,根据全等三角形的性质可得OE OF =,最后在Rt POF △中,利用勾股定理可得OF 的长,从而可得OE 的长,在Rt AOE 中,利用勾股定理即可得.【详解】证明:(1)如图,连接AB ,AC BD =,AC BD ∴=,AC CD BD CD -=-∴,即AD BC =,ABD BAC ∴∠=∠,AP BP ∴=;(2)连接PO ,并延长交AB 于点E ,连接,OA OB ,过O 作OF AC ⊥于点F ,12AF AC ∴=, ,AP BP OA OB ==,∴PE 是AB 的垂直平分线,1,42PE AB AE AB ∴⊥==, 8,5,3,AB BP DP AC BD ====,8,5AC BD AB AP ∴====,4,1,3AF AE PF AP AF PE ∴===-===,在Rt AOE 和Rt AOF 中,AE AF OA OA =⎧⎨=⎩, ()Rt AOE Rt AOF HL ∴≅,OE OF ∴=,设(0)OE OF x x ==>,则3OP PE OE x =-=-,在Rt POF △中,222OF PF OP +=,即2221(3)x x +=-,解得43x =,在Rt AOE 中,OA ==即O . 【点睛】本题考查了圆周角定理、直角三角形全等的判定定理与性质、勾股定理、垂径定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.4、(1)见解析;(2)21π4【解析】【分析】(1)根据旋转的性质:点B 和点1B ,点A 和点1A 到点N 的距离相等,且1190BNB ANA ∠=∠=︒即可; (2)线段AB 扫过的面积为()()111111NAB NA B NAA NBB NAA NBB S S S S S S +-+=-扇形扇形扇形扇形,由扇形面积公式计算即可.【详解】(1)如图所示:(2)如图,线段AB 扫过的面积=()()111111NAB NA B NAA NBB NAA NBB S S S S S S +-+=-扇形扇形扇形扇形22ππ21π444=-=.【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键.5、(1)作图见解析,1(2,3)B -、1(1,1)C --;(2)254π 【解析】【分析】(1)将ABC 绕点A 顺时针旋转90°得11AB C △,根据点A 、B 、C 坐标,即可确定出点1B 、1C 的坐标;(2)根据勾股定理求出AB 的长,由扇形面积公式即可得出答案.【详解】(1)将ABC 绕点A 顺时针旋转90°得11AB C △如图所示:∴1(2,3)B -、1(1,1)C --;(2)由图可知:5AB =,∴线段AB 在旋转过程中扫过的面积为12905253604ABBS ππ⋅==扇形. 【点睛】 本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.。
华师大版九年级数学下册第27章圆单元检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.下列说法正确的是A. 相等的圆心角所对的弧相等B. 无限小数是无理数C. 阴天会下雨是必然事件D. 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k3.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A. 50°B. 80°C. 90°D. 100°4.如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD =6,则BE的长是()A. 4B. 3C. 2D. 15.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°6.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A. B. 5 C. D. 57.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A. B. C. D.8.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为()A. 4B. 3C. 2D.9.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有()A. 4个B. 8个C. 12个D. 24个10.如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8,则CD的值是()A. 5B. 4C. 4.8D. 9.6二、填空题(共10题;共30分)11.点A(O,3),点B(4,0),则点O(0,0)在以AB为直径的圆________(填内、上或外).12.在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形的内切圆半径为________.13.圆心角为120°的扇形的半径为3,则这个扇形的面积为________(结果保留π).14.三角形的一边是10,另两边是一元二次方程的x²-14x+48= 0的两个根,则这个三角形内切圆半径是________ .15.如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为________.16.(2011•扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=________17.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则弧AD的度数是________度18.如图,⊙O中,∠AOB=110°,点C、D是上任两点,则∠C+∠D的度数是 ________°.19.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.20.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=________.三、解答题(共8题;共60分)21.如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度AB。
华东师大版九年级数学下册第27章圆专题复习:应用扇形面积公式求阴影部分的面积一、选择题1.如图,AB是⊙O的直径,弦CD⊥AB,∠BCD=30°,CD=43,则S阴影=(B)A.2πB.83π C.43π D.38π2.如图所示,边长为a的正方形中阴影部分的面积为(A)A.a2-π(a2)2 B.a2-πa2C.a2-πaD.a2-2πa3.如图,半圆O的直径AE=8,点B,C,D均在半圆上,若AB=BC,CD=DE,连结OB,OD,则图中阴影部分的面积为(B)A.2πB.4πC.8πD.16π4.如图,正方形ABCD的边长为8,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面积之和是(A)A.32B.2πC.10π+2D.8π+15.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为(A)A.π3B.2π3C.π6D.π26.如图,B ,E 是以AD 为直径的半圆O 的三等分点,BE ︵的长为23π,∠C =90°,则图中阴影部分的面积为(C)A.π9B.3π9C.332-2π3D.332-3π27.如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为(A)A.4π-4B.4π-8C.8π-4D.8π-8二、填空题8.如图,某校教学楼有一花坛,花坛由六边形ABCDEF 和6个半径为1米、圆心分别在六边形ABCDEF 的顶点上的⊙A ,⊙B ,⊙C ,⊙D ,⊙E ,⊙F 组合而成.现要在阴影部分种植月季,则种植月季面积之和为2π平方米.9.如图,菱形OACD 的边长为2 cm ,以点O 为圆心,OA 长为半径的AD ︵经过点C ,作CE ⊥OD ,垂足为E ,则阴影部分的面积为(23π-2)cm 2.10.如图,AC ⊥BC ,AC =BC =2,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作AB ︵,过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分的面积是512π-211.如图,△ABC 是等边三角形,AB =2,分别以A ,B ,C 为圆心,2为半径作弧,则图中阴影部分的面积是12.如图,在△ABC 中,∠ACB =90°,AC =BC =2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A ′B ′C ′,其中点B 的运动路径为BB ′︵,则图中阴影部分的面积为54π-32.13.如图,将半径为6的圆形纸片分别沿AB ,BC 折叠,若AB ︵和BC ︵折后都经过圆心O ,则阴影部分的面积是12π.(结果保留π)14.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是π-2.三、解答题15.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=40°,求图中阴影部分的面积(结果保留π).解:连结AD,∵⊙A与BC相切于点D,∴AD⊥BC,且AD=2.∵∠EPF=40°,∴∠EAF=80°.∴S阴影=S△ABC-S扇形EAF=12BC·AD-80π×22360=4-89π.16.如图,四边形ABCD是边长为1的正方形,分别以A,B为圆心,1为半径画弧,求阴影部分面积.解:连结AE,BE,则AB=AE=BE=1,∴△ABE是等边三角形. ∴∠ABE=∠BAE=60°,∠DAE=30°.∴S扇形BAE =60×π×12360=π6,S扇形ADE =30×π×12360=π12,S△ABE =12×1×32=34.∴S阴影=2[S扇形ADE-(S扇形BAE-S△ABE)]=2[π12-(π6-34)]=32-π6.17.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5 2 cm,求⊙O的半径R.解:连结OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=13×360°=120°,∠BOD=112×360°=30°.∴∠COD=∠BOC-∠BOD=90°. ∵OC=OD,∴∠OCD=45°.∴OC=CD·cos45°=52×22=5(cm),即⊙O的半径R=5 cm.18.如图,在△ABC中,AB=4,AC=2,BC=23,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果可保留根号和π).解:(1)相切.理由:∵22+(23)2=16=42,∴AC2+BC2=AB2.∴∠ACB=90°.∴以BC为直径的圆与AC所在的直线相切.(2)∵在Rt△ABC中,cosA=ACAB=12,∴∠A=60°.∴S阴影=S半圆-(S△ABC-S扇形ACE)=12×π×(232)2-(12×2×23-60360×π×22) =13π6-2 3.。
第二十七章 圆的解析性质及应用【基础知识】圆有如下一系列有趣的解析性质:性质1 圆心为(,)a b ,半径为r 的圆的方程为222()()x a y b r -+-=.性质2 二次方程表示圆的方程所应满足的条件是2240D E F +->,且220x y Dx Ey F ++++=. 性质3 圆心为(,a b ),半径为r 的圆的参数方程为cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数).性质 4 与两定点(,0)a ,(,0)b (a b ≠)距离的比为mn(n m ≠且0,0n m >>)的点的轨迹是圆:22222222()an bm mn a b x y n m n m ⎛⎫--⎡⎤-+= ⎪⎢⎥--⎣⎦⎝⎭. 性质5 与两定点(,0)a ,(0,)c 的距离的比为mn (n m ≠且0n >,0m >)的轨迹是圆:2222an x n m ⎛⎫- ⎪-⎝⎭ 2222222()cm mn a c y n m n m ⎛⎫+⎡⎤++= ⎪⎢⎥--⎣⎦⎝⎭. 性质6 以点11(,)A x y ,22(,)B x y 为圆的直径两端点的圆的方程为 1212()()()()0x x x x y y y y --+--=.注 上述方程可变形为2212121212()()0x y x x x y y y x x y y +-+-+++=.此式说明:若两曲线的两交点坐标满足它,则此两点为这圆的直径的两端点.性质7 若直线(),0f x y =与二次曲线(,)0F x y =相交于P ,Q 两点,且由(,)0,(,)0.f x y F x y =⎧⎨=⎩消去y ,得()0g x =;消去x ,得()0h y =(其中()g x 与()h y 的二次项系数均为1),那么以P ,Q 为直径端点的圆的直径式方程为()()0g x h y +=.证明 设P ,Q 的坐标分别为11(,)P x y ,22(,)Q x y ,则1x ,2x 是方程()0g x =的两个根;1y ,2y 是方程()0h y =的两个根,即12()()()0g x x x x x =--=,12()()()0h y y y y y =--=.两式相加,有 1212()()()()()()0g x h y x x x x y y y y +=--+--=.由性质6,即证得结论成立.性质8 设O 为平面直角坐标系原点,P 为直线l :(,)1g x y Ax By =+=(A ,B 不同时为零)上一点,射线OP 交圆:2222(,)1x y f x y r r=+=于点R ,若点Q 在OP 上且满足22OQ OP OR r ⋅==,则点P 在l 上移动时,Q 点的轨迹是圆2222224()224Ar Br A B r x y ⎛⎫⎛⎫+⋅-+-=⎪ ⎪⎝⎭⎝⎭,或(,)(,)0f x y g x y -=. 证明 设00(,)P x y ,(,)Q x y ,则由Q 在OP 上可设OP k OQ =⋅u u u r u u u r.由2OQ OP r ⋅=,有OQ R OQ ⋅⋅=2r ,即22r k OQ=,亦即22r OP OQ OQ=⋅u u u ru u u r,从而2022r x x x y =⋅+,2022r y y x y =⋅+.又00(,)x y 在直线l 上,即有001Ax By +=,亦即2222221r x r y A B x y x y ⋅⋅⋅+⋅=++,由此得222Ar x ⎛⎫- ⎪⎝⎭22224()24Br A B r y ⎛⎫+⋅+-=⎪⎝⎭. 上式又可化为2222x y Ax By r r+=+,故(,)(,)0f x y g x y -=.性质9 过两圆1(,)0f x y =,2(,)0f x y =(或一圆与一二次曲线)交点的圆的方程为1(,)f x y +2(,)0(1)f x y λλ=≠-.注 若1λ=-,则为一直线方程.性质10 设直线l :0Ax By C ++=,圆Γ:222()()x a y b r -+-=,圆心(,)O a b 到直线l 的距离为d =(1)当d R <时,直线l 与圆Γ相交,反之亦真;(2)当d R =时,直线l 与圆Γ相切,反之亦真; (3)当d R >时,直线l 与圆Γ相离,反之亦真.性质11 直线0Ax By C ++=与圆222x y r +=相切的充要条件是()2222A B r C +=. 性质12 设00(,)M x y ,圆的方程222x y r +=,对于直线l 的方程200x x y y r +=,则(1)当M 在圆上时,l 为圆的切线;(2)当M 在圆外时,l 为圆的切点弦直线;(3)当M 在圆内时,l 为与以M 为中点的弦平行且过此弦端点切线交点的直线.事实上,这可由第二十五章的性质7推论后的注即得.这里,其实l 即为点M 关于圆的极线. 【典型例题与基本方法】例1 已知一圆在x 轴上的截距为a ,b ,在y 轴上的截距为(0)c c ≠,求此圆的方程.解法1 由于圆过点(,0)A a ,(,0)B b ,(0,)C c 三点,则圆心M 在AB ,AC 的垂直平分线上,即M 点是两直线1()2x a b =+,2222()()x a y x y c -+=+-的交点,求得2,22a b c ab M c ⎛⎫++ ⎪⎝⎭,又可求得半径r MA ==.故由性质1,得所求圆的方程为22222a b c ab x y ⎛⎫++⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 22222b a c ab c ⎛⎫-+⎛⎫+⎪ ⎪⎝⎭⎝⎭. 解法2 设此圆的方程为220x y Dx Ey F ++++=.此圆在x 轴上的距离是a ,b ,则20a Da F ++=,① 20b Db F ++=. ②由①,②知a ,b 是方程20x Dx F ++=的两根,从而由韦达定理,有a b D +=-,ab F =. 又此圆在y 轴上截距为c ,有20c Ec F ++=.③从而20c Ec ab ++=,即2c abE c+=-.此时,显然满足2240D E F +->,故由性质2知所求圆的方程为22()0ab x y a b x c y ab c ⎛⎫+-+-++= ⎪⎝⎭.注 也可由①,②,③联立求出D ,E ,F .例2 设A 为定点(b ,0),P 为圆229x y +=上一点,M 是AP 上的一点,且满足12AM MP =.当点P 在圆上运动时,求点M 的轨迹方程.解法1 如图27-1,作MN PO ∥交x 轴于N ,显见MN 为定长,即1MN =,且N 为定点(4,0). 由圆的平面几何定义知,到定点的距离等于定长的点的轨迹是圆,定点是圆心,定长为半径,故所求圆的方程为22(4)1x y -+=.解法2 设点M 的坐标是(,)x y ,设圆229x y +=的参数方程为3cos ,3sin .x y θθ=⎧⎨=⎩(θ为参数)于是可设点P 的坐标为(3cos ,3sin )θθ,由此例定理(或由定比分点坐标公式)得点M 的轨迹的参数方程为4cos ,sin .x y θθ=+⎧⎨=⎩(θ为参数)由此即知,线段AP 上的点M 的轨迹是以点(4,0)为圆心,以1为半径的圆.图27-1例3 已知一曲线是与两个定点(0,0)O ,A (3,0)的距离的比为12的点的轨迹,求此曲线的方程. 解法1 由题设,运用性质4,知0a =,3b =,1m =,2n =.或运用性质5,知3a =,0c =,1n =,2m =,可求得曲线方程为22(1)4x y ++=.解法2 由题设及圆的轨迹定义和所求的曲线为圆,即可推知其圆心在直线OA 上,且圆与直线OA 的两个交点即为直径的两端点.由平面几何知识得动点P 满足12PO PA=点为(1,0)P ,(3,0)Q -,从而所求方程为(1)(3)(0)(0)0x x y y -++--=,即22(1)4x y ++=.例4 求以相交两圆1C :22410x y x y ++++=,及2C :222210x y x y ++++=的公共弦为直径的圆的方程.解法1 由两圆的方程相减即得公共弦所在直线的方程:20x y -=. 设所求圆的方程为2241(2)0x y x y x y λ+++++-=,即22(42)(1)10x y x y λλ++++-+=.其圆心12,2λλ-⎛⎫-- ⎪⎝⎭必在直线20x y -=上,即由()122202λλ----=,求得75λ=-. 故所求圆的方程为2255161250x y x y ++++=. 解法2 可求得两已知圆的公共弦方程为20x y -=. 运用性质7,由22410,20.x y x y x y ⎧++++=⎨-=⎩分别消去y ,x ,得25610x x ++=及251240y y ++=.此两式相加,得225561250x y x y ++++=,此即为所求圆的方程. 例5 直线2y x =-与抛物线22y x =相交于A ,B .求证:OA OB ⊥. 证明 由222y x y x=-⎧⎨=⎩分别消去y ,x ,得2640x x -+=,2240y y -+=.此两式相加,得以AB 为直径的圆的方程:22620x y x y +--=. 显然,原点O 在圆22620x y x y +--=上,故OA OB ⊥.例6 已知双曲线的中心在原点,焦点在x 轴上,P ,Q 两点.若OP OQ ⊥,且4PQ =,求双曲线的方程.(1991年全国高考理科题)解 设双曲线方程为22221x y a b-=,直线方程为)y x c -,其中c =.联立直线和双曲线方程分别消去y ,x ,得 2222222222635()05353a c a c a b g x x x b a b a+=+-=--.42223()053b h y y y b a =+=-.由性质7,知以PQ 为直径的圆的方程为()()0g x h y +=.因OP OQ ⊥,所以圆过原点,则(0)(0)0g h +=,即222243530a c a b b +-=.解得223b a =.设11(,)P x y ,22(,)Q x y ,则PQ 的中点为1212,22x xy y M ++⎛⎫ ⎪⎝⎭.由题设得122OM PQ ==,即221212()()16x x y y +++=.而2122261532a c x x cb a +=-=--,12y y +==. 将其代入()*式,得22151644c c +=,解得24c =.由此求得21a =,23b =.故所求双曲线方程为2x213y -=.例7 已知函数y =y 的最大值.(新加坡竞赛题)解 令u =v =0u v y +-=,及圆的方程:222u v +=. 由已知可知直线与圆有公共点(,)u v ),从而2y ≤,等号当且仅当0x =时成立,故max 2y =. 例8 确定最大的实数z ,使5x y z ++=,3xy yz zx ++=,并且x ,y 也是实数. (第7届加拿大竞赛题)解 由已知,得22222()2()52319x y z x y z xy yz zx ++=++-++=-⋅=. 令直线l :(5)0x y z ++-=,O e :22219x y z +=-. 由已知可知l 与O e 有公共点,从而2310130z z --≤.解得313z 1-≤≤,故max 133z =.例9 1()2x y z =++.(1978年罗马竞赛题)解 u =v =t =,u v t s ++=,则可令l :()0u v t s ++-=,O e :222u v s +=- 23t -.因l 与O e 222(2)360s t t s t -+++≤.因s 有实数解,则22[2(2)]4(36)0t t ∆=-+-+≥,即2(1)0t -≤,故1t =.此时23s t =+=,223z t =+=,代入l 与O e 的方程得2u v +=,222u v +=.解此方程得1u v ==,故原方程的解为1x =,2y =,3z =. 【解题思维策略分析】1.运用圆的解析性质证明圆锥曲线性质例10 从椭圆22221x y a b+=上一点P ,引以短轴为直径、原点为圆心的O e 的两条切线,切点为A ,B ,直线AB 与x 轴,y 轴分别相交点M ,N ,则222222a b a bONOM+=.证明 如图27-2,设00(,)P x y ,O e 的方程为222x y b +=,则切点弦AB 的方程为200x x y y b +=. 由0x =得20b ON y y ==,0y =得20b OM x x ==,从而2222222220022442a y b x a b a b a b b bON OM++===.注 类似地,(i )可证明将上例中的O e 换为以长轴为直径的圆,P 为此圆上一点,引椭圆的两条切线,则44222a b a OMON+=;(ii)可证明对于双曲线22221(0,0)x y a b a b-=>>,抛物线22(0)y px p =>的类似于上例的结论:(a)从双曲线22221(0,0)x y a b a b-=>>上一点P ,向以实轴为直径、原点为圆心的圆O 引两条切线,切点为A ,B ,直线AB 与x 轴、y 轴分别交于M ,N ,则222222b a b aOMON-=. (b)从双曲线22221(0,0)x y a b a b-=>>上一点P ,向以虚轴为直径,原点为圆心的圆O 引两条切线,切点为A ,B ,直线AB 与x 轴、y 轴分别交于M ,N ,则222222b a a bOMON-=. (c)从抛物线22(0)y px p =>上一点P ,向以2p(通径)为直径,原点为圆心的圆引两条切线,切点为图27-2A ,B ,直线AB 与x 轴,y 轴相交于点M ,N ,则222OM pON=. 例11 设P 是半径为R 的圆O 内任意一点,过点P 任意引(2)n n ≥条直线1l ,2l ,…,n l .如果这n 条直线相邻两条所成的角都为πn,且第i 条直线i l 交圆于i M ,i M '两点(1i =,2,…,n ),那么221()nii i PMPM ='+∑是与P 点无关的定值22nR .证明 以圆心O 为坐标原点,射线OP 为x 轴正半轴建立直角坐标系,则圆的方程为222x y R +=.设(,0)P r ,不妨设直线1l 的倾斜角α最小,1l 的参数方程为cos ,sin ,x r t y t αα=+⎧⎨=⎩(t 为参数) 将此方程代入圆的方程222x y R +=,整理得2222cos 0t r t r R α+⋅⋅+-=.设关于t 的上述二次方程的两根为1t ,2t ,则知 122cos t t r α+=-,2212()t t R r =--.由t 的几何意义,从而222211121212()2PM PM t t t t t '+=+=+-222222(1cos2)2()2(cos2)r R r r R αα=++-=+ (*)设直线i l (1i =,2,…,n )对应的倾斜角为(1)πi n α-+,分别以πnα+,2πn α+,…,(1)πn n α-+代(*)式的α,然后将n 个式子(连同(*)式)相加,并注意三角公式 12(1)πcos 0ni m i n θ=-⎡⎤+=⎢⎥⎣⎦∑,(n m >均为正整数) 从而22222112(1)π()2cos 22nn ii i i i PMPM r nR nR n α==⎧-⎫⎡⎤'+=++=⎨⎬⎢⎥⎣⎦⎩⎭∑∑. 注 若注意到22211111212()4M M PM PM t t t t ''=-=+-,可得22212(2)ni i i M M n R r ='=⋅-∑;211PM +21212222121()21t t t t t t PM +-=⋅',可得2222221112()n i i i nR R r PM PM =⎛⎫ ⎪+= ⎪-'⎝⎭∑;221212221112()411t t t t PM PM t t ⎛⎫+-+= ⎪ ⎪'⋅⎝⎭,可得22222212(2)()i i n R r PM PM R r ⎛⎫1-∑+= ⎪ ⎪'-⎝⎭等. 2.注意点圆方程的巧用例12 已知圆0C 的方程为222x y r +=,求经过圆0C 上一点00(,)M x y 的切线方程.解 视点00(,)M x y 为点圆曲线0Γ:2200()()0x x y y -+-=.于是00{}C M Γ=∩,由性质9,得曲线系2222200[()()]0x y r x x y y λ+-+-+-=.且由题设知其中1λ=-,故有22220000222x x y y x y r r +=++=.即得200x x y y r +=即为所求.例13 求与圆C :2268170x y x y +--+=切于点(1,2)的圆的方程. 解 视点(1,2)为点圆曲线0Γ:22(1)(2)0x y -+-=,由性质9得所求圆的方程为2268x y x y +--2217[(1)(2)]0x y λ-+-+-=.即 ()2223428111x y λλλλλ+⎛⎫⎛⎫-+-= ⎪ ⎪++⎝⎭⎝⎭+.由228(1)λ=+⎝⎭,求得115λ=-或295λ=-.于是得1C :22279222x y ⎛⎛⎫⎛⎫-+-= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭及2C :22231222x y ⎛⎛⎫⎛⎫+++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭. 易知点(1,2)满足圆1C 的方程,且圆1C 与圆C 的圆心距等于两圆半径之差的绝对值,所以圆1C 与圆C 内切于点(1,2),圆1C 为所求.同理,圆1C 与圆C 外切于点(1,2),圆2C 也为所求. 3.借助圆的解析性质求解其他代数问题例14 若正数x ,y ,z 满足x y z a ++=,2222(0)2a x y z a ++=>,求证:203x <≤,203y <≤,203z <≤.证明 由已知有x y a z +=-,22222a x y z +=-,此二式同时成立,即知直线x y a z +=-与圆22222a x y z +=-(2z )有公共点,即原点到直线的距离不大于圆的半径,得2320z az -≤.又0a >,则203z a <≤.同理有203y a <≤,203z a <≤.例15 已知cos cos 2m αβ+=,sin sin 2n αβ+=.求cot cot αβ的值.解 令(cos ,sin )A αα,(cos ,sin )B ββ,则知A ,B 在圆221x y +=上.设线段AB 的中点为(,)C m n ,则1(cos cos )2m αβ=+,1(sin sin )2n αβ=+,且OC n k m=,AB m k n =-.AB 的方程为22m m n y x n n +=-+,并代入圆的方程,得222222222222()()10m m m n n m n x x n n n ⎛⎫++-+-+= ⎪⎝⎭.又cos α,cos β为此方程两根,有222222()cos cos n m n m nαβ+-⋅=+. 同理22222()sin sin m n m m n αβ+-⋅=+.故2222222()cot cot ()m n n m n m αβ+-⋅=+-为所求.【模拟实战】习题A1.求过直线l :240x y ++=与圆C :222410x y x y ++-+=的两个交点P ,Q ,且面积最小的圆的方程.2.已知直线1y x =-与椭圆22221(1)1x y a a a +=>-相交于A ,B 两点,若以AB 为直径的圆过椭圆的左焦点,求a 的值.3.已知圆C :2224x y +=,直线l :1128x y+=,P 是l 上一点,射线OP 交圆于点R ,又点Q 在OP 上且满足:2OQ OP OR ⋅=.当点P 在l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. 4.求与抛物线24y x =相切于点P (1,4)且过点(3,0)的圆的方程. 5.求函数3cos ()2sin xy f x x+==-的值的取值范围.6.解方程组222 1.x y z x y z ⎧++=⎪⎨++=⎪⎩7.已知a ,b +∈R ,且1a b +=,求证:2211252a b b a ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭≥.8.已知α,β是锐角,目4422sin cos 1cos sin ααββ+=.求证:π2αβ+=.9.已知sin sin()cos()ααβαβ++++=π,π4β⎡⎤∈⎢⎥⎣⎦,求β的值.习题B1.自点A (3-,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线与圆224470x y x y +--+=相切,求光线l 所在直线方程.2.半径等于某个正三角形高的圆在这个正三角形的一边上滚动.证明三角形两边截圆的弧的总长等于60︒. 3.(九点圆定理)证明:三角形三边的中点,三高的垂足,垂心与顶点连接线段的中心,这九个点共圆.。
九年级数学第二学期第二十七章圆与正多边形章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆O 的半径为5cm ,点A 到圆心O 的距离OA =4cm ,则点A 与圆O 的位置关系为( )A .点A 在圆上B .点A 在圆内C .点A 在圆外D .无法确定2、如图,AB 是⊙O 的直径,弦CD AB ⊥,30CDB ∠=︒,CD =( )A .4πB .2πC .πD .23π 3、如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数是( )A .30°B .60°C .80°D .90°4、下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心5、如图,四边形ABCD 内接于O ,若130C ∠=︒,则BOD ∠的度数为( )A .50°B .100°C .130°D .150°6、如图,ABC 中,50ABC ∠=︒,74ACB ∠=︒,点O 是ABC 的内心.则BOC ∠等于()A .124°B .118°C .112°D .62°7、如图,点A ,B ,C 在O 上,OAB 是等边三角形,则ACB ∠的大小为( )A .60°B .40°C .30°D .20°8、如图,CD 是ABC 的高,按以下步骤作图:(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于G 、H 两点. (2)作直线GH 交AB 于点E .(3)在直线GH 上截取EF AE =.(4)以点F 为圆心,AF 长为半径画圆交CD 于点P .则下列说法错误的是( )A .AE BE =B .GH CD ∥C .AB =D .45APB ∠=︒9、如图,AB 为O 的直径,C 为D 外一点,过C 作O 的切线,切点为B ,连接AC 交O 于D ,38C ∠=︒,点E 在AB 右侧的半圆周上运动(不与A ,B 重合),则AED ∠的大小是( )A.19°B.38°C.52°D.76°10、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).2、如图,点C是半圆AB上一动点,以BC为边作正方形BCDE(使BC在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.3、边长为2的正三角形的外接圆的半径等于___.,则此扇形的圆心角等于______.4、若一个扇形的半径是18cm,且它的弧长是6cm5、一个扇形的面积是3πcm2,圆心角是60°,则此扇形的半径是______cm.三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形ABCD的边长为4,以点A为圆心,1为半径作圆,点E是⊙A上的一动点,点E绕点D按逆时针方向转转90°,得到点F,接AF.(1)求CF长;(2)当A、E、F三点共线时,求EF长;(3)AF的最大值是__________.2、如图,已知等边ABC内接于⊙O,D为BC的中点,连接DB,DC,过点C作AB的平行线,交BD 的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.3、新定义:在一个四边形中,若有一组对角都等于90°,则称这个四边形为双直角四边形.如图1,在四边形ABCD中,∠A=∠C=90°,那么四边形ABCD就是双直角四边形.(1)若四边形ABCD 是双直角四边形,且AB =3,BC =4,CD =2,求AD 的长;(2)已知,在图2中,四边形ABCD 内接与⊙O ,BC =CD 且∠BAC =45°;①求证:四边形ABCD 是双直角四边形;②若AB =AC ,AD =1,求AB 的长和四边形ABCD 的面积.4、如图,在平面直角坐标系中,有抛物线23y ax bx =++,已知OA =OC =3OB ,动点P 在过A ,B ,C 三点的抛物线上.(1)求抛物线的解析式;(2)求过A ,B ,C 三点的圆的半径;(3)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标,若不存在,说明理由;5、已知AB 是⊙O 的直径,点C 是圆O 上一点,点P 为⊙O 外一点,且OP ∥BC ,∠P =∠BAC .(1)求证:PA为⊙O的切线;(2)如果OP=AB=6,求图中阴影部分面积.-参考答案-一、单选题1、B【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2、D【分析】根据垂径定理求得CE =ED COE =60°.然后通过解直角三角形求得线段OC ,然后证明△OCE ≌△BDE ,得到=DEB CEO S S △△求出扇形COB 面积,即可得出答案.【详解】解:设AB 与CD 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,CD∴CE =12CD CEO =∠DEB =90°,∵∠CDB =30°,∴∠COB =2∠CDB =60°,∴∠OCE =30°, ∴12OE OC =, ∴1122BE OE OB OC ===, 又∵222OC CE OE =+,即22134OC OC =+ ∴2OC =,在△OCE 和△BDE 中,OCE BDE CEO DEB OE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△BDE (AAS ),∴=DEB CEO S S △△∴阴影部分的面积S =S 扇形COB =260223603ππ⨯=, 故选D .【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB 的面积是解此题的关键.3、B【分析】延长AO 交⊙O 于点D ,连接BD ,根据圆周角定理得出∠D =∠P =30°,∠ABD =90°,由直角三角形的性质可推得AB =BO =AO ,然后根据等边三角形的判定与性质可以得解.【详解】解:如图,延长AO 交⊙O 于点D ,连接BD ,∵∠P =30°,∴∠D =∠P =30°,∵AD是⊙O的直径,∴∠ABD=90°,∴AB=12AD=AO=BO,∴三角形ABO是等边三角形,∴∠AOB=60°,故选B.【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、圆直径的性质、直角三角形的性质、等边三角形的判定和性质是解题关键.4、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.【详解】解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.5、B【分析】根据圆内接四边形的性质求出∠A的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB=130°,∴∠A=50°,由圆周角定理得,BOD=2∠A=100°,故选:B.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6、B【分析】根据三角形内心的性质得到∠OBC=12∠ABC=25°,∠OCB=12∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.【详解】解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=12∠ABC=12×50°=25°,∠OCB=12∠ACB=12×74°=37°,∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.故选B.【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.7、C【分析】由OAB∆为等边三角形,得:∠AOB=60°,再根据圆周角定理,即可求解.【详解】解:∵OAB∆为等边三角形,∴∠AOB=60°,∴ACB∠=12∠AOB =12×60°=30°.故选C.【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键.8、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据EF AE=可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,∴AE BE=,故A正确;∵CD是ABC的高,∴GH CD∥,故B正确;∵EF AE=,AE BE=,∴2AB EF=,故C错误;∵EF AE =,∴∠AFE =45°,同理可得∠BFE =45°,∴∠AFB =90°,1452APB AFB ∠=∠=︒,故D 正确; 故选:C .【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.9、B【分析】连接,BD 由AB 为O 的直径,求解903852,CBD ∠=︒-︒=︒ 结合CB 为O 的切线,求解905238,ABD ABC DBC ∠=∠-∠=︒-︒=︒ 再利用圆周角定理可得答案.【详解】解:连接,BD AB 为O 的直径,90,90,ADB BDC ∴∠=︒∠=︒∠=︒C38,∴∠=︒-︒=︒CBD903852,CB为O的切线,∴∠=︒∠=∠-∠=︒-︒=︒90,905238,ABC ABD ABC DBCAED ABD∴∠=∠=︒38,故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.10、A【分析】根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:A.【点睛】本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.二、填空题1、①②③【分析】根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.【详解】 解:如图, ,PA PB 是O 的两条切线,,,PA PB APO BPO ∴=∠=∠ 故①正确,,,PA PB APO BPO =∠=∠,PO AB ∴⊥ 故②正确,,PA PB 是O 的两条切线,90,OAP OBP ∴∠=∠=︒取OP 的中点Q ,连接,AQ BQ ,则1,2AQ OP BQ == ∴以Q 为圆心,QA 为半径作圆,则,,,B O P A 共圆,故③正确,M 是AOP 外接圆的圆心,,MO MA MP AO ∴===60,AOM ∴∠=︒ 与题干提供的条件不符,故④错误,综上:正确的说法是①②③.故填①②③.【点睛】本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.2、2)【分析】如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.【详解】解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,∵四边形BCDE是正方形,∴∠BCD=∠CBE=90°,CD=BC=BE=DE,∵OB=OC,∴∠OCB=∠OBC,∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,∴△OCD≌△OBE(SAS),∴OE=OD,根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,∵∠MCB =12∠MOB =12×90°=45°,∴∠DCM =∠BCM =45°,∵四边形BCDE 是正方形,∴C 、M 、E 共线,∠DEM =∠BEM ,在△EMD 和△EMB 中,DE BC MED MEB WE WEE =⎧⎪∠=∠⎨⎪=⎩, ∴△MED ≌△MEB (SAS ),∴DM =BM=cm ),∴OD 的最大值=,即OE 的最大值=+2;故答案为:()cm .【点睛】本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD 取得最大值时的位置,学会通过特殊位置探究得出结论.3【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.【详解】如图所示,ABC 是正三角形,故O 是ABC 的中心,60CAB ∠=︒,∵正三角形的边长为2,OE ⊥AB ∴112AE AB ==,1302OAE CAB ∠=∠=︒, ∴12OE OA =, 由勾股定理得:222AO AE OE =+, ∴2221()2AO AE AO =+, ∴2314AO =,∴AO =负值舍去).【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.4、60°度【分析】 根据=180n r l π变形为n =180l rπ计算即可. 【详解】∵扇形的半径是18cm ,且它的弧长是6cm π,且=180n r l π ∴n =180l r π=180618ππ⨯⨯=60°, 故答案为:60°.【点睛】本题考查了弧长公式,灵活进行弧长公式的变形计算是解题的关键.5、【分析】设扇形的半径为,r 再由扇形的面积公式列方程可得2603,360r 再解方程可得答案.【详解】 解:设扇形的半径为,r则2603,360r218,r0,r解得:r =故答案为:【点睛】本题考查的已知扇形的面积求解扇形的半径,熟记扇形的面积公式是解本题的关键.三、解答题1、(1)1;(211;(3)1【分析】(1)连接AE ,根据同角的余角相等可得:EDA FDC ∠=∠,利用全等三角形的判定定理可得:EDA FDC ∆≅∆,再由其性质即可得解;(2)分两种情况讨论:①当点E 在正方形内部时,点A 、E 、F 三点共线时,AF 与圆C 相切;②当点E 在正方形外部时,点A 、1E 、1F 三点共线时,1AF 与圆C 相切;两种情况分别利用勾股定理进行求解即可得;(3)根据题意判断出AF 最大时,点C 在AF 上,根据正方形的性质求出AC ,从而得出AF 的最大值.【详解】解:(1)连接AE ,如图所示:∵90EDF ADC ∠=∠=︒,即:90EDA ADF ADF FDC ∠+∠=∠+∠=︒,∴EDA FDC ∠=∠,在EDA ∆与FDC ∆中,ED FD EDA FDC AD DC =⎧⎪∠=∠⎨⎪=⎩, ∴EDA FDC ∆≅∆,∴1CF AE ==;(2)①如图所示:当点A 、E 、F 三点共线时,AF 与圆C 相切,则90AFC ∠=︒,AC ==1CF =,∴AF =,∴1EF AF AE =-=;②如图所示:当点A 、1E 、1F 三点共线时,1AF 与圆C 相切,则190AFC ∠=︒,AC =11CF=,∴1AF=∴111EF AF AE=+;综合可得:当点A、E、F三点共线时,EF11;(3)如图所示,点C在线段AF上,AF取得最大值,AF AC CF=+,∵AC=∴1AF=,即:AF的最大值是1,故答案为:1.【点睛】题目主要考查正方形的性质,切线及旋转的性质,勾股定理等,理解题意,画出相应辅助图形是解题关键.2、(1)见解析;(2)3【分析】(1)由题意连接OC ,OB ,由等边三角形的性质可得∠ABC =∠BCE =60°,求出∠OCB =30°,则∠OCE =90°,结论得证;(2)根据题意由条件可得∠DBC =30°,∠BEC =90°,进而即可求出CE =12BC =3.【详解】解:(1)证明:如图连接OC 、OB .∵ABC ∆是等边三角形∴ 60A ABC ∠=∠=∵//AB CE∴ 60BCE ABC ︒∠=∠=又 ∵OB OC =∴30OBC OCB ︒∠=∠=∴90OCE OCB BCE ︒∠=∠+∠=∴OC CE ⊥∴CE 与⊙O 相切;(2)∵四边形ABCD 是⊙O 的内接四边形,∴180A BCD ︒∠+∠=∴120BDC ︒∠=∵D 为BC 的中点,∴30DBC BCD ∠=∠=︒∴90ABE ABC DBC ∠=∠+∠=︒∵//AB CE∴90E ∠=︒∴11322CE BC AB === 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.3、(1(2)①见解析;②32【分析】(1)连接BD ,运用勾股定理求出BD 和AD 即可;(2)①连接OB ,OC ,OD ,证明BD 是O 的直径即可;②过点D 作DE AC ⊥于点E ,设圆的半径为R ,由勾股定理求出AB ,AD ,BC ,CD 的长,再根据ABCD ABD BCD S S S ∆∆=+运用三角形面积公式求解即可.【详解】解:(1)连接BD ,如图,在Rt BCD ∆中,BC =4,CD =2,∵222=BD BC CD +∴BD ==在Rt ABD ∆中,AB =3,BD =,∵222=BD BA AD +∴AD =(2)连接OB ,OC ,OD ,如图,∵45BAC ∠=︒∴90BOC ∠=°在BOC ∆和DOC ∆中OB OD OC OC BC CD =⎧⎪=⎨⎪=⎩∴BOC ∆≌DOC ∆∴90DOC BOC ∠=∠=︒∴O 是线段BD 的中点,∴BD 为O 的直径∴90BCD BAD ∠=∠=︒∴四边形ABCD 是双直角四边形;(3)过点D 作DE AC ⊥于点E ,∵45,90BAC BAD ∠=︒∠=︒∴45EAD ∠=︒∴AED ∆是等腰直角三角形在Rt AED ∆中,AE ED =,222AE ED AD +=∵1AD =∴AE ED == 设圆的半径为R ,∵BOC ∆和DOC ∆均为等腰直角三角形,∴BC CD =在Rt ADC ∆中,EC在Rt ABD ∆中,AB =∵AB AC =,AC AE EC =+=解得,21R =∴ABCD ABD BCD S S S ∆∆=+1122AB AD BC CD =⨯+⨯12=2R =132=【点睛】本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点.4、(1)y =-x 2+2x +3;(2(3)点P (1,4)或(-2,-5).【分析】(1)3=OC =OA =3OB ,故点A 、B 、C 的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC 的中垂线上,故设圆心R (1,m ),则RA =RC ,即:1+(m -3)2=4+m 2,解得:m =1,故点R (1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.【详解】解:(1)令x =0,则y =3,则点A 的坐标为(3,0),根据题意得:OC =3=OA =3OB ,故点B 、C 的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3),把(3,0)代入得-3a =3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),=(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,设点P(x,-x2+2x+3),过点P作PQ⊥y轴于点Q,∵OA =OC,∠PAC=90°,∴∠ACO=∠OAC=45°,∵∠PAC=90°,∴∠PAQ=45°,∴△PAQ是等腰直角三角形,∴PQ=AQ=x,∴AQ+AO=x+3=-x2+2x+3,解得:1210x x ==,(舍去),∴点P (1,4);设点P 1(m ,-m 2+2m +3),过点P 1作P 1D ⊥x 轴于点D ,同理得△P 1CD 是等腰直角三角形,且点P 1在第三象限,即m <0,∴P 1D =CD =m 2-2m -3,DO =-m ,∴DO +OC = P 1D ,即-m +3= m 2-2m -3,解得:1223m m =-=,(舍去),∴点P (-2,-5);综上,点P (1,4)或(-2,-5).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.5、(1)见解析;(2 【分析】(1)先由圆周角定理得∠ACB =90°,则∠BAC +∠B =90°.再由平行线的性质得∠AOP =∠B ,然后证∠P +∠AOP =90°,则∠PAO =90°,即可得证;(2)先证△OAP ≌△BCA (AAS ),得BC =OA =12AB =3,再由扇形面积减去三角形面积即可解决问题.【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠B =90°,又∵OP ∥BC ,∴∠AOP =∠B ,∴∠BAC +∠AOP =90°, ∵∠P =∠BAC ,∴∠P +∠AOP =90°,∴∠PAO =90°,∴PA ⊥OA ,∵OA 是的⊙O 的半径,∴PA 为⊙O 的切线;(2)解:如图,连接OC ,由(1)得:∠PAO =∠ACB =90°, 在△OAP 和△BCA 中,PAO ACB P BAC OP BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OAP ≌△BCA (AAS ), ∴OP =AB =6,BC =OA =OC =12AB =3, ∴△OBC 是等边三角形,∴∠COB =60°,∴∠AOC =120°,∴S 扇形AOC =21203360π⨯=3π, ∵OA =OC ,∴∠OAC =30°,∴OH =12OA =32,∴AH ∴AC =2AH =∴S△AOC =12⨯AC •OH =12⨯32∴图中阴影部分面积=S 扇形AOC ﹣S △AOC 【点睛】 本题考查了切线的证明和扇形面积的计算,解题关键是熟练掌握切线证明方法和扇形面积公式.。
)
1 0
)
B
o
o
o
o
C
A
B
D )
D E
c
A
B
)
A 0 )
6 B
)
2
A D B
O
c
e
o
B
A 2
A 5 A 7 5cm 2
B . 8
3•将:沿弦BC 折叠,交直径 AB 于点
r 的圆形和一个半径为 R 的扇形,使之恰好围成图中所示
r=2cm ,扇形的圆心 D . 2 =
A . 3 -
则劣弧AB 的长为(
10.如图,在一张正方形纸片上剪下一个半径为 的圆锥,贝U R 与r 之间的关系是 __________
若AD=4 , DB=5,贝U BC 的长是
C . ,母线长为 C . 40 冗cm ABCDEF 的边长为 C —
D . 40°
则其侧面展开图的圆心角为(
150° D . 180 °
则这个圆锥的侧面积是( 2 D . 40cm
则图中阴影部分的面积为 2^3 ~ —
3
APB=60 °, O O 半径是 3 第二十七章圆章末测试
选择题(共8小题,每题3分)
如图,在O O 中,0D 丄BC , / BOD=60 °则/ CAD 的度数等于 15° B . 20° C . 25° D . 30 ° 从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是(
一 丿
B
4.如图,AB 是O 0的直径,点C 、D 在O 0上,且点C 、D 在AB 的异侧,连结AD 、0D 、0C .若/ AOC=70 且AD // 0C ,则/ A0D 的度数为(
) 70°
B . 60°
C . 50° 圆锥体的底面半径为 2,侧面积为8 n
90° B . 120° 已知圆锥的底面半径为 4cm 2 2 20 n cm
B . 20cm 如图,O 0的外切正六边形 .T - — B. 1
2 3 &如图,PA 切O 0于点A , PB BO 0于点B ,如果/ K
A .
B . n
C . 2 n
D . 4 n
二 .填空题(共6小题,每题3分)
9.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形 角0=120°,则该圆锥的母线长 I 为 cm . 若圆锥的底面圆的半径
11. 如图,已知A、B、C三点都在O O上,/ AOB=60 ° / ACB=_________________ .
12. _______________________________________________________________________ 如图,△ ABC是O O的内接三角形,如果/ AOC=100 °那么/ B= _____________________________________ 度.
13. 如图,/ APB=30 °点O是射线PB上的一点,OP=5cm,若以点O为圆心,半径为1.5cm的O O沿
BP方向移动,当O O与PA相切时,圆心O移动的距离为_________________ cm .
三.解答题(共10小题)
15. ( 6分)如图,在半径为
(1)求/ ABD的大小;
(2)求弦BD的长.
16 (6分).如图,已知O O的直径AB与弦CD相交于点E, AB丄CD , O O 的切
线BF与弦AD的延长线相交于点F.
(1)求证:CD // BF;
AB 丄CD 于点H,若/ D=30 ° CH=1cm,贝U AB=_____________ cm.
5cm的O O中,直径AB与弦CD相交于点P,
弦
(2)若O O的半径为5, cos/ BCD=0.8,求线段AD与BF的长.
17. (6分)如图,平面直角坐标系中,以点 C ( 2,二)为圆心,以2为半径的圆与x轴交于A , B两点.
(1)求A , B两点的坐标;
一2
(2)若二次函数y=x +bx+c的图象经过点 A , B,试确定此二次函数的解析式.
18. ( 8分)如图,AB是O O的直径,弦CD交AB于点E, OF丄AC于点F,
(1)请探索OF和BC的关系并说明理由;
(2)若/ D=30 ° BC=1时,求
圆中阴影部分的面积. (结果保留n)
19 (8分).如图,CD为O O的直径,
(1)求/ C的大小;
(2)求阴影部分的面积.
20. ( 8分)已知:AB是O O的直径,直线CP切O O于点C,过点B作BD丄CP于D .
(1) 求证:△ ACB CDB ;
CD丄AB,垂足为点F, AO丄BC,垂足为点E, AO=1 .
(2) 若0 O的半径为1,Z BCP=30 °求图中阴影部分的面积.
21. (
8分)如图,以△ ABC的一边AB为直径作O 0,0 O与BC边的交点恰好为作O 0
的切线交AC于点E.
(1)求证:DE丄AC ;
(2)若AB=3DE,求tan/ ACB 的值.
22 ( 8分).如图,在Rt△ ABC中,/ ACB=90 °以AC为直径作O 0交AB于点D 点,连接
CD .
(1)求证:/ A= / BCD ;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与O 0相切?并说明理由.
23( 10分).如图,AB是O 0的弦,0P丄0A交AB于点P,过点B的直线交0P的延长线于点C,
且CP=CB .
(1) 求证:BC是O 0的切线;
(2) 若O 0的半径为匸,0P=1,求BC的长.
24. (10分)如图,已知AB是O 0的直径,弦CD丄AB,垂足为E, / A0C=60 °
0C=2 .
(1)求0E和CD的长;
(2)求图中阴影部分的面积.
心 D J
C
D。