清华大学最优化方法
- 格式:pdf
- 大小:805.68 KB
- 文档页数:50
最优化方法孙文瑜课后答案【篇一:81010218《最优化算法》教学大纲】xt>课程编号: 81010218课程名称:最优化算法英文名称:optimization algorithm 总学时:32 学分:2适用对象: 信息与计算科学本科专业先修课程:数学分析(1-3),高等代数(1-2),运筹学一、课程性质、目的和任务《最优化算法》课程是信息与计算科学专业的一门主要专业选修课。
本课程的目的是使学生理解最优化理论与方法的基本概念,掌握最优化的基本理论和常见的优化算法,为学习后继课程和解决实际问题打下扎实的基础,培养学生用数学知识解决实际问题的兴趣、意识,以及分析问题和解决问题的能力。
二、教学内容、方法及基本要求1.非线性规划基本概念教学内容:多元函数极值理论。
基本要求:理解非线性规划问题概念,一般形式,最优解的情况。
理解梯度、海赛矩阵等概念,掌握极值点的必要条件,充分条件。
理解凸函数概念,掌握凸函数的判定条件和方法。
理解凸规划概念。
2. 一维搜索教学内容:一维搜索。
基本要求:掌握求解非线性规划问题搜索法的基本思想。
掌握一维搜索的斐波那契方法和0.618法。
3.求解无约束非线性规划问题的解析法教学内容:梯度法,广义牛顿法,共轭梯度法,变度量法。
基本要求:理解梯度法,广义牛顿法,共轭梯度法,变度量法的基本思想,掌握四种方法的迭代步骤,了解四种方法的收敛定理。
4. 求解无约束非线性规划问题的直接法教学内容:步长加速法,方向加速法,单纯形法。
基本要求:理解步长加速法,方向加速法,单纯形法的基本思想,掌握三种方法的迭代步骤,了解三种方法的收敛准则。
了解解析法与直接法的优缺点。
5. 求解约束非线性规划问题的逐步线性逼近法教学内容:逐步线性逼近法。
基本要求:理解约束非线性规划问题一般模型。
理解逐步线性逼近法基本思想,掌握逐步线性逼近法的求解步骤。
6. 求解约束非线性规划问题的拉格朗日乘子法教学内容:拉格朗日乘子法。
最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。
4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。
9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。
二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。
基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。
第2章 无约束优化计算的基本原理(Fundamental principle ofnon-constrained optimization computation )无约束优化问题 Δmin f (X )注:ma 是目标函数(objective function)x f (X )min(f (X ))=−*X 是f (X )的一个局部极小(值)点(local minimal point)Δ>*f (X )f (X )(*X (X )∀∈Ω开邻域(open neighborhood))*X 是f (X )的一个全局最小(值)点(global minimal point)Δ*f (X )f (X )≥(n X R ∀∈)§2.1最优性条件(Optimality conditions )一、必要条件对于一元可微函数()f x 在极小值点*x 有*()0′=f x ,类似的对多元函数有: 定理2-1-1 连续可微,)(X f *X 极小点⇒0)(*=∇X f ⇒≠∇0)(*X f 取)()()()()(****λλλo p X f X f p X f X f p T +∇+=+⇒−∇=2*****()()()()()()(T )f X f X f X o f X f X o λλλ=−∇⋅∇+=−∇+λ⇒当0>λ且充分小,有***()()()()*X p X f X p f X λλ+∈Ω⇒+≥可行域内 ⇒22**()()()00()0o f X o f X λλλλ−∇+≥⇒≤∇≤→⇒与∇矛盾*()0f X ≠注:①*X 是的驻点(stationary point))(X f Δ0)(*=∇X f②对满足3312)x x =−在0(0,0)T X =定理2-1-2 二阶连续可微, )(X f *X 是极小点⇒, 半正定(semi-definite)0)(*=∇X f )(*2X f ∇⇒)(X f 二阶连续可微可微⇒)(X f ⇒0)(*=∇X f )(*2X f ∇非半正定⇒, 0p ∃≠∋0)(*2<∇p X f p T ⇒)()(**X f p X f =+λ)()()()(22*2*22λλλo X f <o p X f p T ++∇+⇒λ充分小,有与)()(**X f p X f <+λ⇒*X 极小点矛盾。
《最优化方法》课程教学标准第一部分:课程性质、课程目标与要求《最优化方法》课程,是我院数学与应用数学、信息与计算科学本科专业的选修课程,是系统地培养数学及其应用人才的重要的课程之一,它与工农业生产等实际问题紧密联系。
本课程的目的是利用微积分的思想,结合线性代数,解析几何等其他数学科学的知识,来对各种实际问题建立优化模型,并构造优化算法,使学生学会和掌握本课程的基本优化模型、基础理论和方法,为他们解决实际问题提供思想与方法;同时,通过这门课本身的学习和训练,使学生们学习数学建模的一些基本优化方法,初步了解当今自然科学和社会科学中的一些非线性问题,为将来从事相关领域的科学研究和教学工作培养兴趣,做好准备。
教学时间应安排在第六学期或第七学期。
这时,学生已学完线性代数,基本学完数学分析等课程,这是学习《最优化方法》课程必要的基础知识。
同时,建议在条件允许的情况下,介绍利用常用的数学软件解决优化问题的基本方法和技能,使学生初步体会计算机在解决数学及其应用问题的重要作用,增强使用数学方法和计算机解决问题的意识和能力。
第二部分:教材与学习参考书本课程拟采用由孙文瑜、徐成贤和朱德通编写的、高等教育出版社2004年出版的《最优化方法》一书,作为本课程的主教材。
为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书:1、最优化方法,施光燕、董加礼,高等教育出版社,19992、最优化理论与算法,陈宝林,清华大学出版社,1989第三部分:教学内容纲要和课时安排第一章基本概念主要介绍优化问题的基本模型、凸集和凸函数的概念和性质、最优性条件及最优化方法概述。
本章的主要教学内容(教学时数安排:6学时):§1.1最优化问题简介§1.2凸集和凸函数§1.3 最优性条件§1.4 最优化方法概述第二章线性规划本章介绍线性规划的基本性质及其对偶理论,求解线性规划的单纯形方法和对偶单纯形方法以及内点算法。
最优化原理与方法首先讲几个问题:1>本部分以讲最优化原理和方法为主,联系金属加工工艺(轧钢)生产为辅。
因为最优化原理与方法不仅用于金属加工(轧钢生产),而且适用于国民经济的各个部门。
2>最优化(原理)是近化应用数学的一个新的分支。
最优化主要是研究在给定的条件下,如何做出最好的决策去完成所给的任务。
本门课程的基础是微积分和线性代数,本门课程的计算工具是电子计算机。
因为用的数学知识和证明较多,我们在讲课中力求深入浅出,对有些证明我们予以省略,这一方面是由于学时有限,另一方面不要用过多的证明冲淡我们对方法的掌握,我们的重点是“实用”。
但要求对一些基本概念要有清晰的了解。
3>主要参考书是“轧制变形规程优化设计”(刘战英,冶金工业出版社)。
参考书是“最优化原理与方法”(东北工学院,薛嘉庆,冶金工业出版社)。
本书的规定学时是70学时,所以我们不能全讲,只讲其中一部分,有些内容还是这本书没有的。
另一本参考书是“最优化技术基础”(范鸣玉、张莹,清华大学出版社)4>学习方法a、认真听课,认真做笔记,基本概念和基本方法一定要掌握,要及时复习。
b、认真完成作业c、上机操作5>考核方式a、作业完成情况b、笔试(闭卷6>学习目的对优化技术入门,能编制简单的优化程序,最好能在毕业设计和论文中加以应用。
1最优化问题与数学预备知识1.1引言1.1.1什么是最优化问题做一切工作,我们总想从一切可能的方案中选出最优的方案,这就是最优化问题如1)安排生产计划方面,如何在现有人力、物力条件下,合理安排产品生产,使总产值为最高:2)产品设计方面,工字钢(截面抗弯能力,宽高比或面模量wx/f)机械零件;3)工厂布局、物资调动方面;4)配料方面,如何合理配料,在保证质量前提下使成本最低;5)自动控制中参数的设定:如轧钢自动控制系统中连轧机各架轧机压下量的设定;在坯料厚度H和成品限制条件都能满足的情况下,如何分配各架轧机的压下量,使达到最优工作状态;等等,由此可见,在各生产、科研领域中普遍存在着最优化问题。