2018高三数学一轮复习的五个重点
- 格式:docx
- 大小:17.00 KB
- 文档页数:2
高三数学一轮复习知识点高三是每个学生都经历的一段关键时期,无论是对于学习压力还是备考任务,都是非常巨大的挑战。
而在高三中,数学作为一门重要科目,更是需要学生们下大功夫去复习和巩固。
在这篇文章中,我们将探讨一些高三数学一轮复习的重点知识点,帮助学生们更好地备考。
一、函数与方程在高中数学中,函数与方程是一个非常基础且重要的概念。
学生们需要掌握函数的定义、性质以及各种常见的函数关系。
此外,还要熟练掌握一元一次方程、一元二次方程以及一元一次不等式的解法。
这些内容是后续学习的基础,因此需要学生们牢固掌握。
二、三角函数与向量三角函数是数学中一个非常重要的分支,学生们需要理解三角函数的定义、性质以及应用。
此外,学生们还需了解三角函数与直角三角形、单位圆、平面向量等的关系。
而在向量部分,学生们需要熟悉向量的基本运算、向量的模、方向以及与点、直线、平面的关系等。
三、数列与数学归纳法数列作为数学中的一个重要概念,对于高考复习来说也是不能忽略的一部分。
学生们需要了解数列的定义、性质以及数列的收敛性等。
此外,数学归纳法也是数学中的一个重要证明方法,学生们需要能够熟练运用数学归纳法解决各种题目。
四、平面几何与立体几何几何在高中数学中占有重要地位,学生们需要掌握平面几何和立体几何的相关知识。
在平面几何中,学生们需要熟悉各种图形的性质、相似与全等的判定以及平行线与垂直线的性质。
而在立体几何中,学生们需要了解各种立体图形的性质、平行线与垂直线的判定等。
五、导数与微分导数与微分是高中数学中一个比较难的知识点,但同样也是需要学生们掌握的重要内容。
学生们需要理解导数的定义、性质以及各种基本导数的计算方法。
此外,学生们还需懂得利用导数解决各种相关的问题,如最值、极值等。
六、概率与统计概率与统计在数学复习中也扮演着重要的角色。
学生们需要了解概率的定义、性质以及常见概率事件的计算方法。
此外,对于统计部分,学生们需要熟悉统计数据的整理和分析,掌握常见统计量的计算方法,同时能够灵活运用统计知识解决实际问题。
高三数学一轮复习知识点讲解专题5.1 任意角和弧度制及任意角的三角函数【考纲解读与核心素养】1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2. 理解正弦函数、余弦函数、正切函数的定义.3.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 4.高考预测:(1)三角函数的定义;(2)扇形的面积、弧长及圆心角;(3)在大题中考查三角函数的定义,主要考查:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标. 5.备考重点:(1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.【知识清单】知识点1.象限角及终边相同的角 1.(1)任意角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度.若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180rad .知识点2.三角函数的定义 1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 知识点3.扇形的弧长及面积公式 (1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =|α|r ,此公式称为弧长公式,其中α的单位是弧度. (2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为l r rad ,故其面积为S =l r ×r 22=12lr ,将l =|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.(3)弧长公式及扇形面积公式的两种表示名称 角度制 弧度制 弧长公式 l =n πr180l =__|α|r __ 扇形面积公式 S =n πr 2360S =|α|2r 2 = 12lr 注意事项r 是扇形的半径,n 是圆心角的角度数r 是扇形的半径,α是圆心角的弧度数,l 是弧长【典例剖析】高频考点一 象限角及终边相同的角【典例1】(2019·乐陵市第一中学高三专题练习)如果,那么与终边相同的角可以表示为A .B .C .D .【答案】B 【解析】 由题意得,与终边相同的角可以表示为.故选B . 【规律方法】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【变式探究】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上. (2) ,422k k k Z παπππ+<<+∈,当2 ,k n n Z =∈时, ∴ 22 ,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限.当2 1 ,k n n Z =+∈时, ∴5322 ,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限.综上所述,2α的终边在第一象限或第三象限.【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角集合表示第一象限角{α|k·360°<α<k·360°+90°,k∈Z}第二象限角{α|k·360°+90°<α<k·360°+180°,k∈Z}第三象限角{α|k·360°+180°<α<k·360°+270°,k∈Z}第四象限角{α|k·360°+270°<α<k·360°+360°,k∈Z} (2)轴线角:角的终边的位置集合表示终边落在x轴的非负半轴上{α|α=k·360°,k∈Z}终边落在x轴的非正半轴上{α|α=k·360°+180°,k∈Z}终边落在y轴的非负半轴上{α|α=k·360°+90°,k∈Z}终边落在y轴的非正半轴上{α|α=k·360°+270°,k∈Z}终边落在y轴上{α|α=k·180°+90°,k∈Z}终边落在x轴上{α|α=k·180°,k∈Z}终边落在坐标轴上{α|α=k·90°,k∈Z}高频考点二三角函数的定义【典例2】已知角的终边过点,且,则的值为( )A. B. C. D.【答案】B【解析】由题意可知,,,是第三象限角,可得,即,解得,故选B.【典例3】已知角的终边落在直线y=2x上,求sinα、cosα、tanα的值.【答案】【解析】当角的终边在第一象限时,在角的终边上取点P(1,2),由r=|OP|=12+22=5,得sinα=2 5=255,cos α=15=55,tan α=21=2. 当角的终边在第三象限时,在角的终边上取点Q (-1,-2), 由r =|OQ |=-12+-22=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.【典例4】(2011·江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______. 【答案】-8 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【规律方法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【变式探究】1.(浙江省嘉兴市第一中学期中)已知角的终边与单位圆交于点,则的值为( )A. B. C. D.【答案】B 【解析】由三角函数的定义可得.故选B .2.已知角的终边在射线上,则等于( )A. B. C. D.【答案】A 【解析】由题得在第四象限,且,所以故答案为: A.【总结提升】(1)已知角α的终边在直线上的问题时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值. ②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=aa 2+b2,正切值tan α=ab. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. 高频考点三:三角函数值的符号判定 【典例5】已知且,则角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】依据题设及三角函数的定义可知角终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,应选答案B.【典例6】确定下列各式的符号: (1)sin105°·cos230°; (2)sin 7π8·tan 7π8;(3)cos6·tan6. 【答案】【解析】先确定角所在象限,进而确定各式的符号. (1)∵105°、230°分别为第二、第三象限角, ∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0.(2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin 7π8·tan 7π8<0.(3)∵3π2<6<2π,∴6是第四象限角.∴cos6>0,tan6<0,则cos6·tan6<0. 【总结提升】判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果角不能确定所在象限,那就要进行分类讨论求解. 【变式探究】1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.2.(1)判断下列各式的符号: ①sin3·cos4·tan5;②α是第二象限角,sin α·cos α.(2)若cos θ<0且sin θ>0,则θ2是第( )象限角.A .一B .三C .一或三D .任意象限角【答案】(1)①正,②负;(2)C【解析】 (1)①π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0. ②∵α是第二象限角,∴sin α>0,cos α<0,∴sin αcos α<0.(2)由cos θ<0且sin θ>0,知θ是第二象限角,所以θ2是第一或三象限角.高频考点四:扇形的弧长及面积公式【典例7】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)A .15B .16C .17D .18 【答案】B 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.【典例8】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,【典例9】已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?【答案】r=10cm, θ==2rad, 100 cm 2【解析】设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .(0<r <20) ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).【总结提升】1.(1) 弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.2.当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数,函数思想、转化为方程的思想是解决数学问题的常用思想. 【变式探究】1.(2019·甘肃高三月考(理))若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 【答案】B 【解析】因为扇形的周长与面积的数值相等,所以设扇形所在圆的半径为R ,扇形弧长为l ,则lR=2R+l ,所以即是lR=4R+2l , ∴l=∵l>0,∴R>2 故选:B .2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A. 1 B. 4 C. 1或4 D. 2或4 【答案】C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,,∴解得28r l ==, 或44r l ==, 41lrα==或,故选C .3.一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.【答案】圆心角α等于2弧度时,这个扇形的最大面积是25 cm 2. 【解析】设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【特别提醒】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决;(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.11金榜题名前程似锦。
高三数学第一轮复习策略高三数学第一轮复习策略一、构建知识网络,注重基础,重视预习,提高复习效率。
数学的基础知识理解与掌握,基本的数学解题思路分析与数学方法的运用,是第一轮复习的重中之重。
对知识点进行梳理,形成完整的知识体系,确保基本概念、公式等牢固掌握。
要扎扎实实,对每个知识点都要理解透彻,明确它们要求以及与其他知识之间的联系。
复习课的容量大、内容多、时间紧。
要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径,要做到“两先两后”,即先预习后听课,先复习后作业。
以提高听课的主动性,减少听课的盲目性。
而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。
预习还可以培养自己的自学能力。
二、提高课堂听课效率,勤动手,多动脑。
所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要弄清那些已懂那些还不懂,增强听课的主动性。
现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
三、建好错题档案,做好查漏补缺。
这里说的“错”,是指把平时做作业中的错误收集起来。
复习,各类试题要做几十套,甚至更多。
如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。
查漏补缺的过程就是反思的过程。
除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。
高三数学第一轮复习计划(推荐10篇)高三数学第一轮复习计划篇一高考数学命题近年来经历了由“知识立意”向“能力立意”的转变,体现了对能力和潜能的考察,使知识考查服务于能力考查。
针对这一命题走向,怎样在短暂的时间内搞好总复习,提高效率,减轻负担是我的核心理念。
一、夯实基础。
今年高考数学试题的一个显著特点是注重基础。
扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1.注重课本的基础作用和考试说明的导向作用;2.加强主干知识的生成,重视知识的交汇点;3.培养逻辑思维能力、直觉思维、规范解题习惯;4.加强反思,完善复习方法。
二、解决好课内课外关系。
课内:(1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。
对题目尽量做到一题多解,一题多用。
一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。
(2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。
(3)每节课留10分钟让学生疏理本节知识,理解本节内容。
课外:除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,判作业时面批面改,指出知识的疏漏。
三、注重师生互动1.多让学生思考回答问题,对于有些章节知识,按难易程度选择六至八道,尽量独自完成,无法独立解决的可以提示思路。
2.让学生自我小结,每一章复习完后,是络结构,包括典型题目、思想方法、解题技巧,易错易做之题;3.每次考试结束后,让学生自己总结:①试题考查了哪些知识点;②怎样审题,怎样打开解题思路;③试题主要运用了哪些方法,技巧,关键步在哪里;④答题中有哪些典型错误,哪些是知识、逻辑心理因素造成,哪些是属于思路上的。
高三数学一轮复习知识点详细高三是整个中学生活的关键时期,对于将要面临高考的学生们来说,备考是最重要的任务之一。
而高考数学作为一门重要的科目,需要一轮复习提高自己的数学水平和应试能力。
本文将详细介绍高三数学一轮复习的知识点。
一、代数与函数在代数与函数中,我们需要重点复习的知识点有:1. 分式方程:包括分式的乘除与分式的方程与不等式;2. 二次函数:掌握二次函数的定义、性质以及相关的图像变换;3. 复杂函数的运算:包括函数的合并、分解、复合与反函数;4. 分式与整式的混合运算:理解分式与整式的加减及乘法与整式的除法运算;5. 二元一次方程组:熟悉二元一次方程组的解法;6. 等差数列与等比数列:掌握等差数列与等比数列的性质,并进行相关题目的解答;7. 幂指函数:理解幂函数与指数函数的图像变换与性质。
二、空间与几何在空间与几何中,我们需要重点复习的知识点有:1. 空间向量:包括向量的定义、加法、数量积与向量的共线与垂直关系;2. 圆锥曲线:掌握圆、椭圆、抛物线和双曲线的定义、相关性质与图像变换;3. 球与球面上的直线与平面:认识球与球面上直线与平面的性质、夹角、交点等;4. 空间几何体的体积与表面积:熟悉各种几何体的体积与表面积计算;5. 空间几何体的相交关系:包括平行与垂直关系、位似关系等。
三、数与统计在数与统计中,我们需要重点复习的知识点有:1. 随机事件与概率:理解随机事件的定义与基本性质,掌握概率的计算方法与相关公式;2. 二项式定理:掌握二项式展开的方法与应用;3. 组合数学与排列组合:了解排列组合计算的基本方法与公式,掌握应用技巧;4. 数据的整理与分析:学会收集数据、整理数据、制作统计图与分析统计结果。
四、解析几何在解析几何中,我们需要重点复习的知识点有:1. 平面直角坐标系与向量:理解平面直角坐标系的性质,掌握向量的加法、减法、数量积与向量的共线关系;2. 平面图形的方程:熟悉直线、圆、抛物线、双曲线及椭圆图形的方程;3. 几何变换:掌握平移、旋转、对称与放缩等几何变换的基本概念与性质。
高三数学第一轮复习各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是我给大家整理的一些高三数学第一轮复习的学习资料,盼望对大家有所关心。
高考数学第一轮复习各种题型应对方法一,第一轮复习的目标第一轮复习是对高中所学的数学学问进行全面的梳理和复习,即系统地整理学问,优化学问结构。
其指导思想是全面、扎实、系统、敏捷。
全面———即全面掩盖;扎实———抓好单元学问的理解、巩固、深化;系统———留意学问的前后联系,有机结合,完整性、系统性,使同学初步建立明晰的学问网络;敏捷———增加小综合训练,克服单向性、定向性,初步培育综合运用学问、敏捷解题的力量。
复习的直接目标是解决高考中的基础题,其根本目的是为数学素养的提高作物质预备。
在这一阶段主要抓好对基本概念精确记忆和实质性的理解,抓基本方法、基本技能的娴熟应用,抓公式和定理的正用、逆用、变用、巧用,抓基本题型的训练和熟化。
二.第一轮复习中需要留意的几个问题首先,老师仔细研读高考考试标准,明确“考什么,怎么考,考多难”,考试标准上对于高考所要考查的数学思想,数学方法,数学力量,题型比例和题量都有明确的说明,甚至对题目的力量要求,做题目用多少时间都有说明。
老师只有熟识考试标准,复习中才能做到胸有成竹,得心应手。
其次,老师要熟识和讨论近几年新高考试题,把握高考试题的结构与特征,明确哪些内容在近几年的考题中已经消失,那些还从未涉及过,哪些学问点常考常新,逐一排查找出学问的重点、难点、疑点,做到心中有数,有的放矢。
充分利用图像、表格、框图,使同学在头脑中构建学问网络,使之变成清楚的几条线,而不是模糊的一大片。
对概念、定义、公式、定理要让同学深刻理解,坚固记忆,融会贯穿,娴熟提取,力求做到提起一根线带起一大遍。
第三,老师在复习教学中要以提高同学解题力量为核心,注意对数学思想,数学方法,考试常识和艺术的渗透。
高三数学一轮复习计划高三数学第一轮复备考计划一、指导思想为了适应新课程改革要求, 提高高中数学复效率是非常重要的。
数学复可以让学生更好地掌握数学基本知识和基本技能, 以及数学思想方法, 从而培养学生的思维能力, 激发学生研究数学的兴趣, 树立学好数学的信心, 争取在考试中取得满意的成绩。
二、复建议:1.以教材和资料《全品》为主1)用好课本例题、题复时, 考生要“回归”课本, 重新研究每个考点, 注意知识点的融会贯通, 掌握解题的通性、通法, 提高解题能力和速度。
考生复课本时, 要注意内容、符号表达的统一, 以及定义、定理、公式等叙述的规范。
同时, 许多高考试题都是由教材中的例题、题引申变化而来。
因此, 考生必须利用好课本, 夯实基础知识;教师也要注重课本的基础作用, 重视知识的交汇点, 培养学生逻辑思维能力。
2)用好资料《全品》熟练掌握课本, 夯实基础知识后, 可以通过《全品》再加强基础知识的应用, 训练解题能力和解题速度。
根据考试说明的变化, 应加强这方面的训练, 特别是要训练如何灵活选择较简运算途径解决繁杂计算的能力。
2.研读《考试大纲》、《考试说明》把握复方向研读《考试大纲》、《考试说明》可以帮助考生把握复方向, 重点复考试重点和难点。
同时, 也有助于考生了解考试形式和要求, 有针对性地进行复。
全体高三数学教师需要深入研究《考试大纲》, 认真研究《考试说明》, 以制订科学的复备考方案, 规范复内容和能力要求, 避免盲目复。
《考试大纲》是普通高考的纲领, 明确规定了高考的性质、内容、形式及试卷结构和试题题型, 是高考命题的依据, 指导整个高考工作, 也是教师备课的依据。
因此, 深入研究当年的《考试大纲》, 特别是与研究高考试题结合起来, 对科学预测试题变化, 及时调整复方案, 有着十分重要的意义。
教师需要注重《考试大纲》、《考试说明》的导向作用, 把握好复的范围重点、难点、热点, 制订周密的复计划, 正确控制知识的难度, 复内容的深度和广度, 防止一切依赖复资料, 脱离学生实际, 教材实际和高考实际的现象发生。
高三数学第一轮复习课教学模式潘海涛根据复习课教学的五条原则(抓住教材重点、调动学生主体、注重能力培养、运用电教手段、提高当堂效率)和高三第一轮复习的三个目标(全面复习、重点联系、突破疑难),上好复习课要着重在下列五个方面下功夫:一、备好复习教案1.备好教学目标:突出知识目标和能力培养目标,体现情感教育目标,不同层次的班级可制定不同的知识目标和培养目标。
2.备好教学重点:抓住重点、突破疑点。
3.备好教法和学法:教学主指教师如何启发引导,点拨讲评、总结归纳。
学法主指学生如何动脑思考、动手操作、动口表达。
二、优化课堂模式采用“多段三步式”。
“三步”是指对每一个知识点的教学采用三步完成:第一步,教师设计好针对性很强的问题或情景启发学生开展活动;第二步,学生进行思考或讨论、练习或实验、归纳或评价;第三步,教师根据学生活动情况进行点拨、讲评或完善。
多段是指每堂课一定要经过若干阶段才能完成。
即使单一知识点的新授课也要经过初步认识、理解巩固、小综合应用、纳入认知整体结构的总结四个阶段才能完成。
复习课涉及的知识点一般教多,更要经过若干阶段的三步才能完成。
三、教活基础知识该项要求是指在复习重要的概念、公理、定理、公式、法则时,不但要使学生牢记这些单一的知识,更重要的是使学生掌握它们之间的内在联系。
在复习时,教师要编拟一组例题,着重对这些经验公式加以梳理。
还有定理、公式的变换应用技巧和解题的常规模式也值得梳理。
四、教透典型例题对于典型例题的教学,不能仅仅追求它的基本解法或一题多解,为了真正使它发挥代表性和启发性,使学生真正做到“举一反三,触类旁通”,更应追求它的多功能教育(基础功能、规范功能、免疫功能、试错功能、沟通功能等)例如:求函数的最小值。
五、加强思维训练考试说明指出:发展思维能力是培养能力的核心,为此在课堂教学中要加强两个方面的思维训练。
1.突出数学思想方法的教学数学思想方法是数学的精髓,只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学素质。
高三数学第一轮复习方法和策略现阶段大部分学校的数学新授课即将结束,很快就要进入高三第一轮复习,有的班已经开始复习,现在我根据自己近几年一直在高三教学的体验,就“五严规定新形势下,高三数学如何进行第一轮复习方法和策略。
我认为高三的数学复习,除大家熟知的、常规的各项要求以外,以下几个方面值得注意:一、认清形势,提前谋划,周密安排,把握细节形势:省五严规定出台以后,学生在校学习,集体辅导,集中训练的时间明显减少,与以前的高三数学复习时间相比,集体辅导的时间,不足三分之二,这对曾经多次担任过高三毕业班数学指导,有高三复习经验的老师来说,更要提高认识,不能仅凭过去的经验和教学节奏办事。
谋划:高三数学复习的谋划,应该包括调查学情、选择基本资料、拟定复习计划、选择章节主备课人等多个方面,每一项都值得同备课组同仁们认真研讨、提前谋划,才能使本校、本班的高三数学复习有的放矢、事半功倍。
周密:特别是学情调查和计划研制要周密,要对前两年的教学,特别是更换过教师、调整过班级的教与学,学生的实际学习效果、实际基础,进行认真周密的调查、梳理和分析。
不了解学情,高三的数学复习,就可能是盲人骑瞎马,百密必有一漏,不能实现复习效果的最优化。
复习的计划更是要尽可能地周密,大家都有经验,不再赘述。
细节:细节决定成败。
高中数学的每个章节、每个重要的知识点突破,每个考点的夯实,每一节课的效率,每一种重要题型的解题思想、方法,解题教学后的训练和巩固,都是高三数学复习要特别关注的细节,值得高三数学教师因班而异、因校而异地认真思考和谋划。
二、突出重点,注重实效,抓实课堂,巧用课外高三数学第一轮复习的重点:一是基本知识,每位教师要认真研读贵州省考试说明,对三种要求的知识点目标要确保心中有数。
书本上有关的概念,定理,法则,运算性质,还有那些约定俗成的重要结论,不仅要让学生记住,还要通过将知识习题化,训练学生灵活运用。
二是基本技能,高中数学中常见的一些解题方法、技巧,考试热点和比较常见的特定题型、特定解法,教师要精心备课,反复训练。
高三数学第一轮复习知识点高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
2018高三数学一轮复习的五个重点
高中数学知识量大,考查范围广泛,综合性强。
高三一轮复习的要点在于巩固高二知识点,以及对以前知识的查缺补漏。
很多的准高三生已经正式的进入了复习状态。
现在提醒大家高三数学复习的过程中需要注意的五点问题。
高三期间三个复习阶段
第一轮复习一般从8月到12月,以教材的知识体系作为复习的主要线索,以帮助同学们回忆、回顾以前学习过的知识为主,对知识面进行全方位的覆盖,以及对基本方法、基本题型进行总结、反思;
第二轮复习大概从2月到4月中旬,在此阶段打破了教材的体系,主要是对高中数学的六大板块进行专题性的复习,在第一轮复习的基础上进一步加强综合性运用,提高解题的准确性、速度性和解答题的规范性;
第三轮复习一般从4月中旬到5月中旬,此阶段主要是同学们进行高考试题的模拟考试、训练,以培养同学们的答题技巧、答题方法、考场应变能力。
5月下旬到6月5日期间则是同学们自主复习,以回归教材、错题反思、方法的进一步归纳总结。
所以在整个高三的复习中,第一轮复习所用的时间是最长的,它的复习成效将直接影响后面的复习效果。
所以徐老师对数学学科的第一轮复习提出以下建议:
在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。
主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:
(1)对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。
第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。
如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。
(2)复习的时候心不静。
心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。
建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。
(3)在第一轮复习阶段,学习的重心应该转移到基础复习上来。
因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。
只有这样,一轮复习才能显出成效。
要把书本中的常规题型做好,所谓做好就是要用最少的时间把题目做对。
部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。
可见,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。
不妨以既是重点也是难点的函数部分为例,就必须掌握函数的概念,建立函数关系式,掌握定义域、值域与最值、奇偶性、单调性、周期性、对称性等性质,学会利用图像即数形结合。
每个同学在数学学习上遇到的问题有共同点,更有不同点。
在复习课上,老师只能针对性去解决共同点,而同学们自己的个别问题则需要通过自己的思考,与同学们的讨论,并向老师提问来解决问题,我们提倡同学多问老师,要敢于问。
每个同学必须了解自己掌握了什么,还有哪些问题没有解决,要明确只有把漏洞一一补上才能提高。
复习的过程,实质就是解决问题的过程,问题解决了,复习的效果就实现了。
同时,也请同学们注意:在你问问题之前最好先经过自己思考,不要把不经过思考的问题就直接去问,因为这并不能起到更大作用。
高三的复习一定是有计划、有目标的,所以千万不要盲目做题。
第一轮复习非常具有针对性,对于所有知识点的地毯式轰炸,一定要做到不缺不漏。
因此,仅靠简单做题是达不到一轮复习应该具有的效果。
而且盲目做题没有针对性,更不会有全面性。
在概念模糊的情况下一定要回归课本,注意教材上最清晰的概念与原理,注重对知识点运用方法的总结。
1.树立信心,养成良好的运算习惯。
部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。
“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。
可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。
必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。
2.做好解题后的开拓引申,培养一题多解和举一反三的能力。
解题能力的培养可以从一题多解和举一反三中得到提高,因而解完题后,需要再回味和引申,它包括对解题方法的开拓引申,即一道数学题从不同的角度去考虑去分析,可以有不同的思路,不同的解法。
考虑的愈广泛愈深刻,获得的思路愈广阔,解法愈多样;及对题目做开拓引申,引申出新题和新解法,有利于培养同学们的发散思维,激发创造精神,提高解题能力:
(1)把题目条件开拓引申。
①把特殊条件一般化;②把一般条件特殊化;③把特殊条件和一般条件交替变化。
(2)把题目结论开拓引申。
(3)把题型开拓引申,同一个题目,给出不同的提法,可以变成不同的题型。
俗称为“一题多变”但其解法仍类似,按其解法而言,这些题又可称为“多题一解”或“一法多用”。
3.提高解题速度,掌握解题技巧。
提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。
很多同学都是一看到题目就开始做题,这也是一轮复习应该避免的地方。
做题如果不注重思路的分析,知识点的运用,效果可想而知。
因此建议同学们在做题前要把老师上课时复习的知识再回顾一下,梳理知识体系,回顾各个知识点,对所学的知识结构要有一个完整清楚的认识,认真分析题目考查的知识,思想,以及方法,还要学会总结归纳不留下任何知识的盲点,在一轮复习中要注意对各个知识点的细化。
这个过程不需要很长的时间,而且到了后续阶段会越来越熟练。
因此,养成良好的做题习惯,有助于训练自己的解题思维,提高自己的解题能力。
实践出真知,充足的题量是把理论转化为能力的一种保障,在足够的题目的练习下不仅可以更扎实的掌握知识点,还可以更深入的了解知识点,避免出现“会而不对、对而不全”的现象。
由于高考依然是以做题为主,所以解题能力是高考分数的一个直接反映,尤其是数学试题。
而解题能力不是三两道题就能提升的,而是要大量的反复的训练、认真细致的推敲才会有较大的提升。
有句话说的好,“量变导致质变”,因此,同学们在每章复习的时候,一定要做足够的题,才能够充分的理解这一章的内容,才能够做到对这一章知识点的熟练运用。
但是,大量训练绝对不是题海战术。
因为针对每章节做题都有目标,同时做题训练都需要不断的总结,既要横向总结,也要纵向深入。
只要在每章节做题做到一定程度的时候都能感觉到这一章的知识点有哪些,典型题型有哪些,方法和技巧有哪些,换句话说,如果随机抽取一些近几年关于这一章的高考题都会做,那就可以了。