交流异步电动机变频调速原理
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
三相异步电动机变频调速的原理及发展摘要:阐述了变频调速三相异步电动机的原理及其发展趋势。
关键词:异步电动机;变频调速;变频器前言实际的生产过程离不开电力传动。
生产机械通过电动机的拖动来进行预定的生产方式。
直流电动机可方便地进行渊速,但直流电动机体积大、造价高,并且无节能效果。
而交流体积小、价格低廉、运行性能优良、重量轻,因此对交流电动机的凋速具有重大的实用性。
使用调速技术后,生产机械的控制精度可大为提高,并能够较大幅度地提高劳动生产率和产品质量,而且可对诸多生产过程实施自动控制。
通过大量的理论研究和实验,人们逐渐认识到:对交流电动机进行调速控制,不仅能使电力拖动系统具有非常优秀的控制性能,而且在许多场合中,还具有非常显著的节能效果。
鉴于多种调速方式中,交流变频调速具有系统体积小,重量轻、控制精度高、保护功能完善、工作安全可靠、操作过程简单,通用性强,使传动控制系统具有优良的性能,同时节能效果明显,产生的经济效益显著。
尤其当与计算机通信相配合时,使得变频控制更加安全可靠,易于操作(由于计算机控制程序具有良好的人机交互功能),变频技术必将在工业生产发挥巨大的作用,让工业自动化程度得到更大的提高。
1异步电动机调速的原理及方法三相交流电动机定子绕组中的三相交流电在定子隙圆周上产生一个旋转磁场,这个旋转磁场的转速称同步转速,记为n 实际电动机转速n要低于同步转速,故一般称这样的三相交流电动机为三相异步电动机。
1.1工作原理异步电动机的同步转速遵从电机学基本关系n l=60f/p (1)式中f一一电源交变频率P一电机定子磁极对数电机学中还常用转差率S参量,其定义为s=(n l—n)/n l·100%(2)电机的实际转速n=(60f/p)(1一s)(3)1.2变频调速控制方式式(3)可知,异步电动机变频调速的控制方式基本上有以下三种。
1.2.1电源频率低于工频范同调节,电源的工频频率在我国为50Hz。
三相异步电动机的FOC控制是一种利用变频器控制三相交流马达的技术,它通过调整变频器的输出频率、输出电压的大小及角度,来控制马达的输出。
具体来说,FOC控制通过调整PWM(脉冲宽度调制)信号的占空比,来控制变频器的输出电压,从而控制马达的转速。
PWM信号是一种方波信号,其占空比是指在一个周期内高电平时间与整个周期时间的比值。
当占空比变化时,变频器输出的平均电压也会变化,从而改变马达的转速。
在FOC控制中,首先需要将三相输出电流及电压以矢量来表示,这个过程称为矢量控制或磁场定向控制。
通过调整变频器的输出频率和电压大小,可以控制马达的磁场强度和转速。
对于有传感器FOC,由于电机的传感器(一般为编码器)能反馈电机转子的位置信息,因此在控制中可以不使用位置估算算法,控制起来相对无传感器FOC简单。
然而,对于无传感器FOC,由于没有传感器来反馈电机转子的位置信息,因此需要使用位置估算算法来控制马达的转速。
总之,三相异步电动机的FOC控制利用PWM信号来控制变频器的输出电压,从而控制马达的转速。
它是一种高效、精确的电机控制方法,被广泛应用于各种工业场合。
《自动控制元件及线路》课程实习报告异步电动机变频调速系统1.4.1 系统原理框图及各部分简介本文设计的交直交变频器由以下几部分组成,如图1.1所示。
图1.1 系统原理框图系统各组成部分简介:供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。
因为本设计中采用中等容量的电动机,所以采用三相380V电源。
整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。
在本设计中采用三相不可控整流。
它可以使电网的功率因数接近1。
滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。
逆变电路:逆变部分将直流电逆变成我们需要的交流电。
在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。
电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。
控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。
这些信号经过光电隔离后去驱动开关管的关断。
1.4.2 变频器主电路方案的选定变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。
随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。
静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。
1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。
由于中间不经过直流环节,不需换流,故效率很高。
因而多用于低速大功率系统中,如回转窑、轧钢机等。
但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。
2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。
交流异步电动机变频调速设计异步电动机是工业生产过程中广泛使用的一种电机,widely used in industrial production. 它的运转速度受到电源的频率和极数的影响,因此在一些应用场合需要采取变频调速技术,以满足不同负载下的运转需求。
本文将介绍异步电动机变频调速设计的基本原理和具体实现方法。
一、异步电动机变频调速的原理异步电动机通过电源提供的交流电源驱动,其转速 n与电网频率 f 和定子极数 P 相关,公式为:n=60f/P 。
如图1所示,当电网频率为50Hz、极数为4极时,异步电动机的转速为1500 rpm。
当需要在同一台异步电动机下实现不同转速时,可以采用变频调速技术。
变频调速的原理是通过变频器改变电网电源的频率和电压,从而改变异步电动机的转速。
变频器通过将电源中的直流信号转换成相应的交流信号进行调节,例如通过将电源中的50Hz的电信号转换为30~50Hz的交流信号,使得异步电动机的转速得到调节。
二、异步电动机变频调速的实现方法1.输入电源与三相异步电动机连接。
2.将电源中的交流信号转换为直流信号,通过功率恒定的逆变器将直流信号转换为变频输出的交流信号。
3.通过多种控制方法调节电压频率,从而实现异步电动机转速的控制。
通常采用矢量控制和定速控制两种控制方式。
3.1 矢量控制矢量控制是一种高精度、高性能的控制方法,可以使异步电动机在不同的负载下达到相同的速度和扭矩。
矢量控制适用于较高的调速要求,可以在满足较高控制精度的同时,实现更好的动态性能。
3.2 定速控制定速控制是一种简单、常用的变频控制方法。
该方法通过设定电机的运行速度来调节输出频率和电压,使得异步电动机具有稳定的转速和扭矩。
三、结论本文通过介绍异步电动机变频调速的原理和实现方法,可以实现异步电动机在不同负载条件下达到相同的转速和扭矩,提高了运行效率和能源利用率。
异步电动机变频调速技术的应用将得到更加广泛的推广和应用。
交流异步电动机变频调速原理在异步电动机调速系统中,调速性能最好、应⽤最⼴的系统是变压变频调速系统。
在这种系统中,要调节电动机的转速,须同时调节定⼦供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很⾼的运⾏效率。
但是,这种系统需要⼀台专⽤的变压变频电源,增加了系统的成本。
近来,由于交流调速⽇益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐⾛低,使得变压变频调速系统的应⽤与⽇俱增。
下⾯⾸先叙述异步电动机的变压变频调速原理。
交流异步电动机变频调速原理:变频器是利⽤电⼒半导体器件的通断作⽤把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
现在使⽤的变频器主要采⽤交—直—交⽅式(VVVF变频或⽮量控制变频),先把⼯频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
交-直部分整流电路:由VD1-VD6六个整流⼆极管组成不可控全波整流桥。
对于380V的额定电源,⼀般⼆极管反向耐压值应选1200V,⼆极管的正向电流为电机额定电流的1.414-2倍。
(⼆)变频器元件作⽤电容C1:是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波,变压器是⼀种常见的电⽓设备,可⽤来把某种数值的交变电压变换为同频率的另⼀数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。
压敏电阻:有三个作⽤,⼀过电压保护,⼆耐雷击要求,三安规测试需要.热敏电阻:过热保护霍尔:安装在UVW的其中⼆相,⽤于检测输出电流值。
选⽤时额定电流约为电机额定电流的2倍左右。
充电电阻:作⽤是防⽌开机上电瞬间电容对地短路,烧坏储能电容开机前电容⼆端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。
如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过⽆穷⼤的电流导致整流桥炸掉。
交流异步电动机变频调速原理异步电动机变频调速是利用变频器改变电源频率和电压,从而调节电动机的运行速度。
异步电动机是一种常见的交流电动机,常用于工业生产中,其工作原理是根据电磁感应定律,通过电磁感应产生感应转矩,从而驱动机械设备运行。
异步电动机的转速与电源的频率成正比,即转速等于同步转速减去滑差倍数。
滑差是指电动机转速低于同步转速的比例,滑差率与转动负载有关,通常为3%~5%。
异步电动机转速的改变需要改变电源的频率,传统的方法是通过转速开关或者变压器调整电源的频率。
而变频器则可以通过改变电源的频率和电压,实现对异步电动机的变频调速,具有调速范围广、调速精度高、响应速度快等优点。
异步电动机变频调速的原理如下:变频器通过输入交流电源,将其变换成直流电源,然后再将直流电源经过逆变器转换成交流电源,输出给电动机。
逆变器中的IGBT管控制电源的开关,改变电源的有效值和频率。
变频器通过控制IGBT管的开关时间,改变电源的有效值和频率,从而控制电动机的转速。
变频器中的控制器根据实际需求来调整输出电流和电压的波形,以实现电动机的变频调速。
控制器通常包括运算单元及相关的周边设备,运算单元可以根据给定的控制策略、电机参数和负载情况,计算出控制变量,实现实时调节电流、电压、频率和转矩等控制参数。
变频器中的传感器用于监测电动机的运行状态,如转速、转矩、温度等。
传感器将检测到的运行状态信号反馈给控制器,控制器根据这些信号来调整控制变量,以实现对电动机的精确控制。
异步电动机变频调速的应用广泛,可以适应不同的负载要求。
它在工业生产中具有重要的作用,如在输送机、风机、水泵和压缩机等设备中的应用。
通过调整异步电动机的转速,可以实现对生产过程的精确控制,从而提高生产效率、降低能源消耗和减少设备损耗。
总之,异步电动机变频调速通过变频器改变电源的频率和电压,实现对电动机转速的精确调节。
它具有调速范围广、调速精度高、响应速度快等优点,广泛应用于各种工业生产设备中。
第一节 交流异步电动机变频调速原理根据电机学原理,交流异步电动机的转速可表示为:)1(**60s pf n -= (2-1-1) 式中: n 一 电动机转速/分钟,单位:r/min ;p 一 电动机磁极对数;f 一 电源频率,单位:Hz ;s 一 转差率,10<<s 。
注:p 是磁极对数,不是磁极数。
由式(2-1-1)知,影响电动机转速的因素有:电动机的磁极对数 p ,转差率 s 和电源频率f 。
对于给定的电动机,磁极对数 p 一般是固定的;通常情况下,转差率 s 对于特定负载来说是基本不变的,并且其可以调节的范围较小,加之转差率 s 不易被直接测量,调节转差率来调速在工程上并未得到广泛应用。
如果电源频率可以改变,那么通过改变电源频率来实现交流异步电动机调速的方法应该是可行的,这就是所谓变频调速。
由电机学原理知,如忽略绕组间的互感、绕组的漏感及空间电磁谐波,交流异步电动机的相等效稳态电路如图 2-1-1。
图 2-1-1 交流异步电动机的相等效稳态电路由戴维南定理,图 2-1-1电压平衡方程式为:U = E + I * r (2-1-2)式中: U 一 相电压 ;E 一 定子绕组的感应电动势;I 一 定子绕组的相电流;r 一 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和。
交流异步电动机的定子绕组的感应电动势是定于绕组切割旋转磁场磁力线的结果, 其有效值计算如下:E = K * f * Φ (2-1-3) 式中:K 一 与电动机结构有关的常数;f 一 电源频率;Φ 一 磁通量 。
由式(2-1-2)知,加在电机绕组端的电源电压U,一部分产生感应电动势E,另一部分消耗在电阻 r ( 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和 )上 。
其中定子绕组的相电流 I 由两部分构成:21I I I += (2-1-4)电机的定子电流有一小部分1I 用于建立磁场的主磁通,其余大部分2I 用于产生拖动负载的电磁力。
变频调速原理变频器是将固定频率的交流电变换为频率连续可调的交流电的装置。
3.1 变频调速基本原理[7][8][9]由电机学理论可知三相感应电动机的转速为:式中:n 为电动机的转速f 为输入交流电源的频率P 为电动机的极对数s 为异步电动机的转差率通过上式可知,改变交流电动机转速的方法有三种。
即变频调速、变极调速和变转差率调速。
我们知道,交流电动机是通过内部的旋转磁场来传递能量的,为了保证交流电动机能量传递的效率,必须保持气隙磁通量为恒定值。
如果磁通量太小,则没有充分发挥电动机的能力,导致出力不足。
反之,如果磁通量太大,铁心过度饱和,会导致励磁电过大,严重时会因绕组过热而损坏电动机。
因此,保持气隙磁通量的值恒定不变,是变频变压的基本原则。
三相异步电动机定子每相电动势的有效值为:Eg=4.44f1N1Фm式中:Eg:定子每相由气隙磁通感应的电动势的方均根值(V)f1:定子电流频率(Hz);N1:定子相绕组有效匝数;Фm:每极磁通量(Wb)。
由上式可见,只要控制好f1和Eg,便可达到控制磁通Фm的目的。
下面分两种情况加以说明。
1.基频以下的变频调速为保证电动机的带负载能力,基频以下的恒磁通变频调速应保持主磁通Φm不变,这就要求在f1降低的同时降低感应电动势Eg,保持Eg/ f1=常数,即保持电动势与频率之比为常数进行控制。
这种控制又称恒磁通变频调速,属于恒转矩调速方式。
然而,绕组中的感应电动势是难以直接控制的,当电动势值较高时,可以忽略定子绕组的漏磁阻抗压降,而认为定子相电压U1≈Eg,这样只要保持U1/f1=常数,即可达到恒磁通控制的目的,这叫做恒压频比控制方式。
2.基频以上变频调速基频以下的变频调速方式只适合于额定转速以下的调节,对于高于额定转速的调节必须采用弱磁变频调速方式。
在基频以上调速时,频率可以从f1N往上增高,但电压U1却不能超过额定电压U1N,最多只能保持U1=U1N,这将迫使磁通与频率成反比地降低,相当于直流电机弱磁升速的情况,属于近似的恒功率调速方式。
交流异步电机调速方法
一、改变电源频率调速法
改变电源频率调速法是通过改变电源频率来实现电机速度调节的一种方法。
由于异步电动机的转速和电源频率成正比,因此可以通过改变电源频率来调节电机的转速。
在工业应用中,变频器是最常用的改变电源频率的设备。
通过改变变频器的输出频率,可以实现对电机速度的精确控制。
二、改变极对数调速法
改变极对数调速法是通过改变电机的极对数来实现电机速度调节的一种方法。
由于异步电动机的转速和极对数成反比,因此可以通过增加或减少电机的极对数来调节电机的转速。
在工业应用中,可以通过改变电机的接线方式或使用专门的极数转换器来实现极对数的改变。
三、改变转差率调速法
改变转差率调速法是通过改变电机的转差率来实现电机速度调节的一种方法。
由于异步电动机的转差率可以通过改变电机的工作环境和内部结构来调整,因此可以通过改变转差率来调节电机的转速。
在工业应用中,可以通过改变电机的负载或使用专门的转差率控制器来实现转差率的调整。
四、调压调速法
调压调速法是通过改变电机的输入电压来实现电机速度调节的一种方法。
由于异步电动机的转速和输入电压成正比,因此
可以通过改变输入电压来调节电机的转速。
在工业应用中,可以使用专门的调压器或变频器来实现电压的调整。
五、串级调速法
串级调速法是通过在电机转子回路中串入一个附加的电动势来改变电机的转差率,从而实现电机速度调节的一种方法。
在工业应用中,可以使用专门的串级调速装置来实现串级调速。
交流变频调速基本原理一.异步电动机概述1.异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。
⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑵通电的转子绕组相对磁场运动,产生电磁力⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同2.旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。
这三个交变磁场应满足:⑴在空间位置上互差2π/3 rad电度角。
这一点,由定子三相绕组的布置来保证⑵在时间上互差2π/3 rad相位角(或1/3周期)。
这一点,由通入的三相交变电流来保证3.电动机转速产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。
因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差:Δn=n0-n转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0同步转速n0由下式决定:n0=60 f / p式中,f为输入电流的频率,p为旋转磁场的极对数。
由此可得转子的转速n=60 f(1-s)/ p二.异步电动机调速由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法:1.改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。
所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。
通常一套绕组只能换接成两种磁极对数。
变极调速的主要优点是设备简单、操作方便、机械特性较硬、效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。
2.改变转差率s (变转差率调速)以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。
⑴定子调压调速当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。
实验二三相交流异步电动机变频调速实验一、实验目的1.学习和掌握变频器的操作及控制方法;2.深入了解三相异步电动机变频调速性能;3.进一步学习PLC控制系统硬件电路设计和程序设计、调试。
二、实验原理1.三相交流异步电动机变频调速原理通过改变三相异步电动机定子绕组电压的频率,可以改变转子的旋转速度,当改变频率的同时改变电压的大小,使电压与频率的比值等于常数,则可保证电动机的输出转矩不变。
变频器就是专用于三相异步电动机调频调速的控制装置。
它的输入为单相交流电压(控制750W及以下的小功率电动机)或三相交流电压(控制750W以上的大功率电动机),而输出为幅值和频率均可调的三相交流电压供给三相异步电动机。
变频器的生产厂家很多,产品也很多,但基本原理相同。
本实验中采用的是松下小型变频器VFO 200W,有如下几种操作模式。
(1)运行/停止、正转/反转的操作模式:对于电动机的启动/停止以及正反转的控制有外部操作和面板操作两种模式,通过专用参数的设定来实现。
面板操作模式:通过变频器自带面板上的操作键实现运行/停止、正转/反转控制;外部操作模式:通过接在变频器专用输入端开关信号的接通、断开实现运行/停止、正转/反转。
(2)频率设定模式:频率的设定分为面板设定、外部设定两种,通过专用参数的设定来实现。
面板设定模式是根据面板上的电位器或专用键来设定频率的大小。
外部设定模式可以通过变频器上专用输入端上的电位器、电压信号、电流信号、开关编码信号以及PWM信号来实现频率的设定。
2.实验电路图本次实验的主要内容为“外部控制和外部电位器频率设定”。
实验电路图如图17.1所示。
图17.1 三相交流异步电动机变频调速实验电路图由图17.1可知,运行时,PLC程序要使Y4为1,停止时要使Y4为0,频率大小通过改变1、2、3端连接的电位器位置来调节。
3.电路接线表本实验的电路接线表如下表17.1(注:图17.1中方框内的接线已经在内部接好,不需再接线)表17.1 三相交流异步电动机变频调速实验电路接线图三、实验步骤1.按表17.1接线(为了安全起见,接线时请务必断开QF4);2.征得老师同意后,合上断路器QF2和QF4,接通操作面板上的电源开关;3.运行PC机上的PLC工具软件FXGP_WIN-C,输入课前编好的PLC程序(或直接打开已经编制好的,路径为:HJD-DJ1 \程序\实验17\变频调速.PMW),确认程序无误后,将其写入到PLC并运行。
变频调速异步电动机的原理_变频调速技术的原理应用及节能分析1.变频器的工作原理:变频器是一种能够改变交流电的频率和电压的电气设备。
它由整流器、滤波器、逆变器和控制电路等组成。
其工作原理如下:-整流器:将输入的交流电转换为直流电,去除电源中的谐波成分;-滤波器:使输出的直流电平滑,减少电压的波动;-逆变器:将直流电转换为可调变的交流电,并通过PWM技术控制输出电压和频率,实现对电动机的调速控制;-控制电路:根据输入的控制信号,通过对逆变器的控制,调整输出的频率和电压,从而实现对电动机的调速控制。
2.异步电动机的工作原理:异步电动机是一种最常用的电动机类型,其工作原理基于电机的磁场相对运动。
其工作过程可分为两个部分:启动过程和运行过程。
-启动过程:当电机通电时,定子产生旋转磁场,同时转子也会受到这个磁场的作用,使转子产生感应电动势。
由于转子电流的存在,产生了磁场,与定子的旋转磁场相互作用,产生转矩,启动电机的运转。
-运行过程:当电机达到额定转速后,转子的相对运动速度几乎等于零,转矩逐渐减小,电机进入稳定运行状态。
变频调速技术的原理应用及节能分析:变频调速技术是目前应用最广泛的电动机调速技术之一,其原理是通过调整电动机的频率和电压,实现对电动机的调速控制。
变频调速技术的应用和节能分析如下:1.应用:变频调速技术广泛应用于各个行业的电动机调速系统中,如机械制造、石油、化工、电力、冶金、电梯等。
它可以实现对电动机的平稳启动、精确控制和高效能的调速,提高了设备的运行效率和负载能力,降低了机械系统的噪声和振动。
2.节能分析:变频调速技术与传统的机械调速和调压调频方式相比,具有以下节能优势:-调速范围宽:变频器可以根据实际需要,调整电动机的转速范围,满足不同的工况需求,避免了传统调速方式中频繁启停和机械调速的问题,提高了能源利用效率。
-调速精度高:变频器可以通过数字控制,对电动机进行精确的调速控制,使得设备能够在要求的精度范围内工作,减少能源的浪费。
交流异步电动机变频调速系统设计报告一、引言随着现代工业技术的快速发展,变频调速技术得到了广泛应用。
异步电动机作为一种常用的驱动设备,其效率和可靠性对工业生产的效率和质量有着直接的影响。
本报告将介绍异步电动机变频调速系统的设计原理、硬件和软件设计以及测试结果。
二、设计原理1.变频调速原理变频调速系统是通过改变电机供电频率来实现转速调节的方法。
通过变频器将电网的交流电转换成可变频率的交流电,从而控制电机的转速。
2.动态模型异步电动机可以通过Rotor磁场实现电磁耦合,将输入电源的电能转化为机械能。
异步电动机的数学模型可以表示为:dp/dt = (3Rh-is)-Rpdq/dt = (3Ris+Vs)-Rqds/dt = (3wRhf/h-2Vq/h)cos(theta_m)-wrdVs/dt = (3wRqf/h-2Vd/h)sin(theta_m)-wr其中,dp/dt和dq/dt分别代表气隙磁链通量向量的坐标变化率;is 代表定子电流向量;Vs为定子电压向量;p和q代表气隙磁链通量向量的坐标;s代表气隙磁链通量幅值;f代表电源频率;h代表极数;theta_m代表转子与气隙磁链之间的角度差;w代表角速度;Rp和Rq代表定子参数;Rh代表转子参数;wr代表机械转速。
3.变频器控制策略变频器控制策略包括开环控制和闭环控制。
开环控制是通过设定电机转速来控制变频器输出频率;闭环控制是通过测量电机转速反馈信号,与设定值比较后控制变频器输出频率。
闭环控制能够提高系统的稳定性和响应速度。
三、硬件设计1.变频器选择根据电机的额定功率和电源特性,选择适合的变频器。
常见的变频器有电压型变频器和矢量控制型变频器,根据实际应用需求进行选型。
2.控制电路设计设计包括电源模块、信号处理模块和控制逻辑模块。
电源模块用于将电网交流电转换为适合驱动异步电动机的交流电;信号处理模块用于处理输入信号,包括测量电机转速和控制信号;控制逻辑模块根据控制策略生成控制信号,并将其传递给变频器。
三相异步电机变频调速的工作原理1.基本原理:三相异步电机是通过电磁感应的原理产生转动力的,其转速与供电频率成正比。
变频调速就是通过改变电机的供电频率,来改变电机的转速。
2.变频器:变频调速系统的核心是变频器,也称为交流变频调速器。
它由整流器、滤波器、逆变器、控制电路等组成。
变频器可以将输入的固定频率、固定电压的交流电能转换成可变频率、可调电压的交流电能。
3.电压变频调速:在电压变频调速中,变频器通过提供可调的电压来改变电机的供电电压,进而控制电机的转速。
变频器会根据控制信号,调整输出电压的频率和幅值,使得电机的转速与所需的转速匹配。
4.频率变频调速:在频率变频调速中,变频器通过改变电机的供电频率来控制电机的转速。
变频器会通过改变输入电压的频率,改变电机的额定转速。
例如,如果输入电压的频率为50Hz,变频器将其转换为30Hz,电机的转速将降低为原来的60%。
5.闭环控制系统:为了实现精确的调速,变频调速系统通常采用闭环控制方法。
这种方法通过在电机轴上安装编码器等位置传感器,将电机的实际转速反馈给控制系统。
控制系统会根据设定的转速和实际转速之间的误差,调整变频器的输出,使得实际转速接近设定转速。
6.调速特性:三相异步电机变频调速具有良好的调速特性。
在负载变化较小的情况下,调速范围广,调速精度高。
同时,变频调速系统还具有起动电流小、起动冲击小、能耗低等特点。
总结起来,三相异步电机变频调速是通过改变电机的供电频率来调节电机的转速的方法。
其核心是变频器,通过调整电压或频率来控制电机的供电,同时采用闭环控制系统实现精确的调速。
该方法具有调速范围广、调速精度高等特点,广泛应用于工业生产和交通运输等领域。
在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。
在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。
但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。
近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。
下面首先叙述异步电动机的变压变频调速原理。
交流异步电动机变频调速原理:
变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
交-直部分
整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。
对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。
(二)变频器元件作用
电容C1:
是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波,
变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。
压敏电阻:
有三个作用,一过电压保护,二耐雷击要求,三安规测试需要.
热敏电阻:过热保护
霍尔:
安装在UVW的其中二相,用于检测输出电流值。
选用时额定电流约为电机额定电流的2倍左右。
充电电阻:
作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。
如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。
一般而言变频器的功率越大,充电电阻越小。
充电电阻的选择范围一般为:10-300Ω。
储能电容:
又叫电解电容,在充电电路中主要作用为储能和滤波。
PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。
容量选择≥60uf/A
均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。
C2电容;
吸收电容,主要作用为吸收IGBT的过流与过压能量。
2)直-交部分
VT1-VT6逆变管(IGBT绝缘栅双极型功率管):构成逆变电路的主要器件,也是变频器的核心元件。
把直流电逆变频率,幅值都可调的交流电。
VT1-VT6是续流二极:作用是把在电动机在制动过程中将再生电流返回直流电提供通道并为逆变管VT1-VT6在交替导通和截止的换相过程中,提供通道。
(3)控制部分:电源板、驱动板、控制板(CPU板)
电源板:开关电源电路向操作面板、主控板、驱动电路、检测电路及风扇等提供低压电源,开关电源提供的低压电源有:±5V、±15V 、±24V向CPU其附属电路、控制电路、显示面板等提供电源。
驱动板:主要是将CPU生成的PWM脉冲经驱动电路产生符合要求的驱动信号激励IGBT 输出电压。
控制板(CPU板):也叫CPU板相当人的大脑,处理各种信号以及控制程序等部分
(三)电机的旋转速度为什么能够自由地改变?
*1: r/min
电机旋转速度单位:每分钟旋转次数,也可表示为rpm.
例如:2极电机50Hz 3000 [r/min]
4极电机50Hz 1500 [r/min]
$电机的旋转速度同频率成比例
本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。
感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。
由电机的工作原理决定电机的极数是固定不变的。
由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。
另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
n = 60f/p
n: 同步速度
f: 电源频率
p: 电机极对数
$ 改变频率和电压是最优的电机控制方法
如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。
因此变频器在改变频率的同时必须要同时改变电压。
输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。
例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V
2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?
*1: 工频电源
由电网提供的动力电源(商用电源)
(四)起动电流
当电机开始运转时,变频器的输出电流
------变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动------
电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。
工频直接起动会产生一个大的起动电流。
而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。
通常,电机产生的转矩要随频率的减小(速度降低)而减小。
减小的实际数据在有的变频器手册中会给出说明。
通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。