《材料表面工程基础》课后习题目录及答案
- 格式:doc
- 大小:82.00 KB
- 文档页数:11
工程材料第一章金属的晶体结构与结晶1.解释下列名词点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
材料表⾯技术课后题修改版第⼀章1.固体材料的界⾯⼀般分为哪三种,各⾃的含义分别是什么?1)表⾯——固体材料与⽓体或液体的分界⾯。
2)晶界(或亚晶界)——多晶体内部成分、结构相同⽽取向不同晶粒(或亚晶)之间的界⾯。
3)相界⾯: 固体材料中成分、结构不同的两相之间的界⾯。
相界⾯有三类,如固相与固相的相界⾯(s/s);固相与⽓相之间的相界⾯(s/V);固相与液相之间的相界⾯(s/L)。
2.什么是表⾯改性?什么是表⾯加⼯?⼆者有什么区别?表⾯改性——⽤机械、物理和化学的⽅法,改变材料表⾯的形貌、化学成分、相组成、微观结构、缺陷状态或应⼒状态。
表⾯加⼯——通过物理化学⽅法使⾦属表⾯的形貌发⽣改变,但不改变⾦属表⾯的⾦相组织和化学成分,如:表⾯微细加⼯、抛光、蚀刻、整体包覆第⼆章1.什么是清洁表⾯,什么是实际表⾯,⼆者具有怎样的研究意义?清洁表⾯是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表⾯。
这种清洁表⾯的化学组成与体内相同,但周期结构可以不同于体内。
在材料实际应⽤过程中,材料表⾯是要经过⼀定加⼯处理(切割、研磨、抛光等),材料⼜在⼤⽓环境(也可能在低真空或⾼温)下使⽤。
材料可能是单晶、多晶、⾮晶体。
这类材料的表⾯称为实际表⾯。
2.什么是理想表⾯?特点是什么?对于没有杂质的单晶,作为零级近似可将其清洁表⾯理想为⼀个理想表⾯。
这是⼀种理论上的结构完整的⼆维点阵平⾯。
忽略了晶体内部周期性势场在晶体表⾯中断的影响,忽略了表⾯原⼦的热运动、热扩散和热缺陷等,忽略了外界对表⾯的物理化学作⽤等。
这种理想表⾯作为半⽆限的晶体,体内的原⼦的位置及其结构的周期性,与原来⽆限的晶体完全⼀样3.从⼆维结晶学的⾓度分析,单晶材料的清洁表⾯原⼦有什么特点,其趋于能量最低的稳定状态主要采取哪两种⽅式?对于没有杂质的单晶,作为零级近似可将其清洁表⾯理想为⼀个理想表⾯。
这是⼀种理论上的结构完整的⼆维点阵平⾯。
(1)⾃⾏调整,表⾯处原⼦排列与内部有明显不同;(2)靠外来因素,如吸附杂质、⽣成新相等。
1、何为冷变形、热变形和温变形?冷变形:温度低于回复温度,变形过程只有加工硬化无回复和再结晶。
热变形:温度在再结晶温度以上,变形产生的加工硬化被再结晶抵消,变形后具有再结晶等轴晶粒组织,而无加工硬化痕迹。
温变形:金属材料在高于回复温度但低于再结晶开始温度的温度范围内进行的塑性变形过程。
2、简述金属的可锻性及其影响因素。
可锻性:指金属材料在压力加工时,能改变形状而不产生裂纹的性能。
它包括在热态或冷态下能够进行锤锻,轧制,拉伸,挤压等加工。
可锻性的好坏主要与金属材料的化学成分有关。
(1)内在因素(a)化学成分:不同化学成分的金属其可锻性不同;(b)合金组织:金属内部组织结构不同,其可锻性差别很大。
(2)外在因素(a)变形温度:系指金属从开始锻造到锻造终止的温度范围。
温度过高:过热、过烧、脱碳和严重氧化等缺陷。
温度过低:变形抗力↑-难锻,开裂(b)变形速度:变形速度即单位时间内的变形程度(c)应力状态:金属在经受不同方法进行变形时,所产生的应力大小和性质(压应力或拉应力)不同。
3、自由锻和模锻的定义及其特点是什么?自由锻造是利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自由锻。
1、自由锻锻件的精度不高,形状简单,其形状和尺寸一般通过操作者使用通用工具来保证,主要用于单件、小批量生产。
2、对于大型机特大型锻件的制造,自由锻仍是唯一有效的方法。
3、自由锻对锻工的技术水平要求高,劳动条件差,生产效率低。
模锻是指在专用模锻设备上利用模具使毛坯成型而获得锻件的锻造方法。
模锻具有如下特点:(1)生产效率高。
劳动强度低。
(2)锻件成形靠模膛控制,可锻出形状复杂、尺寸准确,更接近于成品的锻件,且锻造流线比较完整,有利于提高零件的力学性能和使用寿命。
(3)锻件表面光洁,尺寸精度高,加工余量小,节约材料和切削加工工时。
(4)操作简便,质量易于控制,生产过程易实现机械化、自动化。
《材料科学与工程基础》习题和思考题及答案《材料科学与工程基础》习题和思考题及答案第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。
2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。
2-3.试计算N壳层内的最大电子数。
若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。
并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。
2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。
2-6.按照杂化轨道理论,说明下列的键合形式:(1)CO2的分子键合(2)甲烷CH4的分子键合(3)乙烯C2H4的分子键合(4)水H2O的分子键合(5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象? 2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少?2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(rAu=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比? 2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子?2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径rNa+=0.097,rCl-=0.181);(C)由计算结果,可以引出什么结论? 2-15.铁的单位晶胞为立方体,晶格常数 a=0.287nm,请由铁的密度算出每个单位晶胞所含的原子个数。
材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。
它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。
材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。
随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。
工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。
2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。
材料的结构包括原子、晶体和晶界等方面的组成和排列方式。
而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。
材料的结构直接决定了材料的性能。
例如,金属的结晶结构决定了金属的塑性和导电性。
硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。
因此,通过对材料的结构进行了解,可以预测和改变材料的性能。
3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。
不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。
例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。
聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。
陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。
因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。
4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。
它包括了物理、化学、力学、热学、电学等方面的特性。
测量材料的特性需要使用特定的实验方法和设备。
例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。
材料的强度可以通过拉伸试验或压缩试验来测量。
材料的导电性可以通过四探针法或霍尔效应进行测量。
通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。
《材料表面工程基础》课后习题目录及答案11.材料表面工程技术为什么能得到社会的重视获得迅速发展?2.表面工程技术的目的和作用是什么?3.为什么说表面工程是一个多学科的边缘学科?4.为什么会造成表面原子的重组?5.什么是实际表面?什么是清洁表面?什么是理想表面?6.常用的材料表面处理预处理种类及方法有哪些?7.热喷涂技术有什么特点?8.热喷涂涂层的结构特点是什么?其形成过程中经历了哪几个阶段?9.简单分析热喷涂涂层的结合机理?10.热喷涂只要有哪几种喷涂工艺?各有什么特点?11.热喷涂材料有哪几大类?热喷涂技术在新型材料开发方面可以做什么工作?12.镀层如何分类?怎样选择使用?13.金属电镀包括哪些基本步骤?说明其物理意义。
14.电镀的基本原理?15.共沉积合金的相特点有几种类型?16.电刷镀的原理及特点是什么?17.什么叫化学镀?实现化学镀过程有什么方式。
18.与电镀相比,化学镀有何特点?19.热浸镀的基本过程是什么?控制步骤是什么?其实质是什么?20.形成热浸镀层应满足什么条件?21.简述钢材热镀铝时扩散层的形成过程。
22.热镀铝的优缺点怎样?23.表面淬火与常规淬火的区别:临界温度上移、奥氏体成分不均匀、晶粒细化、硬度高、耐磨性好、抗疲劳强度高。
24.表面淬火层组成:淬硬区、过渡区和心部区。
25.硬化层厚度的测定:金相法和硬度法。
26.喷丸强化技术原理、特点、应用范围。
27.感应加热淬火原理、涡流、集肤效应。
28.工件感应加热淬火的工艺流程。
29.各种表面淬火的特点和应用范围。
《表面技术概论》习题30.什么是表面工程?表面工程技术的作用是什么?31.金属离子电沉积的热力学条件是什么?金属离子从水溶液中沉积的可能性取决于什么?32.什么是热喷涂技术?试简述热喷涂的特点。
33.热喷涂的涂层结构特点是什么?其涂层与基体的结合机理是什么?一般的等离子喷涂层不可能形成太厚的涂层,为什么?而HVOF技术则可以获得10余毫米厚的超厚涂层,又是为什么?34.化学镀的基本原理是什么?有哪些特点?35.材料表面工程技术是我校材料科学的学科优势之一?你对于我校材料表面技术的发展有什么想法和建议?1■■■■■■■■■■■■■■■524宿舍整理■■■■■■■■■■■■勿删■■■■■■■■■■■■36.材料表面耐腐蚀的技术有哪些?我国规定煤矿系统的井筒井架、电力塔架、广播发射塔等必须要进行钢结构长效防腐处理。
第二章习题及答案2-1.阐述原子质量和原子量的区别。
2-2.简要阐述四个量子数分别对应何种电子状态。
2-3.元素周期表中的所有VIIA 族元素的核外电子排布有何共同点?(1)各电子层最多容纳电子数为2n 2.(2)最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子.(3)核外电子总是先排布在能量最低的电子层内,排满后再一次向外排布.(4)电子排布总是遵循能量最低原理,泡利不相容原理,洪特定则.2-4.按照能级写出N、O、Si、Fe、Cu、Br 原子的电子排布(用方框图表示)。
223224Si1s22s22p63s23p2Fe1s22s22p63s23p63d8Cu1s22s22p63s23p63d104s1Br1s22s22p63s23p63d104s24p52-5.按照能级写出Fe2+,Fe3+,Cu+,Ba2+,Br-,and S2-离子的电子排布。
(用方框图表示)。
同上题2-6.影响离子化合物和共价化合物配位数的因素有那些?中心离子类型、离子半径、配体大小、溶剂、配体多少、环境温度、PH、共价键数、原子的有效堆积。
2-7.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。
2-8.简要阐述离子键,共价键和金属键的区别。
2-9.阐述泡利不相容原理。
在原子中不能容纳运动状态完全相同的电子;同一个原子中,不可能有两个或两个以上的电子处在同一个状态;也可以说,不可能有两个或两个以上的电子具有完全相同的四个量子数。
2-10.判断以下元素的原子可能形成的共价键数目:锗,磷,锶和氯。
2-11.解释为什么共价键材料密度通常要小于离子键或金属键材料。
由于共价键具有严格的方向性和饱和性,一个特定原子的最邻近原子数是有限制的,并且只能在特定的方向进行键合。
所以共价键物质密度比金属键和离子键物质密度都要小.(共价键需按键长、键角要求堆垛,相对离子键、金属键较疏松)共价键的结合力较小,离子键结合力很大,形成的物质更致密。
工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
⼯程材料基础知识课后习题答案第⼀章⼯程材料基础知识参考答案1.⾦属材料的⼒学性能指标有哪些?各⽤什么符号表⽰?它们的物理意义是什么?答:常⽤的⼒学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。
强度是指⾦属材料在静荷作⽤下抵抗破坏(过量塑性变形或断裂)的性能。
强度常⽤材料单位⾯积所能承受载荷的最⼤能⼒(即应⼒σ,单位为Mpa)表⽰。
塑性是指⾦属材料在载荷作⽤下,产⽣塑性变形(永久变形)⽽不被破坏的能⼒。
⾦属塑性常⽤伸长率δ和断⾯收缩率ψ来表⽰:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能⼒,是衡量材料软硬程度的指标,是⼀个综合的物理量。
常⽤的硬度指标有布⽒硬度(HBS、HBW)、洛⽒硬度(HRA、HRB、HRC等)和维⽒硬度(HV)。
以很⼤速度作⽤于机件上的载荷称为冲击载荷,⾦属在冲击载荷作⽤下抵抗破坏的能⼒叫做冲击韧性。
冲击韧性的常⽤指标为冲击韧度,⽤符号αk表⽰。
疲劳强度是指⾦属材料在⽆限多次交变载荷作⽤下⽽不破坏的最⼤应⼒称为疲劳强度或疲劳极限。
疲劳强度⽤σ–1表⽰,单位为MPa。
2.对某零件有⼒学性能要求时,⼀般可在其设计图上提出硬度技术要求⽽不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量⽅法决定的。
硬度是⼀个表征材料性能的综合性指标,表⽰材料表⾯局部区域内抵抗变形和破坏的能⼒,同时硬度的测量操作简单,不破坏零件,⽽强度和塑性的测量操作复杂且破坏零件,所以实际⽣产中,在零件设计图或⼯艺卡上⼀般提出硬度技术要求⽽不提强度或塑性值。
3.⽐较布⽒、洛⽒、维⽒硬度的测量原理及应⽤范围。
答:(1)布⽒硬度测量原理:采⽤直径为D的球形压头,以相应的试验⼒F压⼊材料的表⾯,经规定保持时间后卸除试验⼒,⽤读数显微镜测量残余压痕平均直径d,⽤球冠形压痕单位表⾯积上所受的压⼒表⽰硬度值。
实际测量可通过测出d值后查表获得硬度值。
布⽒硬度测量范围:⽤于原材料与半成品硬度测量,可⽤于测量铸铁;⾮铁⾦属(有⾊⾦属)、硬度较低的钢(如退⽕、正⽕、调质处理的钢)(2)洛⽒硬度测量原理:⽤⾦刚⽯圆锥或淬⽕钢球压头,在试验压⼒F 的作⽤下,将压头压⼊材料表⾯,保持规定时间后,去除主试验⼒,保持初始试验⼒,⽤残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛⽒硬度的数值。
第一章 原子排列与晶体结构1.[110], (111), ABCABC…, 0.74 , 12 , 4 , a r 42=; [111], (110) , 0.68 , 8 , 2 , a r 43= ;]0211[, (0001) , ABAB , 0.74 , 12 , 6 , 2a r =。
2. 0.01659nm 3 , 4 , 8 。
3. FCC , BCC ,减少 ,降低 ,膨胀 ,收缩 。
4. 解答:见图1-15.解答:设所决定的晶面为(hkl ),晶面指数与面上的直线[uvw]之间有hu+kv+lw=0,故有: h+k-l=0,2h-l=0。
可以求得(hkl )=(112)。
6 解答:Pb 为fcc 结构,原子半径R 与点阵常数a 的关系为ar 42=,故可求得a =0.4949×10-6mm 。
则(100)平面的面积S =a 2=0.244926011×0-12mm 2,每个(100)面上的原子个数为2。
所以1 mm 2上的原子个数s n 1==4.08×1012。
第二章合金相结构一、 填空1) 提高,降低,变差,变大。
2) (1)晶体结构;(2)元素之间电负性差;(3)电子浓度 ;(4)元素之间尺寸差别 3) 存在溶质原子偏聚 和短程有序 。
4) 置换固溶体 和间隙固溶体 。
5) 提高 ,降低 ,降低 。
6) 溶质原子溶入点阵原子溶入溶剂点阵间隙中形成的固溶体,非金属原子与金属原子半径的比值大于0.59时形成的复杂结构的化合物。
二、 问答1、 解答: α-Fe 为bcc 结构,致密度虽然较小,但是它的间隙数目多且分散,间隙半径很小,四面体间隙半径为0.291Ra ,即R =0.0361nm ,八面体间隙半径为0.154Ra ,即R =0.0191nm 。
氢,氮,碳,硼由于与α-Fe 的尺寸差别较大,在α-Fe 中形成间隙固溶体,固溶度很小。
材料科学与⼯程基础第三章标准答案3.8 铁具有BCC晶体结构,原⼦半径为0.124 nm,原⼦量为55.85g/mol。
计算其密度并与实验值进⾏⽐较。
答:BCC结构,其原⼦半径与晶胞边长之间的关系为:a = 4R/3= 4?0.124/1.732 nm = 0.286 nmV = a3 = (0.286 nm)3 = 0.02334 nm3 = 2.334?10-23 cm3BCC结构的晶胞含有2个原⼦,∴其质量为:m = 2?55.85g/(6.023?1023) = 1.855?10-22 g密度为ρ= 1.855?10-22 g/(2.334?10-23 m3) =7.95g/cm33.9 计算铱原⼦的半径,已知Ir具有FCC晶体结构,密度为22.4g/cm3,原⼦量为192.2 g/mol。
答:先求出晶胞边长a,再根据FCC晶体结构中a与原⼦半径R的关系求R。
FCC晶体结构中⼀个晶胞中的原⼦数为4,ρ= 4?192.2g/(6.023?1023?a3cm3) = 22.4g/cm3,求得a = 0.3848 nm 由a = 22R求得R = 2a/4 = 1.414?0.3848 nm/4 = 0.136 nm 3.10 计算钒原⼦的半径,已知V 具有BCC晶体结构,密度为5.96g/cm3,原⼦量为50.9 g/mol。
答:先求出晶胞边长a,再根据BCC晶体结构中a与原⼦半径R的关系求R。
BCC晶体结构中⼀个晶胞中的原⼦数为2,ρ= 2?50.9g/(6.023?1023?a3cm3) = 5.96 g/cm3,求得a = 0.305 nm 由a = 4R/3求得R = 3a/4 = 1.732?0.305 nm/4 = 0.132 nm 3.11 ⼀些假想的⾦属具有图3.40给出的简单的⽴⽅晶体结构。
如果其原⼦量为70.4 g/mol,原⼦半径为0.126 nm,计算其密度。
答:根据所给出的晶体结构得知,a = 2R =2?0.126 nm = 0.252 nm ⼀个晶胞含有1个原⼦,∴密度为:ρ= 1?70.4g/(6.023?1023?0.2523?10-21cm3)= 7.304 g/cm33.12 Zr 具有HCP晶体结构,密度为6.51 g/cm3。
“材料科学与工程基础”第二章习题1. 铁的单位晶胞为立方体,晶格常数a=0.287nm ,请由铁的密度算出每个单位晶胞所含的原子数。
ρ铁=7.8g/cm3 1mol 铁=6.022×1023 个=55.85g所以, 7.8g/1(cm)3=(55.85/6.022×1023)X /(0.287×10-7)3cm3X =1.99≈2(个)2.在立方晶系单胞中,请画出:(a )[100]方向和[211]方向,并求出他们的交角; (b )(011)晶面和(111)晶面,并求出他们得夹角。
(c )一平面与晶体两轴的截距a=0.5,b=0.75,并且与z 轴平行,求此晶面的密勒指数。
(a )[2 1 1]和[1 0 0]之夹角θ=arctg2=35.26。
或cos θ==, 35.26θ=(b )cos θ==35.26θ= (c ) a=0.5 b=0.75 z = ∞倒数 2 4/3 0 取互质整数(3 2 0)3、请算出能进入fcc 银的填隙位置而不拥挤的最大原子半径。
室温下的原子半径R =1.444A 。
(见教材177页) 点阵常数a=4.086A最大间隙半径R’=(a-2R )/2=0.598A4、碳在r-Fe (fcc )中的最大固溶度为2.11﹪(重量百分数),已知碳占据r-Fe 中的八面体间隙,试计算出八面体间隙被C 原子占据的百分数。
在fcc 晶格的铁中,铁原子和八面体间隙比为1:1,铁的原子量为55.85,碳的原子量为12.01所以 (2.11×12.01)/(97.89×55.85)=0.1002 即 碳占据八面体的10%。
5、由纤维和树脂组成的纤维增强复合材料,设纤维直径的尺寸是相同的。
请由计算最密堆棒的堆垛因子来确定能放入复合材料的纤维的最大体积分数。
见下图,纤维的最密堆积的圆棒,取一最小的单元,得,单元内包含一个圆(纤维)的面积。
工程材料第一章金属的晶体结构与结晶1.解释以下名词点缺陷:原子排列不规那么的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等.线缺陷:原子排列的不规那么区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错.面缺陷:原子排列不规那么的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒.亚晶界:两相邻亚晶粒间的边界称为亚晶界.刃型位错:位错可认为是晶格中一局部晶体相对于另一局部晶体的局部滑移而造成.滑移局部与未滑移局部的交界线即为位错线.如果相对滑移的结果上半局部多出一半原子面,多余半原子面的边缘好似插入晶体中的一把刀的刃口,故称“刃型位错〞.单晶体:如果一块晶体,其内部的晶格位向完全一致,那么称这块晶体为单晶体.多晶体:由多种晶粒组成的晶体结构称为“多晶体〞.过冷度:实际结晶温度与理论结晶温度之差称为过冷度.自发形核:在一定条件下,从液态金属中直接产生,原子呈规那么排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒外表所形成的晶核.变质处理:在液态金属结晶前,特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提升了形核率,细化晶粒,这种处理方法即为变质处理.变质剂:在浇注前所参加的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种a -Fe、丫- Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;a— Fe、Cr、V属于体心立方晶格;丫一Fe、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题答:用来说明晶体中原子排列的紧密程度.晶体中配位数和致密度越大,那么晶体中原子排列越紧密.4.晶面指数和晶向指数有什么不同答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为uvw ;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为hkl.5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加.因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加.同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能.6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:由于单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性.7.过冷度与冷却速度有何关系它对金属结晶过程有何影响对铸件晶粒大小有何影响答:①冷却速度越大,那么过冷度也越大.②随着冷却速度的增大,那么晶体内形核率和长大速度都加快, 加速结晶过程的进行,但当冷速到达一定值以后那么结晶过程将减慢,由于这时原子的扩散水平减弱.③过冷度增大,A F大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难.8.金属结晶的根本规律是什么晶核的形成率和成长率受到哪些因素的影响答:①金属结晶的根本规律是形核和核长大.②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也第2页共50页会增大形核率.9.在铸造生产中,采用哪些举措限制晶粒大小在生产中如何应用变质处理答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来限制晶粒大小.②变质处理:在液态金属结晶前, 特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提升了形核率,细化晶粒.③机械振动、搅拌.第二章金属的塑性变形与再结晶1.解释以下名词:加工硬化、回复、再结晶、热加工、冷加工.答:加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象.回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化.在加热温度较低时,原子的活动水平不大,这时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能显著降低.此阶段为回复阶段.再结晶:被加热到较高的温度时,原子也具有较大的活动水平,使晶粒的外形开始变化.从破碎拉长的晶粒变成新的等轴晶粒.和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶〞.热加工:将金属加热到再结晶温度以上一定温度进行压力加工.冷加工:在再结晶温度以下进行的压力加工.2.产生加工硬化的原因是什么加工硬化在金属加工中有什么利弊答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大, 晶粒破碎的程度愈大, 这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长.因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提升,而塑性和韧性下降产生所谓“加工硬化〞现象.②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动.另一方面人们可以利用加工硬化现象,来提升金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提升钢丝的强度的.加工硬化也是某些压力加工工艺能够实现的重要因素.如冷拉钢丝拉过模孔的局部,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形.3.划分冷加工和热加工的主要条件是什么答:主要是再结晶温度.在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除.4.与冷加工比拟,热加工给金属件带来的益处有哪些答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提升.(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提升.(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织〞(流线),使纵向的强度、塑性和韧性显著大于横向.如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提升零件使用寿命.5.为什么细晶粒钢强度高,塑性,韧性也好答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形.因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大.因此,金属的晶粒愈细强度愈高.同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形, 而不致造成局部的应力集中,引起裂纹的过早产生和开展.因此,塑性,韧性也越好.6.金属经冷塑性变形后,组织和性能发生什么变化答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提升,而塑性和韧性下降;③ 织构现象的产生,即随着变形的发生, 不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各局部的变形不均匀或晶粒内各局部和各晶粒间的变形不均匀,金属内部会形成剩余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定.7.分析加工硬化对金属材料的强化作用答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加.这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提升了金属的强度.8.金属鸨、铁、铅、锡的熔点分别为3380C、1538C、327C、232 C ,试计算这些金属的最低再结晶温度,并分析鸨和铁在1100c下的加工、铅和锡在室温(20C)下的加工各为何种加工答:T 再=0.4T 熔;鸨T 再=[0.4* (3380+273)卜273=1188.2 C ;铁T 再=[0.4* (1538+273) ]-273=451.4 C ;铅T 再=[0.4* (327+273) ]-273=-33 C ;锡T 再=[0.4* (232+273)卜273=-71 C .由于鸨T 再为1188.2 C> 1100C,因此属于热加工;铁T再为451.4CV 1100C,因此属于冷加工;铅T再为-33CV20C,属于冷加工;锡T再为-71V20C,属于冷加工.9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件外表上)使齿面得以强化.试分析强化原因.答:高速金属丸喷射到零件外表上,使工件外表层产生塑性变形,形成一定厚度的加工硬化层,使齿面的强度、硬度升高.第三章合金的结构与二元状态图1.解释以下名词:合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化, 弥散强化.答:合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质,称为合金.组元:组成合金的最根本的、独立的物质称为组元.相:在金属或合金中,凡成分相同、结构相同并与其它局部有界面分开的均匀组成局部,均称之为相.相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图.固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构与组成合金的某一组元的相同,这种相称为固溶体.金属间化合物:合金的组元间发生相互作用形成的一种具有金属性质的新相,称为金属间化合物.它的晶体结构不同于任一组元,用分子式来表示其组成.机械混合物:合金的组织由不同的相以不同的比例机械的混合在一起,称机械混合物.枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析.比重偏析:比重偏析是由组成相与溶液之间的密度差异所引起的.如果先共晶相与溶液之间的密度差异较大,那么在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下局部的化学成分不一致,产生比重偏析.固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象称为固溶强化.弥散强化:合金中以固溶体为主再有适量的金属间化合物弥散分布,会提升合金的强度、硬度及耐磨性,这种强化方式为弥散强化.2.指出以下名词的主要区别:1〕置换固溶体与间隙固溶体;答:置换固溶体:溶质原子代替溶剂晶格结点上的一局部原子而组成的固溶体称置换固溶体.间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶体.2〕相组成物与组织组成物;相组成物:合金的根本组成相.组织组成物:合金显微组织中的独立组成局部.3.以下元素在a -Fe中形成哪几种固溶体Si、C、N、Cr、Mn答:Si、Cr、Mn形成置换固溶体;C、N形成间隙固溶体.4.试述固溶强化、加工强化和弥散强化的强化原理,并说明三者的区别.答:固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受到阻力增大.弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金属间化合物均匀细小弥散分布时,会提升合金的强度、硬度及耐磨性.这种用金属间化合物来强化合金的方式为弥散强化.加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力, 引起塑性变形抗力的增加, 提升合金的强度和硬度.区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生晶格畸变,使位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加工强化是通过力的作用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比,通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑韧性最差,弥散强化介于两者之间.5.固溶体和金属间化合物在结构和性能上有什么主要差异答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成.在性能上:形成固溶体和金属间化合物都能强化合金,但固溶体的强度、硬度比金属间化合物低, 塑性、韧性比金属间化合物好,也就是固溶体有更好的综合机械性能.6.何谓共晶反响、包晶反响和共析反响式比拟这三种反响的异同点.答:共晶反响:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反响.包晶反响:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反响过程.共析反响:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反响.共同点:反响都是在恒温下发生,反响物和产物都是具有特定成分的相,都处于三相平衡状态.不同点:共晶反响是一种液相在恒温下生成两种固相的反响;共析反响是一种固相在恒温下生成两种固相的反响;而包晶反响是一种液相与一种固相在恒温下生成另一种固相的反响.7.二元合金相图表达了合金的哪些关系答:二元合金相图表达了合金的状态与温度和成分之间的关系.8.在二元合金相图中应用杠杆定律可以计算什么答:应用杠杆定律可以计算合金相互平衡两相的成分和相对含量.9.A(熔点600C)与B(500C)在液态无限互溶;在固态300c时A溶于B的最大溶解度为30% ,室温时为10%,但B不溶于A;在300c时,含40% B的液态合金发生共晶反响.现要求:1)作出A-B合金相图;2)分析20% A,45%A,80%A等合金的结晶过程,并确定室温下的组织组成物和相组成物的相对量.(2)20%A合金如图①:合金在1点以上全部为液相,当冷至1点时,开始从液相中析出“固溶体,至2点结束,2〜3点之间合金全部由a固溶体所组成,但当合金冷到3点以下,由于固溶体a的浓度超过了它的溶解度限度,于是从固溶体a中析出二次相A,因此最终显微组织:a +An相组成物:a +AA= (90-80/90) *100%=11%a =1-A%=89%45%A合金如图②:合金在1点以上全部为液相,冷至1点时开始从液相中析出a固溶体,此时液相线成分沿线BE变化,固相线成分沿BD线变化,当冷至2点时,液相线成分到达E点,发生共晶反响,形成(A+a)共晶体,合金自2点冷至室温过程中,自中析出二次相An,因而合金②室温组织:A n + a +(A+ a )相组成物:A+ a组织:An= (70-55) /70*100%=21% a =1- An =79%A+ a = (70-55) /(70-40) *100%=50%相:A= (90-55) /90*100%=50% a =1-A%=50%80%A合金如图③:合金在1点以上全部为液相, 冷至1点时开始从液相中析出A,此时液相线成分沿AE线变化, 冷至2点时,液相线成分到达点,发生共晶反响,形成(A+ a)共晶体,因而合金③的室温组织:A+ (A+ a ) 相组成物:A+ a组织:A= (40-20) /40*100%=50% A+ a =1-A%=50%相:A= (90-20) /90*100%=78% a =1-A%=22%10.某合金相图如下图.1)试标注①一④空白区域中存在相的名称;2)指出此相图包括哪几种转变类型;3)说明合金I的平衡结晶过程及室温下的显微组织.答:(1)①:L+丫②:丫+ B ③:B+( a + B )④:0 + an(2)匀晶转变;共析转变(3)合金①在1点以上全部为液相,冷至1点时开始从液相中析出丫固溶体至2点结束,2〜3点之间合金全部由T固溶体所组成,3点以下,开始从T固溶体中析出a固溶体,冷至4点时合金全部由a固溶体所组成,4〜5之间全部由a固溶体所组成,冷到5 点以下,由于a 固溶体的浓度超过了它的溶解度限度,从a中析出第二相B固溶体,最终得到室稳下的显微组织:a + B n11.有形状、尺寸相同的两个Cu-Ni合金铸件,一个含90% Ni ,另一个含50% Ni,铸后自然冷却,问哪个铸件的偏析较严重答:含50% Ni的Cu-Ni合金铸件偏析较严重.在实际冷却过程中,由于冷速较快,使得先结晶局部含高熔点组元多,后结晶局部含低熔点组元多,由于含50% Ni的Cu-Ni合金铸件固相线与液相线范围比含90% Ni铸件宽,因此它所造成的化学成分不均匀现象要比含90% Ni 的Cu-Ni合金铸件严重.第四章铁碳合金1.何谓金属的同素异构转变试画出纯铁的结晶冷却曲线和晶体结构变化图答:由于条件〔温度或压力〕变化引起金属晶体结构的转变,称同素异构转变.S4 3210987 654321时间2.为什么丫-Fe和a-Fe的比容不同一块质量一定的铁发生〔丫-Fe - a-Fe 〕转变时, 其体积如何变化答:由于丫-Fe和a-Fe原子排列的紧密程度不同,丫-Fe的致密度为74%,a-Fe的致密度为68%,因此一块质量一定的铁发生〔丫-Fe - a -Fe 〕转变时体积将发生膨胀.3.何谓铁素体〔F〕,奥氏体〔A〕,渗碳体〔FesC〕,珠光体〔P〕,莱氏体〔Ld〕 ?它们的结构、组织形态、性能等各有何特点答:铁素体〔F〕:铁素体是碳在Fe中形成的间隙固溶体,为体心立方晶格.由于碳在Fe中的溶解度、很小,它的性能与纯铁相近.塑性、韧性好,强度、第11页共50页硬度低.它在钢中一般呈块状或片状.奥氏体〔A〕:奥氏体是碳在片中形成的间隙固溶体,面心立方晶格.因其品格间隙尺寸较大,故碳在Fe中的溶解度较大.有很好的塑性.渗碳体〔FesC〕:铁和碳相互作用形成的具有复杂品格的间隙化合物.渗碳体具有很高的硬度,但塑性很差,延伸率接近于零.在钢中以片状存在或网络状存在于晶界.在莱氏体中为连续的基体,有时呈鱼骨状.珠光体〔P〕:由铁素体和渗碳体组成的机械混合物.铁素体和渗碳体呈层片状.珠光体有较高的强度和硬度,但塑性较差.莱氏体〔Ld〕:由奥氏体和渗碳体组成的机械混合物.在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上.由于渗碳体很脆,所以莱氏体是塑性很差的组织.4.Fe-FesC合金相图有何作用在生产实践中有何指导意义又有何局限性答:①碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料.铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义.②为选材提供成分依据:F Fe3c相图描述了铁碳合金的组织随含碳量的变化规律, 合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏. 对于锻造:根据相图可以确定锻造温度.对焊接: 根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:F Fe3c相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择.③由于铁碳相图是以无限缓慢加热和冷却的速度得到的,而在实际加热和冷却通常都有不同程度的滞后现象.5.画出Fe-Fe s C 相图,指出图中S、C、E、P、N、G 及GS、SE、PQ、PSK 各点、线的意义,并标出各相区的相组成物和组织组成物V1段.口1 0. Q. b 1. 2.0 2,143.0i. 0 4. 355 自.6. 69+ C的FeSC 1539140012001UQQHDU600C:共晶点1148c 4.30%C,在这一点上发生共晶转变,反响式:Lc A E Fe a C ,当冷到1148c时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物——莱氏体Le A E Fe3CE:碳在Fe中的最大溶解度点1148c2.11%CG:Fe Fe同素异构转变点〔A3〕912C 0%CH:碳在Fe中的最大溶解度为1495c 0.09%CJ:包品转变点1495c 0.17%C在这一点上发生包品转变,反响式:L BH A J当冷却到1495c时具有B点成分的液相与具有H点成分的固相6反响生成具有J 点成分的周相AN:FeFe同素异构转变点〔A4〕1394c 0%CP:碳在Fe中的最大溶解度点0.0218%C 727cS:共析点727c 0.77%C在这一点上发生共析转变,反响式:A s F p Fe3C ,当冷却到727c时从具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物一一珠光体P 〔F p Fe3C〕ES线:碳在奥氏体中的溶解度曲线,又称Acm温度线,随温度的降低,碳在奥化体中的溶解度减少,多余的碳以Fe3c形式析出,所以具有0.77%〜2.11%C的钢冷却到Acm线与PSK线之间时的组织A Fe3C n ,从A中析出的Fe3c称为二次渗碳体.GS线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A3线,GP线那么是铁素体析出的终了线,所以GSP区的显微组织是F AoPQ线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解度减少, 多余的碳以Fe3c形式析出,从F中析出的Fe3c称为三次渗碳体Fe s Cw ,由于铁素体含碳很少,析出的FesCw很少,一般忽略,认为从727c冷却到室温的显微组织不变.PSK线:共析转变线,在这条线上发生共析转变A S F P Fe s C ,产物〔P〕珠光体,含碳量在0.02〜6.69%的铁碳合金冷却到727c时都有共析转变发生.6.简述Fe-Fe^C相图中三个根本反响:包晶反响,共晶反响及共析反响,写出反响式,标出含碳量及温度.答:共析反响:冷却到727c时具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物.Y 0.8 727?F0.02+Fe3c6.69包品反响:冷却到1495c时具有B点成分的液相与具有H点成分的固相6反响生成具有J 点成分的固相Ao L0.5+ 6 0.11495? Y 0.16共晶反响:1148c时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物.L4.3 1147?2 2.14+ F63C6.697.何谓碳素钢何谓白口铁两者的成分组织和性能有何差异答:碳素钢:含有0.02%~2.14%C的铁碳合金.白口铁:含大于2.14%C的铁碳合金.碳素钢中亚共析钢的组织由铁素体和珠光体所组成,其中珠光体中的渗碳体以细片状分布在铁素体基体上,随着含碳量的增加,珠光体的含量增加,那么钢的强度、硬度增力口,塑性、韧性降低.当含碳量到达0.8%时就是珠光体的性能.过共析钢组织由珠光体和二次渗碳体所组成,含碳量接近 1.0%时,强度到达最大值,含碳量继续增加,强度下降.由于二次渗碳体在晶界形成连续的网络,导致钢的脆性增加.白口铁中由于其组织中存在大量的渗碳体,具有很高的硬度和脆性,难以切削加工.8.亚共析钢、共析钢和过共析钢的组织有何特点和异同点.答:亚共析钢的组织由铁素体和珠光体所组成.其中铁素体呈块状.珠光体中铁素体与渗碳体呈片状分布.共析钢的组织由珠光体所组成.过共析钢的组织由珠光体和二次渗碳体所组成,其中二次。
工程材料习题参考答案第一章.习题参考答案1-1、名词解释1、σb抗拉强度---金属材料在拉断前的最大应力,它表示材料对最大均匀塑性变形的抗力。
2、σs屈服强度----表示材料在外力作用下开始产生塑性变形的最低应力,表示材料抵抗微量塑性变形的能力。
3、σ0.2屈服强度----试样产生0.2%残余应变时的应力值为该材料的条件屈服。
4、δ伸长率----塑性的大小用伸长率δ表示。
5、HBS布氏硬度---以300Kg的压力F将直径D的淬火钢球压入金属材料的表层,经过规定的保持载荷时间后,卸除载荷,即得到一直径为d 的压痕。
6、HRC洛氏硬度---是以120o 的金刚石圆锥体压头加上一定的压力压入被测材料,根据压痕的深度来度量材料的软硬,压痕愈深,硬度愈低。
7、σ﹣1(对称弯曲疲劳强度)---表示当应力循环对称时,光滑试样对称弯曲疲劳强度。
8、K1C (断裂韧性)---应力强度因子的临界值。
1-2、试分别讨论布氏硬度、洛氏硬度、维氏硬度适用及不适用于什么场合?1、布氏硬度 适用于退火和正火态的黑色金属和有色金属工件,不适用于太薄、太硬(﹥450HB)的材料。
2、洛氏硬度 适用于检测较薄工件或表面较薄的硬化层的硬度,适用于淬火态的碳素钢和合金钢工件不适用于表面处理和化学热处理的工件。
3、维氏硬度 适用于零件表面薄硬化层、镀层及薄片材料的硬度,不适用于退火和正火及整体淬火工件。
第二章.习题参考答案2-1、名词解释1、 晶体---指原子(原子团或离子)按一定的几何形状作有规律的重复排列的物体。
2、 2、非晶体---组成物质的原子是无规律、无次序地堆聚在一起的物体。
3、单晶体---结晶方位完全一致的晶体。
4、多晶体---由多晶粒组成的晶体结构。
5、晶粒---每个小晶体具有不规则的颗粒状外形。
2-2、何谓空间点阵、晶格、晶体结构和晶胞?常用金属的晶体结构是什么?划出其晶胞,并分别计算起原子半径、配位数和致密度?1、空间点阵---为了便于分析各种晶体中的原子排列及几何形状,通常把晶体中的原子假想为几何结点,并用直线从其中心连接起来,使之构成一个空间格子。
《材料表面工程基础》课后习题目录及答案11.材料表面工程技术为什么能得到社会的重视获得迅速发展?2.表面工程技术的目的和作用是什么?3.为什么说表面工程是一个多学科的边缘学科?4.为什么会造成表面原子的重组?5.什么是实际表面?什么是清洁表面?什么是理想表面?6.常用的材料表面处理预处理种类及方法有哪些?7.热喷涂技术有什么特点?8.热喷涂涂层的结构特点是什么?其形成过程中经历了哪几个阶段?9.简单分析热喷涂涂层的结合机理?10.热喷涂只要有哪几种喷涂工艺?各有什么特点?11.热喷涂材料有哪几大类?热喷涂技术在新型材料开发方面可以做什么工作?12.镀层如何分类?怎样选择使用?13.金属电镀包括哪些基本步骤?说明其物理意义。
14.电镀的基本原理?15.共沉积合金的相特点有几种类型?16.电刷镀的原理及特点是什么?17.什么叫化学镀?实现化学镀过程有什么方式。
18.与电镀相比,化学镀有何特点?19.热浸镀的基本过程是什么?控制步骤是什么?其实质是什么?20.形成热浸镀层应满足什么条件?21.简述钢材热镀铝时扩散层的形成过程。
22.热镀铝的优缺点怎样?23.表面淬火与常规淬火的区别:临界温度上移、奥氏体成分不均匀、晶粒细化、硬度高、耐磨性好、抗疲劳强度高。
24.表面淬火层组成:淬硬区、过渡区和心部区。
25.硬化层厚度的测定:金相法和硬度法。
26.喷丸强化技术原理、特点、应用范围。
27.感应加热淬火原理、涡流、集肤效应。
28.工件感应加热淬火的工艺流程。
29.各种表面淬火的特点和应用范围。
《表面技术概论》习题30.什么是表面工程?表面工程技术的作用是什么?31.金属离子电沉积的热力学条件是什么?金属离子从水溶液中沉积的可能性取决于什么?32.什么是热喷涂技术?试简述热喷涂的特点。
33.热喷涂的涂层结构特点是什么?其涂层与基体的结合机理是什么?一般的等离子喷涂层不可能形成太厚的涂层,为什么?而HVOF技术则可以获得10余毫米厚的超厚涂层,又是为什么?34.化学镀的基本原理是什么?有哪些特点?35.材料表面工程技术是我校材料科学的学科优势之一?你对于我校材料表面技术的发展有什么想法和建议?1■■■■■■■■■■■■■■■524宿舍整理■■■■■■■■■■■■勿删■■■■■■■■■■■■36.材料表面耐腐蚀的技术有哪些?我国规定煤矿系统的井筒井架、电力塔架、广播发射塔等必须要进行钢结构长效防腐处理。
一般的寿命要求30~50年。
请对该项要求进行设计:所需要的材料涂层体系、工艺、涂层厚度等。
37.材料表面的耐磨损技术有哪些?试简述分析各自的技术特点和适用范围。
38.提高零件表面表面耐蚀性能的涂层技术主要有哪些?试简述分析各自的技术特点和适用范围。
39.热喷涂有哪些主要的喷涂工艺?各有什么技术特点?热喷涂工艺选用的基本原则是什么?40.举例说明对于耐腐蚀、耐磨损、耐高温、绝缘导电以及可磨损涂层的各种情况下的选用工艺和材料?1.材料表面工程技术为什么能得到社会的重视获得迅速发展?1.工业发展对机电产品提出更高要求(高温、高压、高速、重载以及腐蚀介质等恶劣工况下可靠地工作)。
2.相关科技的发展为表面工程注入活力、提供支撑:如高分子材料和纳米材料的发展,激光束、离子束、电子束三种高能量密度热源的实用化等。
3.表面工程适合我国国情,能大量节约能源、资源,体现了科技尽快转化为生产力的要求,符合可持续发展战略。
1)社会生产、生活的需要2)通过表面处理大幅度提高产品质量3)节约贵重材料4)实现材料表面复合化,解决单一材料无法解决的问题5)良好的节能、节材效果6)促进了新兴工业的发展2.表面工程技术的目的和作用是什么?表面工程技术的主要目的:就是在于通过表面处理使材料表面按人们希望的性能进行改变。
具体说:表面工程技术是在不改变基体材料的成分、不削弱基体材料的强度的条件下,通过物理手段或化学手段赋予材料表面以特殊的性能,从而满足工程技术上对材料提出的要求的技术。
表面工程技术的作用就是改善或赋予表面各种作用:提高材料或零件的耐蚀性、抗高温氧化性及提高抗浸蚀能力;提高耐摩擦磨损、磨蚀、粘结、咬合、冲刷、减磨及润滑的能力;提高耐热、导热、隔热、吸热、与热反射的作用;赋予材料特定的物理特性,赋予材料特定的化学特性,赋予制件表面装饰特性,鲜艳的色彩及图文;非金属表面金属化、光化及抗老化;提高材料制件表面完整性、光洁度、提高抗疲劳和抗腐蚀疲劳的能力;3. 为什么说表面工程是一个多学科的边缘学科?材料表面工程是一门很新的边缘学科,它不但涉及到诸如:表面物理学、表面化学、金属学、陶瓷学、高分子学、传热学、传质学等多个学科的理论,而且其本身也溶入了诸多学科的新技术。
4.为什么会造成表面原子的重组?处于界面上的原子除受到来自内部自身原子的作用力外,还受到外部介质分子(或原子)的作用力。
显然其力是不平衡的,若外部为真空更是如此。
这使得表面原子偏离正常的平衡位置,从而牵动着附近的几层原子,造成表层产生畸变,表面的各种缺陷更加重了这种畸变。
这样就使表层原子的能量比内部的要高很多。
比较大的表面能有剩余吸引力,必然有通过原子迁移或吸附外来物质以调整结构向低能态演变的趋势,以晶态物质、表面有众多微孔和巨大表面积以及活性大的物质尤甚。
处于界面上的原子其原子结构与内部的也存在区别,表面原子周围的电子无论是能量或是空间分布都不同于内部原子,这就在很大程度上决定了材料表面的化学特性。
5.什么是实际表面?什么是清洁表面?什么是理想表面?实际表面:一是所谓“内表面层”,它包括基体材料和加工硬化层;另一部分是所谓“外表面层”,它包括吸附层、氧化层等。
清洁表面:清洁表面是经过特殊处理(即保证组成上的确定性)后,保持在超高真空下的表面(即保证表面不随时间而改变)理想表面:是一种理论上的结构完整的二维点阵平面。
6.常用的材料表面处理预处理种类及方法有哪些?1、基体表面平整:磨光滚光抛光刷光振动磨光2、基体表面清洁:除油(有机溶剂除油化学除油电化学除油超声除油)除锈除锈除油联合处理3、基体表面抛光处理:化学抛光电化学抛光4、基体表面喷砂与喷丸处理:喷砂喷丸7. 热喷涂技术有什么特点?⑴涂层的基体材料几乎不受限制⑵涂层材料的种类选择范围广泛⑶喷涂施工对象的尺寸大小和形状不受限制⑷母材性能不变化⑸涂层厚度可在较大范围内变化⑹可喷涂成形⑺节能高效,但涂层面积小时经济性差⑻环保性好,对环境污染小8.热喷涂涂层的结构特点是什么?其形成过程中经历了哪几个阶段?喷涂层是由无数变形粒子互相交错呈波浪式堆叠在一起的层状组织结构。
颗粒与颗粒之间存在一定量的空隙和孔洞。
其孔隙率一般在1~15%之间。
涂层中还伴有氧化物和夹杂从喷涂材料进入热源到形成涂层,喷涂过程一般经历四个阶段:1)喷涂材料被加热(heating)、熔化(melting);2)熔化的喷涂材料被雾化(atomizing);3)熔融或软化的微细颗粒的喷射飞行(accelerated);4)粒子在基体表面发生碰撞、变形、凝固和堆积(impacting & flatten)。
9.简单分析热喷涂涂层的结合机理?涂层的结合包括涂层与基体表面的结合和涂层内部的结合。
涂层与基体的结合强度称为结合力;涂层内部的结合强度称为内聚力。
涂层中颗粒与基体表面之间的结合以及颗粒之间的结合机理目前尚无定论:1)机械结合——抛锚效应(Mechanical keying or interlocking)2)扩散-冶金结合(Diffusion bonding or Metallurgical bonding )3)化学-物理结合-----范德华力等(Other adhesive, chemical and physical bonding mechanisms -oxide films, Van der Waals forces etc. )10.热喷涂只要有哪几种喷涂工艺?各有什么特点?火焰喷涂火焰喷涂技术的基本特点是:①一般金属、非金属基体均可喷涂,对基体的形状和尺寸通常也不受限制,但小孔目前尚不能喷涂;②涂层材料广泛,金属、合金、陶瓷、复合材料均可为涂层材料,可使表面具有各种性能,如耐腐蚀、耐磨;耐高温、隔热等:③涂层的多孔性组织有储油润滑和减摩性能,含有硬质相的喷涂层宏观硬度可达450HB,喷焊层可达65HRC;④火焰喷涂对基体影响小,基体表面受热温度为200~250℃,整体温度约70℃~80℃,故基体变形小,材料组织不发生变化。
火焰喷涂技术的缺点:①喷涂层与基体结合强度较低,不能承受交变载荷和冲击载荷;②基体表面制备要求高;③火焰喷涂工艺受多种条件影响,涂层质量尚无有效检测方法。
丝材火焰喷涂、粉末火焰喷涂、粉末火焰喷焊、棒材火焰喷涂、超音速火焰喷涂(HVOF)爆炸喷涂、普通、高速、超音速丝材电弧喷涂、真空电弧喷涂、惰性气氛电弧喷涂、高频喷涂、线材电爆喷涂大气等离子喷涂、低压真空等离子喷涂、保护气氛等离子喷涂、水稳等离子喷涂、超音速等离子喷涂激光喷涂------ 激光喷涂、激光喷焊电弧喷涂的特点(1)热效率高(2)生产率高(3)喷涂成本低(4)涂层结合强度高(5)可方便地制备伪合金涂层等离子喷涂:①超高温特性,便于进行高熔点材料的喷涂。
②喷射粒子的速度高,涂层致密,粘结强度高。
③由于使用惰性气体作为工作气体,所以喷涂材料不易氧化。
11.热喷涂材料有哪几大类?热喷涂技术在新型材料开发方面可以做什么工作?(1)根据热喷涂材料的不同形状,可以分为丝材、棒材、软线和粉末四类(2)根据喷涂材料的成分,可以分为金属、合金、陶瓷和塑料喷涂材料四大类(3)根据喷涂材料的性质以及获得的涂层性能,可以分为隔热材料,抗高温氧化材料,耐磨材料,耐腐蚀材料,自润滑减磨材料,导电、绝缘材料,黏结底层材料和功能材料八类轧钢辊767起落架轴汽车气缸表面等离子喷涂陶瓷生物人造骨关节航空发动机有3000多处需要热喷涂表面长效防护火箭发射燃烧筒热障涂层造纸辊水轮机叶片汽轮机高度集成化和操作简单化(智能傻瓜型) 节能、高效(喷涂速率和沉积效率)新型涂层材料的开发(非晶态、准晶态、纳米材料和金属间化合物)清洁生产非晶态涂层准晶态涂层纳米涂层金属间化合物涂层超混杂涂层(金属、聚合物、陶瓷层间交替) 其它12.镀层如何分类?怎样选择使用?1)按使用性能可分为:①防护性镀层②防护-装饰性镀层③装饰性镀层④耐磨和减磨镀层⑤电性能镀层⑥磁性能镀层⑦可焊性镀层⑧耐热镀层⑨修复用镀层2)按镀层与基体金属之间的电化学性质可分为:阳极性镀层和阴极性镀层3)按镀层的组合形式,可分为:单层镀层和复合镀层4)按镀层成分分类,可分为:单一金属镀层、合金镀层及复合镀层选择使用:首先要了解镀层是否具有所要求的使用性能,然后按照零件的服役条件及使用性能要求,选用适当的镀层,还要按基材的种类和性质,选用相匹配的镀层;另外要依据零件加工工艺选用适当的镀层;此外,要考虑镀覆工艺的经济性。