过程控制系统设计
- 格式:ppt
- 大小:10.86 MB
- 文档页数:60
过程控制系统课程设计一、设计任务书1. 题目PH控制系统2. 设计要求①设计义某化工过程中废液中和的pH控制系统;②对控制系统稳定性进行分析;③对控制系统的参数进行整定;④控制系统Simulink仿真。
3 . 仪器设备A3000现场控制系统,pH控制系统。
二、基本原理pH控制系统子工业,尤其是化工等行业,应用非常广泛。
利用pH控制可以实现化工过程的正常生产过程、造纸厂等化工厂废液达标排放等。
1. pH的特点PH控制系统的主要方式有:有一种碱(或酸)滴定另一种物质使pH值保持在某一值上;对两种分别呈酸性和碱性物质的流量进行控制使pH值保持在某一值上;控制两种物质使混合溶液保持在一定的pH值上。
PH控制和其他控制参数的不同主要有以下两点:●PH滴定曲线的高度非线性;●滴定过程的测量纯滞后特性。
图01为典型的酸碱滴定特性曲线。
从图01知,溶液的pH值随中和流量非线性变化。
图01 典型的酸碱滴定特性曲线显然在控制系统中将pH值的变化转化为中和反应酸碱的控制流量变化,是根据滴定特性曲线进行的。
将滴定特性曲线转化为酸碱流量变化规律的方法主要有三种:●利用非线性阀补偿过程的非线性;●采用三段式滴定调节器,用三条相接的线性段代替非线性滴定曲线;●采用滴定曲线的非线性调节器精确描述滴定曲线。
随着技术的进步,利用非线性阀补偿滴定曲线非线性用的越来越少;而基于计算机功能元器件或计算机的第二种方法和第三种方法应用越来越多。
对滞后的补偿常采用以下三种方法:●微分Smith补偿方法,由于该方法本身适应能力较差,较少使用;●改进的Smith补偿方法;●自适应方法,应用较多的是增益自适应的Smith法。
为了提高控制系统的误差跟踪能力,pH控制系统经常采用的控制策略是PI或PID,不能采用P调节。
2. 三段式非线性调节器和采用滴定曲线的非线性调节器(1)三段式非线性调节器实际中,酸碱中和后通过pH计测得pH值的大小,控制系统当前pH值大小折算成溶液中酸碱量的多少,并调节系统酸碱流量的大小实现要求的pH值。
过程控制单回路控制系统设计设计流程:1.确定控制目标:首先,需要确定控制的目标,即需要控制的变量。
在温度控制系统中,控制目标是温度。
2.选择传感器:根据控制目标选择合适的传感器。
在温度控制系统中,可以选择温度传感器。
3.选择执行器:根据控制目标选择合适的执行器。
在温度控制系统中,可以选择加热器或制冷器作为执行器。
4.设计控制器:根据传感器和执行器的特性设计控制器。
常用的控制器包括比例控制器、积分控制器和微分控制器。
5.信号处理:将传感器获取到的数据进行处理,使其适合控制器的输入。
常见的信号处理操作包括放大、滤波和变换等。
6.反馈控制:将控制器的输出与传感器的反馈信号进行比较,并根据比较结果进行调节。
常见的反馈控制算法包括比例反馈控制、积分反馈控制和模糊反馈控制等。
7.参数调节:根据实际情况对控制器的参数进行调节,使得系统达到最佳性能。
8.系统集成:将传感器、执行器、控制器和信号处理器等各部分组装成一个完整的系统,并进行功能测试和性能评估。
关键要素:1.传感器:传感器用于将被控变量转换成电信号,常见的传感器有温度传感器、压力传感器和流量传感器等。
2.执行器:执行器用于根据控制信号调节被控变量,常见的执行器有阀门、电机和加热器等。
3.控制器:控制器根据传感器信号和设定值,计算出控制信号,并将其发送给执行器,常见的控制器有PID控制器和模糊控制器等。
4.信号处理器:信号处理器用于对传感器输出的信号进行放大、滤波和变换等处理,以提高控制系统的稳定性和抗干扰能力。
5.反馈控制:反馈控制通过比较传感器输出和设定值,根据比较结果调整控制信号,以实现控制目标。
6.参数调节:控制器的性能和稳定性很大程度上取决于其参数的选择和调节,通过对控制器参数的调节,可以提高控制系统的响应速度和稳定性。
过程控制单回路控制系统设计需要结合具体的应用场景和要求进行,根据控制目标选择合适的传感器、执行器和控制器,并通过信号处理和反馈控制等措施来提高系统的性能和稳定性。
工业过程控制系统的设计与实现在现代化的工业生产中,一个工场所的工业过程控制系统的设计和实现的好坏将直接决定生产的效率、质量和可靠性。
因此,在厂家进行工业过程设计时,要重视工业过程控制系统的设计和实现。
本文将对此进行探讨。
一、工业过程控制系统的分类工业过程控制系统按照其功能可分为3类:连续过程控制系统、批处理控制系统和离散过程控制系统。
1、连续过程控制系统连续过程控制系统主要控制生产过程中连续加工的物质流动。
如炼油、制药、化肥、金属加工生产线等。
其中主要控制的是生产流程中的物料的移动、混合、分离等过程,主要采用PID闭环控制技术。
2、批处理控制系统批处理控制系统是在一批量生产结束后,才开始下一批生产操作的一个生产系统。
如制药、电子产品生产线等。
其中控制的主要过程是固定的,每个生产操作的参数都可以在控制系统内预先存储。
批处理控制系统中主要采用时间控制和逻辑控制。
3、离散过程控制系统离散过程控制系统主要控制离散制造业生产的过程。
如汽车、机器人等离散操作。
其中控制对象(如零件)在每个操作中有一个固定位置,而且操作的时间是短暂的,控制过程主要靠逻辑控制,常采用PLC、DCS、SCADA等技术。
二、工业过程控制系统的设计在工业过程控制系统的设计过程中有着众多的要求,通常包括以下几个方面:1、系统稳定性一个好的工业过程控制系统的稳定性是其设计应达到的第一个目标,其稳定性关系到生产效率和质量。
在工业过程控制系统设计中,要求设计师利用雷诺数、拓扑结构等理论掌握系统的运动稳定性和频率响应等特性,从而有计划地对系统进行设计和调试,以实现系统稳定控制。
此外,为了提高稳定性还要增强对系统故障的预警机制,及时发现故障并采取对应措施。
2、控制器选型在工业过程控制系统的设计中,控制器是十分重要的一环。
通常,工业生产需要高速计算能力和高实时性的控制系统,常采用PLC、DCS、PC等控制器。
在选择控制器时,需要根据实际运行情况,结合控制器技术指标和操作条件选择适合的控制器类型。
基于SCADA的过程控制系统设计与实现一、引言SCADA(Supervisory Control and Data Acquisition)是指监控控制与数据采集系统,它可以将分散的数据进行集中处理,实现对远程设备的监控和控制。
在工业自动化领域中,SCADA系统已经广泛应用于过程控制系统的设计和实现中。
本文将介绍基于SCADA的过程控制系统的设计原理和实现方法。
二、SCADA系统的基本原理SCADA系统由监控主站和远程终端单元组成,其中监控主站负责数据采集、监视和控制,而远程终端单元则负责采集现场数据并将数据传输给监控主站。
SCADA系统通过使用现代通信技术,如以太网、无线通信等,实现了对远程设备的实时监测和控制。
三、过程控制系统的设计与实现1. 系统需求分析在设计过程控制系统之前,首先需要进行系统需求分析。
这包括确定系统的功能需求、性能需求和可靠性需求等,并对系统运行环境进行评估。
2. 系统架构设计基于SCADA的过程控制系统需要设计合适的系统架构。
一般来说,系统架构包括核心网络架构、系统软件架构和硬件架构等。
核心网络架构负责控制主站和远程终端单元之间的通信,系统软件架构负责数据采集和处理,而硬件架构则负责提供必要的硬件设备支持。
3. 数据采集与传输过程控制系统的设计和实现离不开数据采集和传输。
通过采集传感器和执行器的数据,可以实现对过程的监视和控制。
数据采集可以通过模拟量输入、数字量输入和通信接口等方式进行。
而数据传输则可以通过以太网、无线通信等手段实现。
4. 数据处理与控制SCADA系统的核心任务是对采集到的数据进行处理和控制。
数据处理包括数据存储、数据显示和数据分析等。
而数据控制则包括远程控制和命令下达等。
通过数据处理和控制,可以实现对过程的监控和调控。
5. 系统安全与可靠性保障过程控制系统设计和实现中要注意系统的安全和可靠性。
这包括对系统的保密性、完整性和可用性进行保护,以及对系统进行备份和恢复等措施的实施。
工业过程控制系统设计与优化工业生产中,过程控制系统设计与优化是至关重要的。
它不仅可以提高产品的质量和生产效率,还可以减少生产成本和安全事故的发生。
本文将从控制系统设计的基本理念和优化方法入手,为读者深入介绍工业生产中的过程控制系统设计与优化。
一、基本理念控制系统设计的基本任务是根据所需的生产过程,在系统中加入控制装置,使得整个生产过程可以稳定运行,并且达到预期的效果。
控制系统设计应当以实现生产过程的准确控制为前提,以提高生产效率、降低生产成本、保障生产安全为目标,针对生产过程的特点和要求进行综合考虑。
控制系统设计的核心是控制算法。
通过对生产过程进行观测和分析,采用合适的控制算法以最小化过程控制中的误差和变化,从而使生产达到更完美的效果。
设备的选择是控制系统设计的关键。
为了达到稳定的控制效果,设备必须具备稳定性、精度高、响应速度快、适用于不同的工作环境和工作状态等特点。
在实际设计过程中,应当结合生产需求和工作环境综合考虑,并根据需求选取合适的设备和器材。
二、控制系统优化方法控制系统优化的目标是提高生产效果和降低生产成本。
其核心任务是对控制算法进行细致分析和改进,使其更加准确和可靠。
同时,还要综合考虑生产过程的特点和要求,优化控制系统的各个组成部分,从而提高生产效率和降低生产成本。
(1)控制算法优化控制算法优化是控制系统优化的关键。
如果控制算法不够准确、灵活,那么就很难达到准确控制的目的。
因此,控制算法的优化应当是优化控制系统的首要任务。
控制算法的优化主要包括以下几个方面:①建立可靠的数学模型:建立准确、可靠的数学模型是优化控制算法的基础。
只有建立准确的数学模型,才能较为准确地预测生产过程中的变化。
②选择合适的控制算法:根据不同的生产过程要求,选择合适的控制算法。
比如,在一些要求精度较高的生产过程中,PID控制算法就可以起到较为良好的效果;而在一些需要更为复杂控制的生产过程中,可以考虑使用模糊、神经网络等现代控制算法。
过程控制系统课程设计在过程控制系统课程设计中,学生需要综合运用所学的理论和技能,设计一个能够有效控制和监控工业过程的系统。
本文将介绍一个典型的过程控制系统课程设计流程,并着重介绍设计中需要考虑的关键要素和实施步骤。
一、引言过程控制系统是现代工业中必不可少的一部分,它能够监测和控制工业过程中的各种参数,保证生产的高效性和安全性。
因此,对于学习过程控制系统的专业学生而言,掌握设计过程控制系统的能力非常重要。
本课程设计旨在帮助学生深入了解过程控制系统,并通过实践提高他们的设计能力。
二、设计要素在进行过程控制系统的课程设计时,需要考虑以下关键要素:1. 系统需求分析:了解工业过程的特点和需求,明确系统的功能、性能和稳定性要求。
2. 控制策略选择:根据系统需求分析,选择适合的控制策略,如PID控制、最优控制等。
3. 传感器选择与布置:根据需求确定需要监测的参数,并选择合适的传感器进行测量,并合理布置传感器。
4. 控制器选择与配置:选择合适的控制器,并通过配置参数来实现所需的控制策略。
5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。
6. 安全性考虑:确保系统具备安全性,采取相应的防护措施,防止事故的发生。
三、课程设计步骤以下是一个典型的过程控制系统课程设计步骤,供学生参考:1. 系统需求分析:对于一个给定的工业过程,分析其特性和需求,确定系统的功能、性能和稳定性要求。
2. 控制策略选择:根据需求分析,选择适合的控制策略,如PID控制、模糊控制等,并解释其原理和适用范围。
3. 传感器选择与布置:根据需求确定需要监测的参数,选择合适的传感器进行测量,并合理布置传感器,以保证测量的准确性和可靠性。
4. 控制器选择与配置:根据选择的控制策略,选择合适的控制器,并通过配置参数来实现所需的控制策略。
5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。
界面应包括实时数据显示、报警功能等。
摘要加热炉在工业生产中是非常重要的换热设备,在炉膛内将燃料燃烧释放的热量通过热辐射方式传递给被加热的工艺介质。
加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。
同时,近年来能源的节约、回收和合理利用日益受到关注。
加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。
因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。
另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。
为保证工艺介质最终温度稳定的同时,达到节能减排的目的,本文设计的加热炉控制系统包括如下控制回路:燃料量和空气量交叉限制式串级燃烧自动系统、炉膛压力自动控制,热风温度自动控制系统,燃料、空气流量比例自动控制。
另外,为了最大程度地节约能源,在具有下游换热器的加热炉装置中,下游换热器只在工艺介质最终温度异常升高时工作,在平稳生产时不起作用。
关键词:温度、加热炉、控制系统。
目录摘要 (1)第一章绪论 (3)1.1引言 (3)1.2 国内外控制系统状况 (3)第二章控制系统设计 (5)2.1生产工艺及加热炉简介 (5)2.2 控制系统的设计思想和总体方案 (7)2.2.1 控制系统的设计思想 (7)2.2.2 控制系统的设计方案 (7)2.3 控制回路的参数选择 (10)2.4 主、副调节器调节规律的选择 (10)2.4.1 调节规律分析 (10)2.4.2 调节规律的确定 (11)2.5主、副调节器选用 (12)2.6主、副电路检测变送器的确定 (13)2.6.1 温度检测元件 (13)2.6.2 温度变送器 (14)2.7 调节阀的确定 (14)2.8 联锁保护 (15)第三章结束语 (16)参考文献 (17)第一章绪论1.1引言近年来,轧钢生产中所涌现的新技术、新工艺主要是围绕节约能源、降低成本、提高产品质量、开发新产品所进行的。