第七讲 钻速方程
- 格式:ppt
- 大小:920.50 KB
- 文档页数:47
钻头水利参数计算公式: 1、 钻头压降:dc QP eb 422827ρ= (MPa ) 2、冲击力:VF Q j02.1ρ= (N)3、 喷射速度:dV eQ201273=(m/s)4、 钻头水功率:d c QN eb 42305.809ρ= (KW )5、比水功率:DNN b 21273井比= (W/mm 2)6、 上返速度:D DV Q221273杆井返=- (m/s )式中:ρ-钻井液密度 g/cm 3Q-排量 l/sc -流量系数,无因次,取0.95~0.98de -喷嘴当量直径 mmd d d de 2n 2221+⋯++= d n :每个喷嘴直径 mmD 井、D 杆 -井眼直径、钻杆直径 mm全角变化率计算公式:()()⎪⎭⎫⎝⎛∂+∂+∆=-∂-∂225sin222b a b a b a L K abab ϕϕ 式中:a ∂ b ∂ -A 、B 两点井斜角;a ϕ b ϕ -A 、B 两点方位角套管强度校核:抗拉:安全系数 m =1.80(油层);1.60~1.80(技套) 抗拉安全系数=套管最小抗拉强度/下部套管重量 ≥1.80 抗挤:安全系数:1.12510ν泥挤H P =查套管抗挤强度P c 'P c'/P 挤≥1.125按双轴应力校核:Hn P ccρ10=式中:P cc -拉力为T b 时的抗拉强度(kg/cm 2) ρ -钻井液密度(g/cm 3) H -计算点深度(m ) 其中:⎪⎭⎫⎝⎛--=T T KPP b b ccc K 223T b :套管轴向拉力(即悬挂套管重量) kg P c :无轴向拉力时套管抗挤强度 kg/cm 2K :计算系数 kg σs A K 2=A :套管截面积 mm 2 σs :套管平均屈服极限 kg/mm 2 不同套管σs 如下:J 55:45.7 N 80:63.5 P 110:87.9地层压力监测:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=D W NT R R d m n c 0671.0lg 282.3lg (d c 指数)100417.04895.8105⎪⎭⎫ ⎝⎛+⨯-=H cn ddR d Rcmcnp=(压力系数)式中:T –钻时 min/m N –钻盘转数 r/minW -钻压 KN D -钻头直径 mmR n -地层水密度 g/cm 3 R m -泥浆密度 g/cm 3 压漏实验:1、 地层破裂压力梯度:HP G Lm f 10008.9+=ρ KPa2、 最大允许泥浆密度:HP Lm 102max +=ρρ g/cm 3为安全,表层以下[]06.0max-=ρρmg/cm 3技套以下[]12.0max-=ρρmg/cm 33、 最大允许关井套压:[]8.01000'max ⨯⎪⎭⎫ ⎝⎛--=gH m R a P P ρρ式中:P L -漏失压力(MPa ) PR-破裂压力(MPa )ρm-原泥浆密度(g/cm 3) H -实验井深(m )ρ'max-设计最大泥浆密度(g/cm 3) 10008.9mHP PL ρ+=漏10008.9HmR P P ρ+=破井控有关计算:最大允许关井套压经验公式:表层套管[Pa]=11.5%×表层套管下深(m )/10 MPa 技术套管[Pa]=18.5%×技术套管下深(m )/10 MPa地层破裂压力梯度:H P G RR 1000=KPa/m最大允许关井套压:8.000981.01000max ⨯⎪⎪⎭⎫⎝⎛-=H H G P R a 套套ρ Mpa 最大允许钻井液密度:81.9'max G R=ρ-0.06 (表层)81.9'maxGR=ρ-0.12 (技套)套管在垂直作用下的伸长量:10724854.7-⨯-=∆LmL ρ式中:ρm -钻井液密度 g/cm 3 L ∆ -自重下的伸长 m L -套管原有长度 m 套管压缩距:()ρρmL LLE L 总钢固自-⨯=∆10式中:L ∆ -下缩距 m L自-自由段套管长度 mL固-水泥封固段套管长度 mL总-套管总长 mρ钢-钢的密度 7.85g/cm 3ρm-钻井液密度 g/cm 3E -钢的弹性系数 (2.1×106kg/cm 3)泥浆有关计算公式:1、加重剂用量计算公式:()rr r r r 重加原重原加加-=-V W 式中:W 加 -所需加重剂重量 吨 V 原 -加重前的泥浆体积 米3r 原、r 重、r 加-加重前、加重后、加重材料比重 g/cm 32、泥浆循环一周时间:QT V V 60柱井-=式中:T -泥浆循环一周时间 分 V 井、V 柱 -井眼容积、钻柱体积 升 Q -泥浆泵排量 升/秒 3、井底温度计算公式:1680HT T += 式中:T 、T 0 -井底、井口循环温度 o C H -井深 米 4、配制泥浆所需粘土和水量计算:粘土量 ()rr r r r 水土水泥泥泥土-=-V W 水量r土土泥水-=W V Q式中:W 土 -所需粘土的重量 吨 V 泥 -所需泥浆量 米3r 水、r 土、r 泥 -水、土和泥浆的比重 g/cm 3 Q 水 -所需水量 米35、降低比重所需加水量:()rrrrr水稀水稀原原水=--VQ式中:Q水-所需水量米3V原-原泥浆体积米3r原、r稀、r水-原泥浆、稀释后泥浆和水的比重g/cm3。
名词解释:静液压力:液柱自身的重力所引起的压力,它的大小与液体的密度、液柱的垂直高度或深度有关。
(压力系数:单位高度或单位深度的液柱压力,用于表示静液压力随深度或高度的变化)上覆岩层压力:该处以上地层岩石基质和孔隙中流体的总重力所产生的压力。
地层压力:岩石孔隙中流体所具有的压力,也称地层空隙压力(储层压力)。
正常地层压力:从地表到地下某处的连续地层水的静液压力。
实际地层压力》正常地层=异常高压实际地层压力《正常地层=异常低压基岩应力:岩石颗粒之间相互接触来支撑的那部分上覆岩层压力,也称有效上覆岩层压力或颗粒间压力。
地层破裂压力:某深度处地层破裂时所能承受的液体压力称为该处地层的破裂压力,用P f 表示。
它取决于井眼周围岩石的应力状态和岩石强度塑性系数:岩石破碎前耗费的总功A F与岩石破碎前弹性变形功A E的比值。
有效应力:外压与内压之差,决定于岩石的强度保径:对于用在研磨性较强的地层的钻头都要增大钻头外径部位的耐磨性。
中性点:钻杆受拉与受压的分界点,上面一段钻杆在钻井液中的重力等于大钩悬重,下面一段钻柱在钻井液中的重力等于钻压。
虑失:钻井液中的液体(刚开始也有钻井液)在压差的作用下向地层内渗滤的过程。
造壁过程:钻井液中的固相颗粒附着在井壁上形成滤饼的过程。
门限钻压:是牙齿开始压入地层时的钻压,其值的大小主要取决于岩层性质,并具有较强的地区性。
岩屑举升效率是指岩屑在环空的实际上返速度与钻井液在环空的上返速度之比。
井眼轨迹:在一口已钻成的井的实际井眼轴线形状井眼曲率:井眼轨迹曲线的曲率。
欠平衡压力钻井:在钻井过程中允许地层流体进入井内,循环出井,并在地面得到控制。
主要标志是井底有效压力低于地层压力。
落鱼:脱落井内的钻具填空:1、钻头分为:牙轮钻头、金刚石材料钻头、刮刀钻头2、金刚石材料钻头分为:天然金刚石钻头、PDC、TSP3、牙轮分为:铣齿、镶齿4、钻柱的组成:方钻杆、钻杆段(钻、接头和扩眼器)、下部钻具(钻铤)5、钻杆的钢级最小屈服强度决定的,从小到大分别是:D、E、95(X)、105(G)、135(S)6、最长用的钻铤有圆形和螺旋形,螺旋形钻铤上有浅而宽的螺旋槽,可减少其与井壁的接触面积,可减少发生压差卡钻的可能性。
第四节 钻井常用计算公式一、井架基础的计算公式(一)基础面上的压力P 基= 式中:P 基——基础面上的压力,MPa ;n ——动负荷系数(一般取1.25~1.40);Q O ——天车台的负荷=天车最大负荷+天车重量,t ;Q B ——井架重量,t ;(二)土地面上的压力P 地=P 基+W式中:P 地——土地面上的压力,MPa;P 基——基础面上的压力,MPa;W ——基础重量,t (常略不计)。
(三)基础尺寸1、顶面积F 1= 式中:F 1——基础顶面积,cm2;B 1——混凝土抗压强度(通常为28.1kg/cm2=0.281MPa)2、底面积F 2= 式中:F 2——基础底面积,cm 2;B 2——土地抗压强度,MPa ;P 地——土地面上的压力,MPa 。
3、基础高度式中:H ——基础高度,m ;F2、F1分别为基础的底面积和顶面积,cm 2;P 基——基础面上的压力,MPa ;B 3——混凝土抗剪切强度(通常为3.51kg/cm 2=0.351MPa )。
(二)混凝土体积配合比用料计算1、计算公式 nQ O +Q B 4P 基B 1P 地B 2配合比为1∶m∶n=水泥∶砂子∶卵石。
根据经验公式求每1m3混凝土所需的各种材料如下:2、混凝土常用体积配合比及用料量,见表1-69。
表1-69 混凝土常用体积配合比及用料量混凝土用途体积配合比每立方米混凝土每立方米砂子每立方米石子每1000公斤水尼水泥kg砂子m3石子m3水泥kg石子m3混凝土m3水泥kg砂子m3混凝土m3砂子m3石子m3混凝土m31.坚硬土壤上的井架脚,小基墩井架脚,基墩的上部分。
1∶2∶4335 0.45 0.90 744 2 2.22 372 0.5 1.11 1.35 2.70 2.992.厚而大的突出基墩。
1∶2.5∶5 276 0.46 0.91 608 2 2.20 304 0.5 1.10 1.57 3.10 3.633.支承台、浇灌坑穴及其他。
预测机械钻速的公式全文共四篇示例,供读者参考第一篇示例:机械钻是一种非常常见的工艺,在建筑、矿山、油田等领域都有广泛的应用。
预测机械钻的速度对于工程进度的控制和效率的提升具有重要意义。
通过对机械钻速的公式进行研究和预测,可以帮助工程人员合理安排施工计划,有效提高工程的效率和质量。
我们需要了解机械钻速的影响因素。
影响机械钻速的因素有很多,包括钻头的类型、工作条件、岩石的硬度等。
在实际工程中,这些因素都会对机械钻速产生影响,因此需要综合考虑这些因素来预测机械钻速。
我们需要确定机械钻速的公式。
机械钻速的预测公式通常可以通过实验数据拟合得到。
在进行预测时,可以根据历史数据和实际情况来选择合适的公式,并对其参数进行修正和调整,以得到更准确的预测结果。
一种常用的机械钻速预测公式是RQD法。
RQD是指岩石质量设计评价系统中的一个指标,代表可钻性指数。
根据RQD值,可以预测机械钻的速度,公式如下:V = k * RQD^mV为机械钻速,k和m为经验参数,根据具体情况可调整。
通过测量钻孔中的RQD值,就可以根据该公式预测机械钻速,从而有效地指导工程施工。
第二篇示例:预测机械钻速的公式是钻井工程中非常重要的工具,它可以帮助工程师合理地安排钻井作业,并提高钻井效率。
机械钻速是指在一定条件下,钻机在单位时间内进展的钻进距离。
在钻井作业中,我们需要预测机械钻速,以便合理安排钻井时间和计划生产成本。
机械钻速受到多种因素的影响,包括地层条件,钻井液性质,井眼直径,钻头类型等。
预测机械钻速的公式是基于这些因素的分析和实验数据得出的,它可以帮助我们更准确地预测钻井速度。
一个通用的预测机械钻速的公式如下:V = (k1 * WOB + k2 * RPM) * k3其中,V表示机械钻速,WOB表示钻具下压力(weight on bit),RPM表示转速(revolution per minute),k1,k2,k3为经验系数。
这个公式简单明了,可以通过调整不同的系数来适应不同的条件。
一、井架基础的计算公式 (一)基础面上的压力 P 基=式中:P 基——基础面上的压力,MPa ;n ——动负荷系数(一般取~);Q O ——天车台的负荷=天车最大负荷+天车重量,t ; Q B ——井架重量,t ; (二)土地面上的压力P 地=P 基+W式中:P 地——土地面上的压力,MPa;P 基——基础面上的压力,MPa; W ——基础重量,t (常略不计)。
(三)基础尺寸 1、顶面积F 1=式中:F 1——基础顶面积,cm2;B 1——混凝土抗压强度(通常为cm2= 2、底面积F 2=式中:F 2——基础底面积,cm 2;B 2——土地抗压强度,MPa ; P 地——土地面上的压力,MPa 。
3、基础高度式中:H ——基础高度,m ;F2、F1分别为基础的底面积和顶面积,cm 2; P 基——基础面上的压力,MPa ;B 3——混凝土抗剪切强度(通常为cm 2=)。
(二)混凝土体积配合比用料计算 1、计算公式配合比为1∶m∶n=水泥∶砂子∶卵石。
根据经验公式求每1m 3混凝土所需的各种材料如下:nQ O +Q B 4 P 基B 1P 地B 22、混凝土常用体积配合比及用料量,见表1-69。
表1-69 混凝土常用体积配合比及用料量二、井身质量计算公式(一)直井井身质量计算1、井斜角全角变化率式中:G ab——测量点a和b间井段的井斜全角变化率,(°)/30m;△L ab——测量点a和b间的井段长度,m;αa——测量点a点处的井斜角,°;αb——测量点b点处的井斜角,°;△Φab——测量点a和b之间的方位差,△Φab=Φb-Φa,°。
2、井底水平位移式中:S Z——井底水平位移,m;N O——井口N座标值,m;N n——实际井底N座标值,m;E O——井口E座标值,m;E n——实际井底E座标值,m。
3、最大井斜角根据井深井斜测量数据获取或井斜测井资料获得。
第一章 钻井的工程地质条件(P41)1、简述地下各种压力的基本概念及上覆岩层压力、地层压力和基岩应力三者之间的关系。
答:P6~P82、简述地层沉积欠压实产生异常高压的机理。
答:P10答:地层在沉积压实过程中,能否保持压实平衡主要取决于四个因素:(1)上覆岩层沉积速度的大小,(2)地层渗透率的大小,(3)地层孔隙减小的速度,(4)排出孔隙流体的能力。
在地层的沉积过程中,如果沉积速度很快,岩石颗粒没有足够的时间去排列,孔隙内流体的排出受到限制,基岩无法增加它的颗粒和颗粒之间的压力,即无法增加它对上覆岩层的支撑能力。
由于上覆岩层继续沉积,岩层压力增加,而下面的基岩的支撑能力并没有增加,孔隙流体必然开始部分地支撑本应有岩石颗粒所支撑的那部分上覆岩层压力。
如果该地层的周围又有不渗透的地层圈闭,就造成了地层欠压实,从而导致了异常高压的形成。
3、简述在正常压实地层中岩石的密度、强度、空隙度、声波时差和dc 指数随井深变化的规律。
答:密度、强度、dc 指数随井深增加而增大(见P10上、P25下、P15中);空隙度、声波时差随井深增加而减小(见P12下)。
4、解释地层破裂压力的概念,怎样根据液压实验曲线确定地层破裂压力?答:地层破裂压力:P17中。
根据液压实验曲线确定地层破裂压力:见P21中(步骤4、5)。
5、某井井深2000m ,地层压力25MPa ,求地层压力当量密度。
解:根据P13、式(1-12),地层压力D p p p ρ00981.0=地层压力当量密度 )/(274.1200000981.02500981.03m g D p p p =⨯==ρ6、某井井深2500m ,钻井液密度1.18 g/cm 3,若地层压力27.5MPa/m ,求井底压差。
解:井底压差=井底钻井液液柱压力-地层压力静液压力: P6、式(1-1))(94.28250018.100981.000981.0MPa h P h =⨯⨯==ρ井底压差:)(44.15.2794.28MPa P P P h h =-=-=∆7、某井井深3200m ,产层压力为23.1MPa ,求产层的地层压力梯度。
水力喷射侧钻径向水平井钻速方程马东军;李根生;郭瑞昌;黄中伟【摘要】通过试验得到泵功率、围压和喷距等参数对钻速的影响,应用数学分析方法建立水力喷射侧钻径向水平井钻速方程,将试验和理论推导相结合给出钻速方程的求解方法.结果表明:钻速随着泵功率的增加以指数关系变化,指数一般小于1,钻井液黏度越大指数越小;钻速随着围压的增大而逐渐减小;钻速随着喷距的增大先增大后减小.%The influence of pump power,ambient pressure and standoff distance on drilling rate was researched by an experiment.Drilling rate equations of hydraulic jetting lateral drilling radial horizontal well were established by mathematic analytical method.And the solution method of the drilling rate equations was provided on the basis of theoretic analysis and experiment.The results show that the drilling rate increases exponentially with the increase of pump power,and the index is usually less than 1.0 and decreases with the drilling fluid viscosity increasing.The drilling rate decreases with the increase of ambient pressures and increases firstly and then decreases with the increase of standoff distance.【期刊名称】《中国石油大学学报(自然科学版)》【年(卷),期】2013(037)003【总页数】5页(P78-82)【关键词】水平井;水力喷射;钻速方程;泵功率;围压;喷距【作者】马东军;李根生;郭瑞昌;黄中伟【作者单位】中国石化石油工程技术研究院,北京100101;中国石油大学油气资源与探测国家重点实验室,北京102249;中国石化石油工程技术研究院,北京100101;中国石油大学油气资源与探测国家重点实验室,北京102249【正文语种】中文【中图分类】TE21水力喷射侧钻径向水平井技术起步于20世纪末,它可以提高单井油气产量,降低钻井成本,特别适用于老油田增产和开发海上小油田、边际油田等[1-9]。